This paper forms part of a special collection Exploring Osteoporosis and Sarcopenia. The guest editor for this section was Dr Naibedya Chattopadhyay.
Osteosarcopenia, which refers to the concomitant presence of osteoporosis and sarcopenia, is expected to increase in the rapidly progressive aging world, with serious clinical implications. However, the pathophysiology of osteosarcopenia has not been fully elucidated, and no optimal treatment specific to osteosarcopenia is available. The RANKL–RANK pathway is widely used as a therapeutic target for osteoporosis. Growing evidence supports the importance of the RANKL–RANK pathway, not only in bone, but also in muscle, and the therapeutic potential of targeting this pathway in muscle diseases has been noted. The muscles and bones closely communicate with each other through various secretory factors called myokines and osteokines. This review covers the roles of the RANKL–RANK pathway in the bone and muscle and their reciprocal interactions. Moreover, we will suggest future directions to move forward for the treatment of osteosarcopenia to prepare for an upcoming aging society.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 180 | 180 | 18 |
PDF Downloads | 237 | 237 | 23 |
Belchior GF, Kirk B, Pereira da Silva EA & & Duque G 2020 Osteosarcopenia: beyond age-related muscle and bone loss. European Geriatric Medicine 11 715–724. (https://doi.org/10.1007/s41999-020-00355-6)
Bergström I, Parini P, Gustafsson SA, Andersson G & & Brinck J 2012 Physical training increases osteoprotegerin in postmenopausal women. Journal of Bone and Mineral Metabolism 30 202–207. (https://doi.org/10.1007/s00774-011-0304-6)
Bonnet N, Bourgoin L, Biver E, Douni E & & Ferrari S 2019 RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. Journal of Clinical Investigation 129 3214–3223. (https://doi.org/10.1172/JCI125915)
Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, et al.2012 A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481 463–468. (https://doi.org/10.1038/nature10777)
Bouredji Z, Hamoudi D, Marcadet L, Argaw A & & Frenette J 2021 Testing the efficacy of a human full-length OPG-Fc analog in a severe model of cardiotoxin-induced skeletal muscle injury and repair. Molecular Therapy. Methods and Clinical Development 21 559–573. (https://doi.org/10.1016/j.omtm.2021.03.022)
Boyce BF & & Xing L 2007 Biology of RANK, RANKL, and osteoprotegerin. Arthritis Research and Therapy 9(Supplement 1) S1. (https://doi.org/10.1186/ar2165)
Boyce BF & & Xing LP 2008 Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of Biochemistry and Biophysics 473 139–146. (https://doi.org/10.1016/j.abb.2008.03.018)
Brotto M & & Johnson ML 2014 Endocrine crosstalk between muscle and bone. Current Osteoporosis Reports 12 135–141. (https://doi.org/10.1007/s11914-014-0209-0)
Canalis E 2013 Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nature Reviews. Endocrinology 9 575–583. (https://doi.org/10.1038/nrendo.2013.154)
Chen YS, Guo Q, Guo LJ, Liu T, Wu XP, Lin ZY, He HB & & Jiang TJ 2017 GDF8 inhibits bone formation and promotes bone resorption in mice. Clinical and Experimental Pharmacology and Physiology 44 500–508. (https://doi.org/10.1111/1440-1681.12728)
Chotiyarnwong P, McCloskey E, Eastell R, McClung MR, Gielen E, Gostage J, McDermott M, Chines A, Huang S & & Cummings SR 2020 A pooled analysis of fall incidence from placebo-controlled trials of denosumab. Journal of Bone and Mineral Research 35 1014–1021. (https://doi.org/10.1002/jbmr.3972)
Chowdhury S, Schulz L, Palmisano B, Singh P, Berger JM, Yadav VK, Mera P, Ellingsgaard H, Hidalgo J, Bruning J, et al.2020 Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. Journal of Clinical Investigation 130 2888–2902. (https://doi.org/10.1172/JCI133572)
Chung HS & & Choi KM 2020 Organokines in disease. Advances in Clinical Chemistry 94 261–321. (https://doi.org/10.1016/bs.acc.2019.07.012)
Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, et al.2015 The myokine irisin increases cortical bone mass. Proceedings of the National Academy of Sciences of the United States of America 112 12157–12162. (https://doi.org/10.1073/pnas.1516622112)
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, et al.2019 Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing 48 16–31. (https://doi.org/10.1093/ageing/afy169)
del Aguila LF, Claffey KP & & Kirwan JP 1999 TNF-α impairs insulin signaling and insulin stimulation of glucose uptake in C2C12muscle cells. American Journal of Physiology 276 E849–E855. (https://doi.org/10.1152/ajpendo.1999.276.5.E849)
Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM & & Frenette J 2015 Osteoprotegerin protects against muscular dystrophy. American Journal of Pathology 185 920–926. (https://doi.org/10.1016/j.ajpath.2015.01.006)
Dufresne SS, Dumont NA, Boulanger-Piette A, Fajardo VA, Gamu D, Kake-Guena SA, David RO, Bouchard P, Lavergne É, Penninger JM, et al.2016 Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles. American Journal of Physiology. Cell Physiology 310 C663–C672. (https://doi.org/10.1152/ajpcell.00285.2015)
Dufresne SS, Boulanger-Piette A, Bosse S, Argaw A, Hamoudi D, Marcadet L, Gamu D, Fajardo VA, Yagita H, Penninger JM, et al.2018 Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy. Acta Neuropathologica Communications 6 31. (https://doi.org/10.1186/s40478-018-0533-1)
Elango J, Bao B & & Wu WH 2021 The hidden secrets of soluble RANKL in bone biology. Cytokine 144 155559. (https://doi.org/10.1016/j.cyto.2021.155559)
Elson A, Anuj A, Barnea-Zohar M & & Reuven N 2022 The origins and formation of bone-resorbing osteoclasts. Bone 164 116538. (https://doi.org/10.1016/j.bone.2022.116538)
Filipowska J, Kondegowda NG, Leon-Rivera N, Dhawan S & & Vasavada RC 2022 LGR4, a G protein-coupled receptor with a systemic role: from development to metabolic regulation. Frontiers in Endocrinology (Lausanne) 13 867001. (https://doi.org/10.3389/fendo.2022.867001)
Hadjidakis DJ & & Androulakis II 2006 Bone remodeling. Annals of the New York Academy of Sciences 1092 385–396. (https://doi.org/10.1196/annals.1365.035)
Haeri NS, Perera S & & Greenspan SL 2022 Does zoledronic acid improve appendicular lean mass in older women with osteoporosis? A sub-analysis of a randomized clinical trial. Journal of Frailty and Aging 11 420–425. (https://doi.org/10.14283/jfa.2022.54)
Haghani K, Pashaei S, Vakili S, Taheripak G & & Bakhtiyari S 2015 TNF-α knockdown alleviates palmitate-induced insulin resistance inC2C12 skeletal muscle cells. Biochemical and Biophysical Research Communications 460 977–982. (https://doi.org/10.1016/j.bbrc.2015.03.137)
Hamoudi D, Marcadet L, Boulanger AP, Yagita H, Bouredji Z, Argaw A & & Frenette J 2019 An anti-RANKL treatment reduces muscle inflammation and dysfunction and strengthens bone in dystrophic mice. Human Molecular Genetics 28 3101–3112. (https://doi.org/10.1093/hmg/ddz124)
Hamoudi D, Bouredji Z, Marcadet L, Yagita H, Landry LB, Argaw A & & Frenette J 2020 Muscle weakness and selective muscle atrophy in osteoprotegerin-deficient mice. Human Molecular Genetics 29 483–494. (https://doi.org/10.1093/hmg/ddz312)
He H, Liu Y, Tian Q, Papasian CJ, Hu T & & Deng HW 2016 Relationship of sarcopenia and body composition with osteoporosis. Osteoporosis International 27 473–482. (https://doi.org/10.1007/s00198-015-3241-8)
Hesse E, Schroder S, Brandt D, Pamperin J, Saito H & & Taipaleenmaki H 2019 Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. JCI Insight 5. (https://doi.org/10.1172/jci.insight.125543)
Hirschfeld HP, Kinsella R & & Duque G 2017 Osteosarcopenia: where bone, muscle, and fat collide. Osteoporosis International 28 2781–2790. (https://doi.org/10.1007/s00198-017-4151-8)
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, et al.2018 Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561 195–200. (https://doi.org/10.1038/s41586-018-0482-7)
Karner CM & & Long FX 2017 Wnt signaling and cellular metabolism in osteoblasts. Cellular and Molecular Life Sciences 74 1649–1657. (https://doi.org/10.1007/s00018-016-2425-5)
Kim JA, Roh E, Hong SH, Lee YB, Kim NH, Yoo HJ, Seo JA, Kim NH, Kim SG, Baik SH, et al.2019 Association of serum sclerostin levels with low skeletal muscle mass: the Korean Sarcopenic Obesity Study (KSOS). Bone 128 115053. (https://doi.org/10.1016/j.bone.2019.115053)
Kim HN, Xiong J, MacLeod RS, Iyer S, Fujiwara Y, Cawley KM, Han L, He Y, Thostenson JD, Ferreira E, et al.2020 Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight 5. (https://doi.org/10.1172/jci.insight.138815)
Kirk B, Feehan J, Lombardi G & & Duque G 2020 aMuscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Current Osteoporosis Reports 18 388–400. (https://doi.org/10.1007/s11914-020-00599-y)
Kirk B, Zanker J & & Duque G 2020 bOsteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. Journal of Cachexia, Sarcopenia and Muscle 11 609–618. (https://doi.org/10.1002/jcsm.12567)
Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi JW, Nara Y, Pramusita A, Kinjo R & & Mizoguchi I 2020 Osteocyte-related cytokines regulate osteoclast formation and bone resorption. International Journal of Molecular Sciences 21. (https://doi.org/10.3390/ijms21145169)
Kuriyama N, Ozaki E, Koyama T, Matsui D, Watanabe I, Tomida S, Nagamitsu R, Hashiguchi K, Inaba M, Yamada S, et al.2021 Evaluation of myostatin as a possible regulator and marker of skeletal muscle-cortical bone interaction in adults. Journal of Bone and Mineral Metabolism 39 404–415. (https://doi.org/10.1007/s00774-020-01160-8)
Langdahl BL 2021 Overview of treatment approaches to osteoporosis. British Journal of Pharmacology 178 1891–1906. (https://doi.org/10.1111/bph.15024)
Lee SW, Youm Y, Lee WJ, Choi W, Chu SH, Park YR & & Kim HC 2015 Appendicular skeletal muscle mass and insulin resistance in an elderly Korean population: the Korean social life, health and aging project-health examination cohort. Diabetes and Metabolism Journal 39 37–45. (https://doi.org/10.4093/dmj.2015.39.1.37)
Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, et al.2000 RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proceedings of the National Academy of Sciences of the United States of America 97 1566–1571. (https://doi.org/10.1073/pnas.97.4.1566)
Liu D, Yao S & & Wise GE 2006 Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle. European Journal of Oral Sciences 114 42–49. (https://doi.org/10.1111/j.1600-0722.2006.00283.x)
Liu S, Gao F, Wen L, Ouyang M, Wang Y, Wang Q, Luo L & & Jian Z 2017 Osteocalcin induces proliferation via positive activation of the PI3K/Akt, P38 MAPK pathways and promotes differentiation through activation of the GPRC6A-ERK1/2 pathway in C2C12 myoblast cells. Cellular Physiology and Biochemistry 43 1100–1112. (https://doi.org/10.1159/000481752)
Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, Huang J, Dai W, Li C, Zheng C, et al.2016 LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nature Medicine 22 539–546. (https://doi.org/10.1038/nm.4076)
Ma QY, Liang MM, Wu YT, Ding N, Duan LL, Yu T, Bai Y, Kang F, Dong SW, Xu JZ, et al.2019 Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. Journal of Biological Chemistry 294 11240–11247. (https://doi.org/10.1074/jbc.RA119.007625)
MacDonald BT & & He X 2012 Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harbor Perspectives in Biology 4 a007880. (https://doi.org/10.1101/cshperspect.a007880)
Malavaki CJ, Sakkas GK, Mitrou GI, Kalyva A, Stefanidis I, Myburgh KH & & Karatzaferi C 2015 Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy. Journal of Muscle Research and Cell Motility 36 405–421. (https://doi.org/10.1007/s10974-015-9439-8)
Marahleh A, Kitaura H, Ohori F, Noguchi T & & Mizoguchi I 2023 The osteocyte and its osteoclastogenic potential. Frontiers in Endocrinology 14 1121727. (https://doi.org/10.3389/fendo.2023.1121727)
Marini F, Giusti F, Palmini G & & Brandi ML 2023 Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporosis International 34 213–238. (https://doi.org/10.1007/s00198-022-06523-7)
Mezil YA, Allison D, Kish K, Ditor D, Ward WE, Tsiani E & & Klentrou P 2015 Response of bone turnover markers and cytokines to high-intensity low-impact exercise. Medicine and Science in Sports and Exercise 47 1495–1502. (https://doi.org/10.1249/MSS.0000000000000555)
Miedany YE, Gaafary ME, Toth M, Hegazi MO, Aroussy NE, Hassan W, Almedany S, Nasr A, Bahlas S, Galal S, et al.2021 Is there a potential dual effect of denosumab for treatment of osteoporosis and sarcopenia? Clinical Rheumatology 40 4225–4232. (https://doi.org/10.1007/s10067-021-05757-w)
Mitchell S, Vargas J & & Hoffmann A 2016 Signaling via the NFκB system. Wiley Interdisciplinary Reviews-Systems Biology and Medicine 8 227–241. (https://doi.org/10.1002/wsbm.1331)
Ono T & & Nakashima T 2018 Recent advances in osteoclast biology. Histochemistry and Cell Biology 149 325–341. (https://doi.org/10.1007/s00418-018-1636-2)
Ono T, Hayashi M, Sasaki F & & Nakashima T 2020 RANKL biology: bone metabolism, the immune system, and beyond. Inflammation and Regeneration 40 2. (https://doi.org/10.1186/s41232-019-0111-3)
Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, Lawrence-Watt D & & Patel K 2008 Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. Journal of Cell Science 121 2939–2950. (https://doi.org/10.1242/jcs.026534)
Park MJ & & Choi KM 2023 Interplay of skeletal muscle and adipose tissue: sarcopenic obesity. Metabolism: Clinical and Experimental 144 155577. (https://doi.org/10.1016/j.metabol.2023.155577)
Philippou A, Bogdanis G, Maridaki M, Halapas A, Sourla A & & Koutsilieris M 2009 Systemic cytokine response following exercise-induced muscle damage in humans. Clinical Chemistry and Laboratory Medicine 47 777–782. (https://doi.org/10.1515/CCLM.2009.163)
Phu S, Hassan EB, Vogrin S, Kirk B & & Duque G 2019 Effect of denosumab on falls, muscle strength, and function in community-dwelling older adults. Journal of the American Geriatrics Society 67 2660–2661. (https://doi.org/10.1111/jgs.16165)
Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF & & Bonetto A 2022 RANKL blockade reduces cachexia and bone loss induced by non-metastatic ovarian cancer in mice. Journal of Bone and Mineral Research 37 381–396. (https://doi.org/10.1002/jbmr.4480)
Pizzonia M, Casabella A, Natali M, Petrocchi L, Carmisciano L, Nencioni A, Molfetta L, Giannotti C, Bianchi G, Giusti A, et al.2021 Osteosarcopenia in very old age adults after hip fracture: a real-world therapeutic standpoint. Frontiers in Medicine 8 612506. (https://doi.org/10.3389/fmed.2021.612506)
Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin W, Hu Y, Xu W & & Xu L 2016 Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Scientific Reports 6 18732. (https://doi.org/10.1038/srep18732)
Rashed F, Kamijyo S, Shimizu Y, Hirohashi Y, Khan M, Sugamori Y, Murali R & & Aoki K 2021 The effects of receptor activator of NF-kappaB ligand-binding peptides on bone resorption and bone formation. Frontiers in Cell and Developmental Biology 9 648084. (https://doi.org/10.3389/fcell.2021.648084)
Robling AG & & Bonewald LF 2020 The osteocyte: new insights. Annual Review of Physiology 82 485–506. (https://doi.org/10.1146/annurev-physiol-021119-034332)
Ross FP 2006 M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Annals of the New York Academy of Sciences 1068 110–116. (https://doi.org/10.1196/annals.1346.014)
Rupp T, von Vopelius E, Strahl A, Oheim R, Barvencik F, Amling M & & Rolvien T 2022 Beneficial effects of denosumab on muscle performance in patients with low BMD: a retrospective, propensity score-matched study. Osteoporosis International 33 2177–2184. (https://doi.org/10.1007/s00198-022-06470-3)
Sayer AA & & Cruz-Jentoft A 2022 Sarcopenia definition, diagnosis and treatment: consensus is growing. Age and Ageing 51. (https://doi.org/10.1093/ageing/afac220)
Scott D, Seibel M, Cumming R, Naganathan V, Blyth F, Le Couteur DG, Handelsman DJ, Waite LM & & Hirani V 2019 Does combined osteopenia/osteoporosis and sarcopenia confer greater risk of falls and fracture than either condition alone in older men? The concord health and ageing in men project. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 74 827–834. (https://doi.org/10.1093/gerona/gly162)
Severinsen MCK & & Pedersen BK 2020 Muscle-organ crosstalk: the emerging roles of myokines. Endocrine Reviews 41 594–609. (https://doi.org/10.1210/endrev/bnaa016)
Sheng RW, Cao MM, Song MY, Wang MY, Zhang YW, Shi L, Xie T, Li YJ, Wang JY & & Rui YF 2023 Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. Journal of Orthopaedic Translation 43 36–46. (https://doi.org/10.1016/j.jot.2023.09.007)
Shimonty A, Bonewald LF & & Huot JR 2023 Metabolic health and disease: a role of osteokines? Calcified Tissue International 113 21–38. (https://doi.org/10.1007/s00223-023-01093-0)
Singh R, Letai A & & Sarosiek K 2019 Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews. Molecular Cell Biology 20 175–193. (https://doi.org/10.1038/s41580-018-0089-8)
Sun Y, Hong J, Chen M, Ke Y, Zhao S, Liu W, Ma Q, Shi J, Zou Y, Ning T, et al.2015 Ablation of Lgr4 enhances energy adaptation in skeletal muscle via activation of Ampk/Sirt1/Pgc1alpha pathway. Biochemical and Biophysical Research Communications 464 396–400. (https://doi.org/10.1016/j.bbrc.2015.06.066)
Takegahara N, Kim H & & Choi Y 2022 RANKL biology. Bone 159 116353. (https://doi.org/10.1016/j.bone.2022.116353)
Tan ZY, Ding N, Lu HM, Kessler JA & & Kan LX 2019 Wnt signaling in physiological and pathological bone formation. Histology and Histopathology 34 303–312. (https://doi.org/10.14670/HH-18-062)
Teng Z, Zhu Y, Teng Y, Long Q, Hao Q, Yu X, Yang L, Lv Y, Liu J, Zeng Y, et al.2021 The analysis of osteosarcopenia as a risk factor for fractures, mortality, and falls. Osteoporosis International 32 2173–2183. (https://doi.org/10.1007/s00198-021-05963-x)
Tu HY & & Li YL 2023 Inflammation balance in skeletal muscle damage and repair. Frontiers in Immunology 14 1133355. (https://doi.org/10.3389/fimmu.2023.1133355)
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, et al.2021 Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of Bone and Mineral Metabolism 39 19–26. (https://doi.org/10.1007/s00774-020-01162-6)
Wan Y, Zeng F, Tan H, Lu Y, Zhang Y, Zhao L & & You R 2022 Cost-effectiveness analyses of denosumab for osteoporosis: a systematic review. Osteoporosis International 33 979–1015. (https://doi.org/10.1007/s00198-021-06268-9)
Weinstein RS, O'Brien CA, Almeida M, Zhao H, Roberson PK, Jilka RL & & Manolagas SC 2011 Osteoprotegerin prevents glucocorticoid-induced osteocyte apoptosis in mice. Endocrinology 152 3323–3331. (https://doi.org/10.1210/en.2011-0170)
West SL, Scheid JL & & De Souza MJ 2009 The effect of exercise and estrogen on osteoprotegerin in premenopausal women. Bone 44 137–144. (https://doi.org/10.1016/j.bone.2008.09.008)
Wong SK, Chin KY, Suhaimi FH, Ahmad F & & Ima-Nirwana S 2016 The relationship between metabolic syndrome and osteoporosis: a review. Nutrients 8. (https://doi.org/10.3390/nu8060347)
Wu LF, Zhu DC, Tang CH, Ge B, Shi J, Wang BH, Lu YH, He P, Wang WY, Lu SQ, et al.2018 Association of plasma irisin with bone mineral density in a large Chinese population using an extreme sampling design. Calcified Tissue International 103 246–251. (https://doi.org/10.1007/s00223-018-0415-3)
Xing BD, Yu J, Zhang HB & & Li YX 2023 RANKL inhibition: a new target of treating diabetes mellitus? Therapeutic Advances in Endocrinology and Metabolism 14 20420188231170754. (https://doi.org/10.1177/20420188231170754)
Xiong JH & & O'Brien CA 2012 Osteocyte RANKL: new insights into the control of bone remodeling. Journal of Bone and Mineral Research 27 499–505. (https://doi.org/10.1002/jbmr.1547)
Xiong J, Le YQ, Rao YF, Zhou L, Hu YH, Guo SL & & Sun YC 2021 RANKL mediates muscle atrophy and dysfunction in a cigarette smoke-induced model of chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology 64 617–628. (https://doi.org/10.1165/rcmb.2020-0449OC)
Yao ZQ, Getting SJ & & Locke IC 2021 Regulation of TNF-induced osteoclast differentiation. Cells 11. (https://doi.org/10.3390/cells11010132)
Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, et al.1998 Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139 1329–1337. (https://doi.org/10.1210/endo.139.3.5837)
Yu C, Du YJ, Peng Z, Ma CJ, Fang JH, Ma LT, Chen F, Zhang CQ, Geng RZ, Zhang YY, et al.2023 Research advances in crosstalk between muscle and bone in osteosarcopenia (Review). Experimental and Therapeutic Medicine 25 189. (https://doi.org/10.3892/etm.2023.11888)
Zanker J & & Duque G 2020 Osteosarcopenia: the path beyond controversy. Current Osteoporosis Reports 18 81–84. (https://doi.org/10.1007/s11914-020-00567-6)
Zhang SQ, Liu CZ, Huang P, Zhou S, Ren JS, Kitamura Y, Tang PF, Bi ZG & & Gao B 2009 The affinity of human RANK binding to its ligand RANKL. Archives of Biochemistry and Biophysics 487 49–53. (https://doi.org/10.1016/j.abb.2009.04.008)
Zhang J, Valverde P, Zhu X, Murray D, Wu Y, Yu L, Jiang H, Dard MM, Huang J, Xu Z, et al.2017 Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Research 5 16056. (https://doi.org/10.1038/boneres.2016.56)
Zhao Z, Yan K, Guan Q, Guo Q & & Zhao C 2023 Mechanism and physical activities in bone-skeletal muscle crosstalk. Frontiers in Endocrinology (Lausanne) 14 1287972. (https://doi.org/10.3389/fendo.2023.1287972)
Zhi X, Chen Q, Song SJ, Gu ZR, Wei WQ, Chen HW, Chen X, Weng WZ, Zhou QR, Cui J, et al.2020 Myostatin promotes osteoclastogenesis by regulating Ccdc50 gene expression and RANKL-induced NF-κB and MAPK pathways. Frontiers in Pharmacology 11 565163. (https://doi.org/10.3389/fphar.2020.565163)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519