Irisin promotes tilapia muscle cell growth and amino acid uptake via IGF-1 signaling

in Journal of Endocrinology
Authors:
Wenjun Deng Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China

Search for other papers by Wenjun Deng in
Current site
Google Scholar
PubMed
Close
,
Mingyu Xu Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China

Search for other papers by Mingyu Xu in
Current site
Google Scholar
PubMed
Close
,
Rui Dong Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China

Search for other papers by Rui Dong in
Current site
Google Scholar
PubMed
Close
,
Yisha Yan Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China

Search for other papers by Yisha Yan in
Current site
Google Scholar
PubMed
Close
, and
Quan Jiang Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China

Search for other papers by Quan Jiang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2335-7956

Correspondence should be addressed to Q Jiang: jiangqua@scu.edu.cn
Restricted access
Rent on DeepDyve

Sign up for journal news

Irisin is a recently discovered myokine that facilitates the browning of white adipose tissue, increases glucose uptake in skeletal muscle, and influences metabolic processes in the liver. However, its potential effects on amino acid absorption remained largely unexplored. This study aimed to elucidate the role of irisin in modulating amino acid uptake and delineate the underlying molecular mechanisms involved. To this end, juvenile tilapia were administered intraperitoneal irisin injections at 100 ng/g body weight over 8 weeks. Evaluation of various physiological parameters revealed that irisin supplementation significantly improved the specific growth rate and feed conversion efficiency while reducing feed consumption. Muscle tissue analysis revealed that irisin significantly modified the proximate composition by increasing protein content and reducing lipid levels. It also significantly raised the levels of both essential and non-essential amino acids in the muscle. Histological analysis demonstrated that irisin-stimulated muscle growth through hyperplasia rather than hypertrophy, corroborated by upregulated IGF-1 mRNA and downregulated myostatin mRNA expression. Mechanistic studies in cultured tilapia muscle cells elucidated that irisin activated integrin receptors on muscle cells, which subsequently engaged IGF-1/IGF-1R signaling. Downstream of IGF-1R activation, irisin simultaneously stimulates the ERK1/2 and PI3K/mTORC2/Akt pathways. The convergence of these pathways upregulates L-type amino acid transporter 1 expression, thereby augmenting amino acid uptake into muscle cells. In summary, irisin supplementation in tilapia leads to improved muscle growth, predominantly via hyperplasia and augmented amino acid assimilation, governed by intricate cellular signaling pathways. These findings provide valuable aquaculture applications and novel insights into muscle development.

 

  • Collapse
  • Expand
  • Ahmad SS, Ahmad K, Lee EJ, Lee YH & & Choi I 2020 Implications of insulin-like growth factor-1 in skeletal muscle and various diseases. Cells 9. (https://doi.org/10.3390/cells9081773)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • AOAC 2005 Official Method of Analysis. Washington DC, USA: Association of Official Analytical Chemists.

  • Askari H, Rajani SF, Poorebrahim M, Haghi-Aminjan H, Raeis-Abdollahi E & & Abdollahi M 2018 A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: an introductory review. Pharmacological Research 129 4455. (https://doi.org/10.1016/j.phrs.2018.01.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH & Long JZ et al.2012 A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481 463468. (https://doi.org/10.1038/nature10777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Broer S & & Gauthier-Coles G 2022 Amino acid homeostasis in mammalian cells with a focus on amino acid transport. Journal of Nutrition 152 1628. (https://doi.org/10.1093/jn/nxab342)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butt ZD, Hackett JD & & Volkoff H 2017 Irisin in goldfish (Carassius auratus): effects of irisin injections on feeding behavior and expression of appetite regulators, uncoupling proteins and lipoprotein lipase, and fasting-induced changes in FNDC5 expression. Peptides 90 2736. (https://doi.org/10.1016/j.peptides.2017.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen X, Sun K, Zhao S, Geng T, Fan X, Sun S, Zheng M & & Jin Q 2020 Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt//β-catenin signal pathway. Cytokine 136 155292. (https://doi.org/10.1016/j.cyto.2020.155292)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Cruz TP, Michelato M, Dal-Pai-Silva M, de Paula TG, Macedo EA, Peres H, Oliva-Teles A, Urbich AV, Furuya VRB & & Furuya WM 2021 Growth performance, amino acid retention and mRNA levels of mTORC1 signaling pathway genes in Nile tilapia fingerlings fed protein-bound and crystalline amino acids. Aquaculture 543 736953. (https://doi.org/10.1016/j.aquaculture.2021.736953)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deng W, Cao Z, Dong R, Yan Y & & Jiang Q 2024 Irisin inhibits CCK-8-induced TNF-alpha production via integrin alphaVbeta5-NF-kappaB signaling pathways in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology 144 109245. (https://doi.org/10.1016/j.fsi.2023.109245)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong R, Wang Z, Zhao Q, Yan Y & & Jiang Q 2023 Molecular characterization and immune functions of lipasin in Nile tilapia (Oreochromis niloticus): involvement in the regulation of tumor necrosis factor-alpha secretion. Fish and Shellfish Immunology 133 108549. (https://doi.org/10.1016/j.fsi.2023.108549)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forbes BE, Blyth AJ & & Wit JM 2020 Disorders of IGFs and IGF-1R signaling pathways. Molecular and Cellular Endocrinology 518 111035. (https://doi.org/10.1016/j.mce.2020.111035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fukushima Y, Kurose S, Shinno H, Thi Thu HC, Takao N, Tsutsumi H, Hasegawa T, Nakajima T & & Kimura Y 2016 Effects of body weight reduction on serum irisin and metabolic parameters in obese subjects. Diabetes and Metabolism Journal 40 386395. (https://doi.org/10.4093/dmj.2016.40.5.386)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Furst P 1983 Intracellular muscle free amino acids--their measurement and function. Proceedings of the Nutrition Society 42 451462. (https://doi.org/10.1079/pns19830052)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghosal I, Mukherjee D & & Chakraborty SB 2021 The effects of four plant extracts on growth, sex reversal, immunological and haemato-biochemical parameters in Nile tilapia, Oreochmomis niloticus (Linnaeus, 1758). Aquaculture Research 52 559576. (https://doi.org/10.1111/are.14914)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Higaki M & & Shimokado K 1999 Phosphatidylinositol 3-kinase is required for growth factor-induced amino acid uptake by vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 19 21272132. (https://doi.org/10.1161/01.atv.19.9.2127)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hill DJ, Crace CJ, Strain AJ & & Milner RD 1986 Regulation of amino acid uptake and deoxyribonucleic acid synthesis in isolated human fetal fibroblasts and myoblasts: effect of human placental lactogen, somatomedin-C, multiplication-stimulating activity, and insulin. Journal of Clinical Endocrinology and Metabolism 62 753760. (https://doi.org/10.1210/jcem-62-4-753)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huh JY, Dincer F, Mesfum E & & Mantzoros CS 2014a Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. International Journal of Obesity 38 15381544. (https://doi.org/10.1038/ijo.2014.42)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II, Filippaios A, Panagiotou G, Park KH & & Mantzoros CS 2014b Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. Journal of Clinical Endocrinology and Metabolism 99 E2154E2161. (https://doi.org/10.1210/jc.2014-1437)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kasprzak A 2021 Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. International Journal of Molecular Sciences 22. (https://doi.org/10.3390/ijms22126434)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim J & & Guan KL 2019 mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology 21 6371. (https://doi.org/10.1038/s41556-018-0205-1)

  • Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K, Zhou C, Chou J, Parkman VA & Novick SJ et al.2018 Irisin mediates effects on bone and fat via alphaV integrin receptors. Cell 175 17561768.e17. (https://doi.org/10.1016/j.cell.2018.10.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee HJ, Lee JO, Kim N, Kim JK, Kim HI, Lee YW, Kim SJ, Choi JI, Oh Y & Kim JH et al.2015 Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Molecular Endocrinology 29 873881. (https://doi.org/10.1210/me.2014-1353)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee J, Park J, Kim YH, Lee NH & & Song KM 2019 Irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation. PLoS One 14 e0222559. (https://doi.org/10.1371/journal.pone.0222559)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H, Wang F, Yang M, Sun J, Zhao Y & & Tang D 2021 The effect of irisin as a metabolic regulator and its therapeutic potential for obesity. International Journal of Endocrinology 2021 6572342. (https://doi.org/10.1155/2021/6572342)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lian A, Li X & & Jiang Q 2017 Irisin inhibition of growth hormone secretion in cultured tilapia pituitary cells. Molecular and Cellular Endocrinology 439 395406. (https://doi.org/10.1016/j.mce.2016.09.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu P, Gan W, Chin YR, Ogura K, Guo J, Zhang J, Wang B, Blenis J, Cantley LC & Toker A et al.2015a PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discovery 5 11941209. (https://doi.org/10.1158/2159-8290.CD-15-0460)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, Chen Q, Li YH, Wang JJ & Kang YM et al.2015b Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clinical Science 129 839850. (https://doi.org/10.1042/CS20150009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez-Legarrea P, de la Iglesia R, Crujeiras AB, Pardo M, Casanueva FF, Zulet MA & & Martinez JA 2014 Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects. Nutrition and Diabetes 4 e110. (https://doi.org/10.1038/nutd.2014.7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinho DV, Nobari H, Faria A, Field A, Duarte D & & Sarmento H 2022 Oral branched-chain amino acids supplementation in athletes: a systematic review. Nutrients 14. (https://doi.org/10.3390/nu14194002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazur-Bialy AI, Bilski J, Pochec E & & Brzozowski T 2017 New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. Implication for exercise in obesity. Journal of Physiology and Pharmacology 68 243251.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park MJ, Kim DI, Choi JH, Heo YR & & Park SH 2015 New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cellular Signalling 27 18311839. (https://doi.org/10.1016/j.cellsig.2015.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puris E, Gynther M, Auriola S & & Huttunen KM 2020 L-Type amino acid transporter 1 as a target for drug delivery. Pharmaceutical Research 37 88. (https://doi.org/10.1007/s11095-020-02826-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D, McFarlane C, Sharma M & & Kambadur R 2017 Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nature Communications 8 1104. (https://doi.org/10.1038/s41467-017-01131-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shan T, Liang X, Bi P & & Kuang S 2013 Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB Journal 27 19811989. (https://doi.org/10.1096/fj.12-225755)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith SF, Collins SE & & Charest PG 2020 Ras, PI3K and mTORC2 - three's a crowd? Journal of Cell Science 133. (https://doi.org/10.1242/jcs.234930)

  • Son JW, Choi SH, Jang JH, Koh JT, Oh WM, Hwang YC & & Lee BN 2021 Irisin promotes odontogenic differentiation and angiogenic potential in human dental pulp cells. International Endodontic Journal 54 399412. (https://doi.org/10.1111/iej.13435)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srinivasa S, Suresh C, Mottla J, Hamarneh SR, Irazoqui JE, Frontera W, Torriani M, Stanley T & & Makimura H 2016 FNDC5 relates to skeletal muscle IGF-I and mitochondrial function and gene expression in obese men with reduced growth hormone. Growth Hormone and IGF Research 26 3641. (https://doi.org/10.1016/j.ghir.2015.12.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P & & Klapp BF 2013 Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity–correlation with body mass index. Peptides 39 125130. (https://doi.org/10.1016/j.peptides.2012.11.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sundarrajan L & & Unniappan S 2017 Small interfering RNA mediated knockdown of irisin suppresses food intake and modulates appetite regulatory peptides in zebrafish. General and Comparative Endocrinology 252 200208. (https://doi.org/10.1016/j.ygcen.2017.06.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szwed A, Kim E & & Jacinto E 2021 Regulation and metabolic functions of mTORC1 and mTORC2. Physiological Reviews 101 13711426. (https://doi.org/10.1152/physrev.00026.2020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang H, Yu R, Liu S, Huwatibieke B, Li Z & & Zhang W 2016 Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 signaling. EBiomedicine 6 139148. (https://doi.org/10.1016/j.ebiom.2016.02.041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Togawa M, Kikkawa R, Haneda M, Koya D, Horide N, Kajiwara N & & Shigeta Y 1991 Insulin-like growth factor I (IGF-I) stimulates glucose and amino acid uptake in cultured glomerular mesangial cells. Journal of Diabetic Complications 5 184185. (https://doi.org/10.1016/0891-6632(9190067-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wangkahart E, Kersanté P, Lee P-T, Sanbut O, Nontasan S & & Chantiratikul A 2022 Effect of Kera-Stim®50, a feed additive containing free amino acid mix on growth, antioxidant and immune responses, digestive enzymes, and fatty acid composition in Nile tilapia (Oreochromis niloticus). Aquaculture 551 737874. (https://doi.org/10.1016/j.aquaculture.2021.737874)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wolfe RR 2002 Regulation of muscle protein by amino acids. Journal of Nutrition 132 3219S3224S. (https://doi.org/10.1093/jn/131.10.3219S)

  • Xin C, Liu J, Zhang J, Zhu D, Wang H, Xiong L, Lee Y, Ye J, Lian K & Xu C et al.2016 Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. International Journal of Obesity 40 443451. (https://doi.org/10.1038/ijo.2015.199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiong XQ, Chen D, Sun HJ, Ding L, Wang JJ, Chen Q, Li YH, Zhou YB, Han Y & Zhang F et al.2015 FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica et Biophysica Acta 1852 18671875. (https://doi.org/10.1016/j.bbadis.2015.06.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan Y, Dong R, Zhang C & & Jiang Q 2022 Interleukin-6 mediates lipopolysaccharide-inhibited irisin secretion in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology 121 99107. (https://doi.org/10.1016/j.fsi.2021.12.039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yano N, Zhao YT & & Zhao TC 2021 The physiological role of irisin in the regulation of muscle glucose homeostasis. Endocrines 2 266283. (https://doi.org/10.3390/endocrines2030025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoshida T & & Delafontaine P 2020 Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9. (https://doi.org/10.3390/cells9091970)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu J, Iwashita M, Kudo Y & & Takeda Y 1998 Phosphorylated insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1) inhibits while non-phosphorylated IGFBP-1 stimulates IGF-I-induced amino acid uptake by cultured trophoblast cells. Growth Hormone and IGF Research 8 6570. (https://doi.org/10.1016/s1096-6374(9880323-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, Qi L, Zhang M, Wang X & Cui T et al.2014 Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63 514525. (https://doi.org/10.2337/db13-1106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao Z, Yu X, Jia J, Yang G, Sun C & & Li W 2019 miR-181b-5p may regulate muscle growth in tilapia by targeting myostatin b. Frontiers in Endocrinology (Lausanne) 10 812. (https://doi.org/10.3389/fendo.2019.00812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu J, Wang Y, Cao Z, Du M, Hao Y, Pan J & & He H 2020 Irisin promotes cementoblast differentiation via p38 MAPK pathway. Oral Diseases 26 974982. (https://doi.org/10.1111/odi.13307)

    • PubMed
    • Search Google Scholar
    • Export Citation