This paper forms part of a special collection on the theme of corticosteroids and cardiovascular disease. The guest editors for this collection were Massimiliano Caprio and Morag Young.
Aldosterone is a mineralocorticoid hormone involved in controlling electrolyte balance, blood pressure, and cellular signaling. It plays a pivotal role in cardiovascular and metabolic physiology. Excess aldosterone activates mineralocorticoid receptors, leading to subsequent inflammatory responses, increased oxidative stress, and tissue remodeling. Various mechanisms have been reported to link aldosterone with cardiovascular and metabolic diseases. However, mitochondria, responsible for energy generation through oxidative phosphorylation, have received less attention regarding their potential role in aldosterone-related pathogenesis. Excess aldosterone leads to mitochondrial dysfunction, and this may play a role in the development of cardiovascular and metabolic diseases. Aldosterone has the potential to affect mitochondrial structure, function, and dynamic processes, such as mitochondrial fusion and fission. In addition, aldosterone has been associated with the suppression of mitochondrial DNA, mitochondria-specific proteins, and ATP production in the myocardium through mineralocorticoid receptor, nicotinamide adenine dinucleotide phosphate oxidase, and reactive oxygen species pathways. In this review, we explore the mechanisms underlying aldosterone-induced cardiovascular and metabolic mitochondrial dysfunction, including mineralocorticoid receptor activation and subsequent inflammatory responses, as well as increased oxidative stress. Furthermore, we review potential therapeutic targets aimed at restoring mitochondrial function in the context of aldosterone-associated pathologies. Understanding these mechanisms is vital, as it offers insights into novel therapeutic strategies to mitigate the impact of aldosterone-induced mitochondrial dysfunction, thereby potentially improving the outcomes of individuals affected by cardiovascular and metabolic disorders.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 52 | 52 | 34 |
PDF Downloads | 72 | 72 | 45 |
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, et al.2020 Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. New England Journal of Medicine 383 2219–2229. (https://doi.org/10.1056/NEJMoa2025845)
Batista AF, Rody T, Forny-Germano L, Cerdeiro S, Bellio M, Ferreira ST, Munoz DP & & De Felice FG 2021 Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. Journal of Neuroinflammation 18 54. (https://doi.org/10.1186/s12974-021-02099-x)
Beavers CJ 2022 The role of the non-steroidal mineralocorticoid antagonist finerenone in cardiorenal management. Current Cardiology Reports 24 1785–1790. (https://doi.org/10.1007/s11886-022-01795-1)
Bender SB, Mcgraw AP, Jaffe IZ & & Sowers JR 2013 Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 62 313–319. (https://doi.org/10.2337/db12-0905)
Bernini G, Galetta F, Franzoni F, Bardini M, Taurino C, Bernardini M, Ghiadoni L, Bernini M, Santoro G & & Salvetti A 2008 Arterial stiffness, intima-media thickness and carotid artery fibrosis in patients with primary aldosteronism. Journal of Hypertension 26 2399–2405. (https://doi.org/10.1097/HJH.0b013e32831286fd)
Bienvenu LA, Morgan J, Rickard AJ, Tesch GH, Cranston GA, Fletcher EK, Delbridge LMD & & Young MJ 2012 Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology 153 3416–3425. (https://doi.org/10.1210/en.2011-2098)
Bluher M 2009 Adipose tissue dysfunction in obesity. Experimental and Clinical Endocrinology and Diabetes 117 241–250. (https://doi.org/10.1055/s-0029-1192044)
Brailoiu GC, Benamar K, Arterburn JB, Gao E, Rabinowitz JE, Koch WJ & & Brailoiu E 2013 Aldosterone increases cardiac vagal tone via G protein-coupled oestrogen receptor activation. Journal of Physiology 591 4223–4235. (https://doi.org/10.1113/jphysiol.2013.257204)
Bravo EL 1977 Regulation of aldosterone secretion: current concepts and newer aspects. Advances in Nephrology From the Necker Hospital 7 105–120.
Bruder-Nascimento T, Ferreira NS, Zanotto CZ, Ramalho F, Pequeno IO, Olivon VC, Neves KB, Alves-Lopes R, Campos E, Silva CAA, et al.2016 NLRP3 inflammasome mediates aldosterone-induced vascular damage. Circulation 134 1866–1880. (https://doi.org/10.1161/CIRCULATIONAHA.116.024369)
Buffolo F, Tetti M, Mulatero P & & Monticone S 2022 Aldosterone as a mediator of cardiovascular damage. Hypertension 79 1899–1911. (https://doi.org/10.1161/HYPERTENSIONAHA.122.17964)
Cannavo A, Bencivenga L, Liccardo D, Elia A, Marzano F, Gambino G, D'amico ML, Perna C, Ferrara N, Rengo G, et al.2018 Aldosterone and mineralocorticoid receptor system in cardiovascular physiology and pathophysiology. Oxidative Medicine and Cellular Longevity 2018 1204598. (https://doi.org/10.1155/2018/1204598)
Cannavo A, Marzano F, Elia A, Liccardo D, Bencivenga L, Gambino G, Perna C, Rapacciuolo A, Cittadini A, Ferrara N, et al.2019 Aldosterone jeopardizes myocardial insulin and beta-adrenergic receptor signaling via G protein-coupled receptor kinase 2. Frontiers in Pharmacology 10 888. (https://doi.org/10.3389/fphar.2019.00888)
Caprio M, Feve B, Claes A, Viengchareun S, Lombes M & & Zennaro MC 2007 Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB Journal 21 2185–2194. (https://doi.org/10.1096/fj.06-7970com)
Chang YY, Chen A, Chen YH, Hung CS, Wu VC, Wu XM, Lin YH, Ho YL, Wu KD & TAIPAI Study Group 2015 Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in patients with primary aldosteronism. Journal of the Renin-Angiotensin-Aldosterone System 16 353–359. (https://doi.org/10.1177/1470320314524996)
Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S & & Chakrabarti S 2015 Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Molecular and Cellular Biochemistry 399 95–103. (https://doi.org/10.1007/s11010-014-2236-7)
Cheema Y, Sherrod JN, Zhao W, Zhao T, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK & & Weber KT 2011 Mitochondriocentric pathway to cardiomyocyte necrosis in aldosteronism: cardioprotective responses to carvedilol and nebivolol. Journal of Cardiovascular Pharmacology 58 80–86. (https://doi.org/10.1097/FJC.0b013e31821cd83c)
Chen ZW, Tsai CH, Pan CT, Chou CH, Liao CW, Hung CS, Wu VC, Lin YH & TAIPAI Study Group 2019 Endothelial dysfunction in primary aldosteronism. International Journal of Molecular Sciences 20. (https://doi.org/10.3390/ijms20205214)
Chen Y, Zeng M, Zhang Y, Guo H, Ding W & & Sun T 2021 Nlrp3 deficiency alleviates angiotensin II-induced cardiomyopathy by inhibiting mitochondrial dysfunction. Oxidative Medicine and Cellular Longevity 2021 6679100. (https://doi.org/10.1155/2021/6679100)
Chou C-H, Chen Y-H, Hung C-S, Chang Y-Y, Tzeng Y-L, Wu X-M, Wu V-C, Tsai C-T, Wu C-K, Ho Y-L, et al.2015 Aldosterone impairs vascular smooth muscle function: from clinical to bench research. Journal of Clinical Endocrinology and Metabolism 100 4339–4347. (https://doi.org/10.1210/jc.2015-2752)
Connell JMC & & Davies E 2005 The new biology of aldosterone. Journal of Endocrinology 186 1–20. (https://doi.org/10.1677/joe.1.06017)
Datla SR & & Griendling KK 2010 Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension 56 325–330. (https://doi.org/10.1161/HYPERTENSIONAHA.109.142422)
Davizon-Castillo P, Mcmahon B, Aguila S, Bark D, Ashworth K, Allawzi A, Campbell RA, Montenont E, Nemkov T, D'alessandro A, et al.2019 TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood 134 727–740. (https://doi.org/10.1182/blood.2019000200)
Doll DN, Rellick SL, Barr TL, Ren X & & Simpkins JW 2015 Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. Journal of Neurochemistry 132 443–451. (https://doi.org/10.1111/jnc.13008)
Du K, Ramachandran A, Weemhoff JL, Woolbright BL, Jaeschke AH, Chao X, Ding WX & & Jaeschke H 2019 Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity. Archives of Toxicology 93 163–178. (https://doi.org/10.1007/s00204-018-2331-8)
Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, Rabbia F, Federspil G & & Mulatero P 2006 Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. Journal of Clinical Endocrinology and Metabolism 91 454–459. (https://doi.org/10.1210/jc.2005-1733)
Fallo F, Pilon C & & Urbanet R 2012 Primary aldosteronism and metabolic syndrome. Hormone and Metabolic Research 44 208–214. (https://doi.org/10.1055/s-0031-1295412)
Feldman RD, Ding Q, Hussain Y, Limbird LE, Pickering JG & & Gros R 2016 Aldosterone mediates metastatic spread of renal cancer via the G protein-coupled estrogen receptor (GPER). FASEB Journal 30 2086–2096. (https://doi.org/10.1096/fj.15-275552)
Ferreira NS, Tostes RC, Paradis P & & Schiffrin EL 2021 Aldosterone, inflammation, immune system, and hypertension. American Journal of Hypertension 34 15–27. (https://doi.org/10.1093/ajh/hpaa137)
Fiebeler A, Schmidt F, Muller DN, Park JK, Dechend R, Bieringer M, Shagdarsuren E, Breu V, Haller H & & Luft FC 2001 Mineralocorticoid receptor affects AP-1 and nuclear factor-kappab activation in angiotensin II-induced cardiac injury. Hypertension 37 787–793. (https://doi.org/10.1161/01.hyp.37.2.787)
Filippatos G, Anker SD, Böhm M, Gheorghiade M, Køber L, Krum H, Maggioni AP, Ponikowski P, Voors AA, Zannad F, et al.2016. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. European Heart Journal 2016 37, 2105–2114. (https://doi.org/10.1093/eurheartj/ehw132)
Freeman MW, Halvorsen YD, Marshall W, Pater M, Isaacsohn J, Pearce C, Murphy B, Alp N, Srivastava A, Bhatt DL, et al.2023 Phase 2 trial of Baxdrostat for treatment-resistant hypertension. New England Journal of Medicine 388 395–405. (https://doi.org/10.1056/NEJMoa2213169)
Gonzalez-Juanatey JR, Gorriz JL, Ortiz A, Valle A, Soler MJ & & Facila L 2023 Cardiorenal benefits of finerenone: protecting kidney and heart. Annals of Medicine 55 502–513. (https://doi.org/10.1080/07853890.2023.2171110)
Grewal S, Fosam A, Chalk L, Deven A, Suzuki M, Correa RR, Blau JE, Demidowich AP, Stratakis CA & & Muniyappa R 2021 Insulin sensitivity and pancreatic β-cell function in patients with primary aldosteronism. Endocrine 72 96–103. (https://doi.org/10.1007/s12020-020-02576-y)
Grune J, Beyhoff N, Smeir E, Chudek R, Blumrich A, Ban Z, Brix S, Betz IR, Schupp M, Foryst-Ludwig A, et al.2018 Selective mineralocorticoid receptor cofactor modulation as molecular basis for Finerenone's antifibrotic activity. Hypertension 71 599–608. (https://doi.org/10.1161/HYPERTENSIONAHA.117.10360)
Gueret A, Harouki N, Favre J, Galmiche G, Nicol L, Henry JP, Besnier M, Thuillez C, Richard V, Kolkhof P, et al.2016 Vascular smooth muscle mineralocorticoid receptor contributes to coronary and left ventricular dysfunction after myocardial infarction. Hypertension 67 717–723. (https://doi.org/10.1161/HYPERTENSIONAHA.115.06709)
Gumz ML, Lynch IJ, Greenlee MM, Cain BD & & Wingo CS 2010 The renal H+-K+-ATPases: physiology, regulation, and structure. American Journal of Physiology. Renal Physiology 298 F12–F21. (https://doi.org/10.1152/ajprenal.90723.2008)
Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH & & Adler GK 2008 Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 117 2253–2261. (https://doi.org/10.1161/CIRCULATIONAHA.107.748640)
Haller H, Bertram A, Stahl K & & Menne J 2016 Finerenone: a new mineralocorticoid receptor antagonist without hyperkalemia: an opportunity in patients with CKD? Current Hypertension Reports 18 41. (https://doi.org/10.1007/s11906-016-0649-2)
Hermidorff MM, De Assis LVM & & Isoldi MC 2017 Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Failure Reviews 22 65–89. (https://doi.org/10.1007/s10741-016-9591-2)
Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, Kihara S, Funahashi T & & Shimomura I 2009 Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovascular Research 84 164–172. (https://doi.org/10.1093/cvr/cvp191)
Hundemer GL, Agharazii M, Madore F, Vaidya A, Brown JM, Leung AA, Kline GA, Larose E, Piche ME, Crean AM, et al.2024 Subclinical primary aldosteronism and cardiovascular health: A population-based cohort study. Circulation 149 124–134. (https://doi.org/10.1161/CIRCULATIONAHA.123.066389)
Hung CS, Chang YY, Tsai CH, Liao CW, Peng SY, Lee BC, Pan CT, Wu XM, Chen ZW, Wu VC, et al.2022 Aldosterone suppresses cardiac mitochondria. Translational Research 239 58–70. (https://doi.org/10.1016/j.trsl.2021.08.003)
Ibarrola J, Sadaba R, Martinez-Martinez E, Garcia-Pena A, Arrieta V, Alvarez V, Fernandez-Celis A, Gainza A, Cachofeiro V, Santamaria E, et al.2018 Aldosterone impairs mitochondrial function in human cardiac fibroblasts via A-kinase anchor protein 12. Scientific Reports 8 6801. (https://doi.org/10.1038/s41598-018-25068-6)
Jiang T, Peng D, Shi W, Guo J, Huo S, Men L, Zhang C, Li S, Lv J & & Lin L 2021 IL-6/STAT3 signaling promotes cardiac dysfunction by upregulating FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes formation in sepsis mice. Frontiers in Cardiovascular Medicine 8 790612. (https://doi.org/10.3389/fcvm.2021.790612)
Khan MU, Zhao W, Zhao T, Al Darazi F, Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC & & Weber KT 2013 Nebivolol: a multifaceted antioxidant and cardioprotectant in hypertensive heart disease. Journal of Cardiovascular Pharmacology 62 445–451. (https://doi.org/10.1097/FJC.0b013e3182a0b5ff)
Kimura H, Shintani-Ishida K, Nakajima M, Liu S, Matsumoto K & & Yoshida K 2006 Ischemic preconditioning or p38 MAP kinase inhibition attenuates myocardial TNF alpha production and mitochondria damage in brief myocardial ischemia. Life Sciences 78 1901–1910. (https://doi.org/10.1016/j.lfs.2005.08.040)
Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Bärfacker L, Eitner F, Albrecht-Küpper B & & Schäfer S 2014. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. Journal of Cardiovascular Pharmacology 64 69–78. (http://doi.org/10.1097/FJC.0000000000000091)
Kraus D, Jager J, Meier B, Fasshauer M & & Klein J 2005 Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Hormone and Metabolic Research 37 455–459. (https://doi.org/10.1055/s-2005-870240)
Kuhn E, Lamribet K, Viengchareun S, Le Menuet D, Feve B & & Lombes M 2019 UCP1 transrepression in Brown Fat in vivo and mineralocorticoid receptor anti-thermogenic effects. Annales d’Endocrinologie 80 1–9. (https://doi.org/10.1016/j.ando.2018.04.018)
Lacolley P, Labat C, Pujol A, Delcayre C, Benetos A & & Safar M 2002 Increased carotid wall elastic modulus and fibronectin in aldosterone-salt–Treated rats. Circulation 106 2848–2853. (https://doi.org/10.1161/01.cir.0000039328.33137.6c)
Lee BC, Tsai HH, Chen ZW, Chang CC, Huang JZ, Chang YY, Tsai CH, Chou CH, Liao CW, Pan CT, et al.2024 Aldosteronism is associated with more severe cerebral small vessel disease in hypertensive intracerebral hemorrhage. Hypertension Research 47 608–617. (https://doi.org/10.1038/s41440-023-01458-w)
Lefranc C, Friederich-Persson M, Palacios-Ramirez R & & Nguyen Dinh Cat A 2018 Mitochondrial oxidative stress in obesity: role of the mineralocorticoid receptor. Journal of Endocrinology 238 R143–R159. (https://doi.org/10.1530/JOE-18-0163)
Lefranc C, Friederich-Persson M, Braud L, Palacios-Ramirez R, Karlsson S, Boujardine N, Motterlini R, Jaisser F & & Nguyen Dinh Cat A 2019 MR (mineralocorticoid receptor) induces adipose tissue senescence and mitochondrial dysfunction leading to vascular dysfunction in obesity. Hypertension 73 458–468. (https://doi.org/10.1161/HYPERTENSIONAHA.118.11873)
Lefranc C, Friederich-Persson M, Foufelle F, Nguyen Dinh Cat A & & Jaisser F 2021 Adipocyte-mineralocorticoid receptor alters mitochondrial quality control leading to mitochondrial dysfunction and senescence of visceral adipose tissue. International Journal of Molecular Sciences 22. (https://doi.org/10.3390/ijms22062881)
Lenzini L, Zanotti G, Bonchio M & & Rossi GP 2021 Aldosterone synthase inhibitors for cardiovascular diseases: a comprehensive review of preclinical, clinical and in silico data. Pharmacological Research 163 105332. (https://doi.org/10.1016/j.phrs.2020.105332)
Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, Pitt B & & Loscalzo J 2007 Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nature Medicine 13 189–197. (https://doi.org/10.1038/nm1545)
Leyane TS, Jere SW & & Houreld NN 2022 Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International Journal of Molecular Sciences 23. (https://doi.org/10.3390/ijms23137273)
Liao CW, Lin YT, Wu XM, Chang YY, Hung CS, Wu VC, Wu KD, Lin YH & TAIPAI Study Group 2016 The relation among aldosterone, galectin-3, and myocardial fibrosis: a prospective clinical pilot follow-up study. Journal of Investigative Medicine 64 1109–1113. (https://doi.org/10.1136/jim-2015-000014)
Lin YH, Wang SM, Wu VC, Lee JK, Kuo CC, Yen RF, Liu KL, Huang KH, Chueh SC, Wang WJ, et al.2011 The association of serum potassium level with left ventricular mass in patients with primary aldosteronism. European Journal of Clinical Investigation 41 743–750. (https://doi.org/10.1111/j.1365-2362.2010.02462.x)
Lin YH, Lin LY, Chen A, Wu XM, Lee JK, Su TC, Wu VC, Chueh SC, Lin WC, Lo MT, et al.2012 Adrenalectomy improves increased carotid intima-media thickness and arterial stiffness in patients with aldosterone producing adenoma. Atherosclerosis 221 154–159. (https://doi.org/10.1016/j.atherosclerosis.2011.12.003)
López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C & & Valcárcel-Ares MN 2013. Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13 106–118. (https://doi.org/10.1016/j.mito.2013.01.003)
Lowes DA, Webster NR, Murphy MP & & Galley HF 2013 Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. British Journal of Anaesthesia 110 472–480. (https://doi.org/10.1093/bja/aes577)
Luther JM 2014 Effects of aldosterone on insulin sensitivity and secretion. Steroids 91 54–60. (https://doi.org/10.1016/j.steroids.2014.08.016)
Mangelis A, jühlen R, Dieterich P, Peitzsch M, Lenders JWM, Hahner S, Schirbel A & & Eisenhofer G 2019 A steady state system for in vitro evaluation of steroidogenic pathway dynamics: application for CYP11B1, CYP11B2 and CYP17 inhibitors. Journal of Steroid Biochemistry and Molecular Biology 188 38–47. (https://doi.org/10.1016/j.jsbmb.2018.12.003)
Marchi S, Guilbaud E, Tait SWG, Yamazaki T & & Galluzzi L 2023 Mitochondrial control of inflammation. Nature Reviews. Immunology 23 159–173. (https://doi.org/10.1038/s41577-022-00760-x)
Mariappan N, Soorappan RN, Haque M, Sriramula S & & Francis J 2007 TNF-α-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic tempol. American Journal of Physiology-Heart and Circulatory Physiology 293 H2726–H2737. (https://doi.org/10.1152/ajpheart.00376.2007)
Martínez-Martínez E, Buonafine M, Boukhalfa I, Ibarrola J, Fernández-Celis A, Kolkhof P, Rossignol P, Girerd N, Mulder P, López-Andrés N., et al.2017. Aldosterone target NGAL (neutrophil gelatinase-associated lipocalin) is involved in cardiac remodeling after myocardial infarction through NFκB pathway .Hypertension 1979 70 1148–1156. (https://doi.org/10.1161/HYPERTENSIONAHA.117.09791)
Marzolla V, Feraco A, Gorini S, Mammi C, Marrese C, Mularoni V, Boitani C, Lombes M, Kolkhof P, Ciriolo MR, et al.2020 The novel non-steroidal MR antagonist finerenone improves metabolic parameters in high-fat diet-fed mice and activates brown adipose tissue via AMPK-ATGL pathway. FASEB Journal 34 12450–12465. (https://doi.org/10.1096/fj.202000164R)
Matsumura K, Fujii K, Oniki H, Oka M & & Iida M 2006 Role of aldosterone in left ventricular hypertrophy in hypertension. American Journal of Hypertension 19 13–18. (https://doi.org/10.1016/j.amjhyper.2005.05.013)
McCurley A & & Jaffe IZ 2012 Mineralocorticoid receptors in vascular function and disease. Molecular and Cellular Endocrinology 350 256–265. (https://doi.org/10.1016/j.mce.2011.06.014)
McGraw AP, Bagley J, Chen WS, Galayda C, Nickerson H, Armani A, Caprio M, Carmeliet P & & Jaffe IZ 2013 Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. Journal of the American Heart Association 2 e000018. (https://doi.org/10.1161/JAHA.112.000018)
Mihailidou AS, Tzakos AG & & Ashton AW 2019 Non-genomic effects of aldosterone. Vitamins and Hormones 109 133–149. (https://doi.org/10.1016/bs.vh.2018.12.001)
Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X & & Feng Q 2004 In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. American Journal of Physiology. Heart and Circulatory Physiology 287 H1813–H1820. (https://doi.org/10.1152/ajpheart.00036.2004)
Monticone S, D'ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F & & Mulatero P 2018 Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet. Diabetes and Endocrinology 6 41–50. (https://doi.org/10.1016/S2213-8587(1730319-4)
Moustaki M, Paschou SA, Vakali EC & & Vryonidou A 2023 Secondary diabetes mellitus due to primary aldosteronism. Endocrine 79 17–30. (https://doi.org/10.1007/s12020-022-03168-8)
Mulder P, Mellin V, Favre J, Vercauteren M, Remy-Jouet I, Monteil C, Richard V, Renet S, Henry JP, Jeng AY, et al.2008 Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone. European Heart Journal 29 2171–2179. (https://doi.org/10.1093/eurheartj/ehn277)
Nagase M & & Fujita T 2009 Mineralocorticoid receptor activation in obesity hypertension. Hypertension Research 32 649–657. (https://doi.org/10.1038/hr.2009.86)
Nakano S, Kobayashi N, Yoshida K, Ohno T & & Matsuoka H 2005 Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein Receptor-1, and rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertension Research 28 925–936. (https://doi.org/10.1291/hypres.28.925)
Náray-Fejes-Tóth A, Helms MN, Stokes JB & & Fejes-Tóth G 2004. Regulation of sodium transport in mammalian collecting duct cells by aldosterone-induced kinase, SGK1: structure/function studies. Molecular and Cellular Endocrinology 217 197–202. (https://doi.org/10.1016/j.mce.2003.10.043)
Nolly MB, Caldiz CI, Yeves AM, Villa-Abrille MC, Morgan PE, Amado Mondaca N, Portiansky EL, Chiappe De Cingolani GE, Cingolani HE & & Ennis IL 2014 The signaling pathway for aldosterone-induced mitochondrial production of superoxide anion in the myocardium. Journal of Molecular and Cellular Cardiology 67 60–68. (https://doi.org/10.1016/j.yjmcc.2013.12.004)
Olivares-Álvaro E, Ruiz-Roso MB, Klett-Mingo M, Ballesteros S, Gredilla R, Galiana-Simal A, De Las Heras N, Lahera V & & Martýn-Fernñndez B 2018 Regulation of biogenesis and fusion/fission processes of vascular mitochondria in aldosterone-induced hypertension. Open Hypertension Journal 10 76–85. (https://doi.org/10.2174/1876526201810010076)
Paolocci N, Biondi R, Bettini M, Lee CI, Berlowitz CO, Rossi R, Xia Y, Ambrosio G, L'abbate A, Kass DA, et al.2001 Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. Journal of Molecular and Cellular Cardiology 33 671–679. (https://doi.org/10.1006/jmcc.2000.1334)
Parfianowicz D, Shah S, Nguyen C, Maitz TN, Hajra A, Goel A, Sreenivasan J, Aronow WS, Vyas A & & Gupta R 2022 Finerenone: a new era for mineralocorticoid receptor antagonism and cardiorenal protection. Current Problems in Cardiology 47 101386. (https://doi.org/10.1016/j.cpcardiol.2022.101386)
Peng SY, Tsai CH, Wu XM, Huang HH, Chen ZW, Lee BC, Chang YY, Pan CT, Wu VC, Chou CH, et al.2022 Aldosterone suppresses endothelial mitochondria through mineralocorticoid receptor/mitochondrial reactive oxygen species pathway. Biomedicines 10. (https://doi.org/10.3390/biomedicines10051119)
Pieronne-Deperrois M, Guéret A, Djerada Z, Crochemore C, Harouki N, Henry JP, Dumesnil A, Larchevêque M, do Rego JC, do Rego JL, et al.2021. Mineralocorticoid receptor blockade with finerenone improves heart function and exercise capacity in ovariectomized mice. ESC Heart Failure 8 1933–1943. (https://doi.org/10.1002/ehf2.13219)
Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J & & Wittes J 1999 The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone evaluation study investigators. New England Journal of Medicine 341 709–717. (https://doi.org/10.1056/NEJM199909023411001)
Pitt B, Williams G, Remme W, Martinez F, Lopez-Sendon J, Zannad F, Neaton J, Roniker B, Hurley S, Burns D, et al.2001 The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone post-AMI heart failure efficacy and survival study. Cardiovascular Drugs and Therapy 15 79–87. (https://doi.org/10.1023/a:1011119003788)
Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M, et al.2003 Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New England Journal of Medicine 348 1309–1321. (https://doi.org/10.1056/NEJMoa030207)
Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, Nowack C, Kolkhof P, Kim SY & & Zannad F 2013 Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. European Heart Journal 34 2453–2463. (https://doi.org/10.1093/eurheartj/eht187)
Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, Joseph A, Kolkhof P, Nowack C, Schloemer P, et al.2021 Cardiovascular events with finerenone in kidney disease and type 2 diabetes. New England Journal of Medicine 385 2252–2263. (https://doi.org/10.1056/NEJMoa2110956)
Poznyak AV, Ivanova EA, Sobenin IA, Yet SF & & Orekhov AN 2020 The role of mitochondria in cardiovascular diseases. Biology (Basel) 9. (https://doi.org/10.3390/biology9060137)
Pu Q, Neves MF, Virdis A, Touyz RM & & Schiffrin EL 2003 Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 42 49–55. (https://doi.org/10.1161/01.HYP.0000078357.92682.EC)
Qiao H, Hu B, Zhou H, Yan J, Jia R, Lu B, Sun B, Luo X, Fan Y & & Wang N 2016 Aldosterone induces rapid sodium intake by a nongenomic mechanism in the nucleus tractus solitarius. Scientific Reports 6 38631. (https://doi.org/10.1038/srep38631)
Ramalingam L, Menikdiwela K, Lemieux M, Dufour JM, Kaur G, Kalupahana N & & Moustaid-Moussa N 2017 The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863 1106–1114. (https://doi.org/10.1016/j.bbadis.2016.07.019)
Ren J, Pulakat L, Whaley-Connell A & & Sowers JR 2010 Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. Journal of Molecular Medicine 88 993–1001. (https://doi.org/10.1007/s00109-010-0663-9)
Rossi GP 2019 Primary aldosteronism: JACC state-of-the-art review. Journal of the American College of Cardiology 74 2799–2811. (https://doi.org/10.1016/j.jacc.2019.09.057)
Rossi GP, Sacchetto A, Visentin P, Canali C, Graniero GR, Palatini P & & Pessina AC 1996 Changes in left ventricular anatomy and function in hypertension and primary aldosteronism. Hypertension 27 1039–1045. (https://doi.org/10.1161/01.hyp.27.5.1039)
Rossi GP, Sechi LA, Giacchetti G, Ronconi V, Strazzullo P & & Funder JW 2008 Primary aldosteronism: cardiovascular, renal and metabolic implications. Trends in Endocrinology and Metabolism 19 88–90. (https://doi.org/10.1016/j.tem.2008.01.006)
Ruhs S, Nolze A, Hübschmann R & & Grossmann C 2017 30 years of the mineralocorticoid receptor: Nongenomic effects via the mineralocorticoid receptor. Journal of Endocrinology 234 T107–T124. (https://doi.org/10.1530/JOE-16-0659)
Selvaraj J, Sathish S, Mayilvanan C & & Balasubramanian K 2013 Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat. Molecular and Cellular Biochemistry 372 113–126. (https://doi.org/10.1007/s11010-012-1452-2)
Shahbaz AU, Kamalov G, Zhao W, Zhao T, Johnson PL, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC & & Weber KT 2011 Mitochondria-targeted cardioprotection in aldosteronism. Journal of Cardiovascular Pharmacology 57 37–43. (https://doi.org/10.1097/FJC.0b013e3181fe1250)
Sherajee SJ, Fujita Y, Rafiq K, Nakano D, Mori H, Masaki T, Hara T, Kohno M, Nishiyama A & & Hitomi H 2012 Aldosterone induces vascular insulin resistance by increasing insulin-like growth factor-1 receptor and hybrid receptor. Arteriosclerosis, Thrombosis, and Vascular Biology 32 257–263. (https://doi.org/10.1161/ATVBAHA.111.240697)
Stas S, Whaley-Connell A, Habibi J, Appesh L, Hayden MR, Karuparthi PR, Qazi M, Morris EM, Cooper SA, Link CD, et al.2007 Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 148 3773–3780. (https://doi.org/10.1210/en.2006-1691)
Strauch B, Petrak O, Wichterle D, Zelinka T, Holaj R, & Widimsky J, JR 2006 Increased arterial wall stiffness in primary aldosteronism in comparison with essential hypertension. American Journal of Hypertension 19 909–914. (https://doi.org/10.1016/j.amjhyper.2006.02.002)
Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, et al.2003 Oxidative stress mediates tumor necrosis factor-α–induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107 1418–1423. (https://doi.org/10.1161/01.cir.0000055318.09997.1f)
Sun Y, Byon CH, Yang Y, Bradley WE, Dell'italia LJ, Sanders PW, Agarwal A, Wu H & & Chen Y 2017 Dietary potassium regulates vascular calcification and arterial stiffness. JCI Insight 2. (https://doi.org/10.1172/jci.insight.94920)
Tatsumi T, Matoba S, Kawahara A, Keira N, Shiraishi J, Akashi K, Kobara M, Tanaka T, Katamura M, Nakagawa C, et al.2000 Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. Journal of the American College of Cardiology 35 1338–1346. (https://doi.org/10.1016/s0735-1097(0000526-x)
Tsai C-H, Pan C-T, Chang Y-Y, Peng S-Y, Lee P-C, Liao C-W, Shun C-T, Li P-T, Wu V-C, Chou C-H, et al.2021a Aldosterone excess induced mitochondria decrease and dysfunction via mineralocorticoid receptor and oxidative stress in vitro and in vivo. Biomedicines 9 946. (https://doi.org/10.3390/biomedicines9080946)
Tsai CH, Pan CT, Chang YY, Chen ZW, Wu VC, Hung CS & & Lin YH 2021b Left ventricular remodeling and dysfunction in primary aldosteronism. Journal of Human Hypertension 35 131–147. (https://doi.org/10.1038/s41371-020-00426-y)
Turcu AF, Yang J & & Vaidya A 2022 Primary aldosteronism - a multidimensional syndrome. Nature Reviews. Endocrinology 18 665–682. (https://doi.org/10.1038/s41574-022-00730-2)
Urbanet R, Nguyen Dinh Cat A, Feraco A, Venteclef N, El Mogrhabi S, Sierra-Ramos C, Alvarez De La Rosa D, Adler GK, Quilliot D, Rossignol P, et al.2015 Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase. Hypertension 66 149–157. (https://doi.org/10.1161/HYPERTENSIONAHA.114.04981)
Verrey F 1995 Transcriptional control of sodium transport in tight epithelial by adrenal steroids. Journal of Membrane Biology 144 93–110. (https://doi.org/10.1007/BF00232796)
Viengchareun S, Penfornis P, Zennaro MC & & Lombes M 2001 Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. American Journal of Physiology. Endocrinology and Metabolism 280 E640–E649. (https://doi.org/10.1152/ajpendo.2001.280.4.E640)
Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H & & Sasaoka T 2009 Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology 150 1662–1669. (https://doi.org/10.1210/en.2008-1018)
Wagner CA 2014 Effect of mineralocorticoids on acid-base balance. Nephron. Physiology 128 26–34. (https://doi.org/10.1159/000368266)
Weber KT & & Brilla CG 1991 Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83 1849–1865. (https://doi.org/10.1161/01.cir.83.6.1849)
Wehling M 1997 Specific, nongenomic actions of steroid hormones. Annual Review of Physiology 59 365–393. (https://doi.org/10.1146/annurev.physiol.59.1.365)
Yu JW & & Lee MS 2016 Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Archives of Pharmacal Research 39 1503–1518. (https://doi.org/10.1007/s12272-016-0827-4)
Yuan Y, Zhang A, Qi J, Wang H, Liu X, Zhao M, Duan S, Huang Z, Zhang C, Wu L, et al.2018 p53/Drp1-dependent mitochondrial fission mediates aldosterone-induced podocyte injury and mitochondrial dysfunction. American Journal of Physiology-Renal Physiology 314 F798–F808. (https://doi.org/10.1152/ajprenal.00055.2017)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519