NHE1 regulation in NAFLD in vitro contributes to hepatocyte injury and HSC crosstalk

in Journal of Endocrinology
Authors:
Lise M Sjøgaard-Frich Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Search for other papers by Lise M Sjøgaard-Frich in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6595-3086
,
Morten Sølling Henriksen Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Search for other papers by Morten Sølling Henriksen in
Current site
Google Scholar
PubMed
Close
,
Shi Min Lam Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Search for other papers by Shi Min Lam in
Current site
Google Scholar
PubMed
Close
,
Frida Jolande Birkbak Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Search for other papers by Frida Jolande Birkbak in
Current site
Google Scholar
PubMed
Close
,
Dominika Czaplinska Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Search for other papers by Dominika Czaplinska in
Current site
Google Scholar
PubMed
Close
,
Mette Flinck Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Search for other papers by Mette Flinck in
Current site
Google Scholar
PubMed
Close
, and
Stine Falsig Pedersen Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark

Search for other papers by Stine Falsig Pedersen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3044-7714

Correspondence should be addressed to S Pedersen: sfpedersen@bio.ku.dk
Restricted access
Rent on DeepDyve

Sign up for journal news

Non-alcoholic fatty liver disease (NAFLD) is the fastest-growing cause of liver-associated death globally. Whole-body knockout (KO) of Na+/H+ exchanger 1 (NHE1, SLC9A1) was previously proposed to protect against high-fat diet-induced liver damage; however, mechanistic insight was lacking. The aim of the present work was to address this question in vitro to determine how NHE1, specifically in hepatocytes, impacts lipid overload-induced inflammation, fibrosis, and hepatocyte–hepatic stellate cell (HSC) crosstalk. We induced palmitate (PA)-based steatosis in AML12 and HepG2 hepatocytes; manipulated NHE1 activity pharmacologically and by CRISPR/Cas9-mediated KO and overexpression; and measured intracellular pH (pHi), steatosis-associated inflammatory and fibrotic mediators, and cell death. PA treatment increased NHE1 mRNA levels but modestly reduced NHE1 protein expression and hepatocyte pHi. NHE1 KO in hepatocytes did not alter lipid droplet accumulation but reduced inflammatory signaling (p38 MAPK activity), lipotoxicity (4-HNE accumulation), and apoptosis (poly-ADP-ribose-polymerase-1 (PARP) cleavage). Conditioned medium from PA-treated hepatocytes increased the expression of NHE1 and of the fibrosis regulator tissue inhibitor of matrix metalloproteinases-2 in LX-2 HSCs, in a manner abolished by NHE1 KO in hepatocytes. We conclude that NHE1 is regulated in NAFLD in vitro and contributes to the ensuing damage by aggravating hepatocyte injury and stimulating hepatocyte–HSC crosstalk.

Supplementary Materials

 

  • Collapse
  • Expand
  • An P, Wei LL, Zhao S, Sverdlov DY, Vaid KA, Miyamoto M, Kuramitsu K, Lai M & & Popov YV 2020 Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis. Nature Communications 11 2362. (https://doi.org/10.1038/s41467-020-16092-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andersen AP, Samsøe-Petersen J, Oernbo EK, Boedtkjer E, Moreira JMA, Kveiborg M & & Pedersen SF 2018 The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. International Journal of Cancer 142 25292542. (https://doi.org/10.1002/ijc.31276)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P & & Poniachik J 2004 Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clinical Science 106 635643. (https://doi.org/10.1042/CS20030326)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ballestri S, Nascimbeni F, Romagnoli D, Baldelli E & & Lonardo A 2016 The role of nuclear receptors in the pathophysiology, natural course, and drug treatment of NAFLD in humans. Advances in Therapy 33 291319. (https://doi.org/10.1007/s12325-016-0306-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barger PM, Browning AC, Garner AN & & Kelly DP 2001 p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. Journal of Biological Chemistry 276 4449544501. (https://doi.org/10.1074/jbc.M105945200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bell SM, Schreiner CM, Schultheis PJ, Miller ML, Evans RL, Vorhees CV, Shull GE & & Scott WJ 1999 Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. American Journal of Physiology 276 C788C795. (https://doi.org/10.1152/ajpcell.1999.276.4.C788)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benedetti A, Di Sario A, Casini A, Ridolfi F, Bendia E, Pigini P, Tonnini C, D'ambrosio L, Feliciangeli G, Macarri G, et al.2001 Inhibition of the NA(+)/H(+) exchanger reduces rat hepatic stellate cell activity and liver fibrosis: an in vitro and in vivo study. Gastroenterology 120 545556. (https://doi.org/10.1053/gast.2001.21203)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berthier A, Johanns M, Zummo FP, Lefebvre P & & Staels B 2021 PPARs in liver physiology. Biochimica et Biophysica Acta. Molecular Basis of Disease 1867 166097. (https://doi.org/10.1016/j.bbadis.2021.166097)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brunt EM, Wong VWS, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA & & Rinella ME 2015 Nonalcoholic fatty liver disease. Nature Reviews. Disease Primers 1 15080. (https://doi.org/10.1038/nrdp.2015.80)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calkin AC & & Tontonoz P 2012 Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nature Reviews. Molecular Cell Biology 13 213224. (https://doi.org/10.1038/nrm3312)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cariello M, Piccinin E & & Moschetta A 2021 Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH. Cellular and Molecular Gastroenterology and Hepatology 11 15191539. (https://doi.org/10.1016/j.jcmgh.2021.01.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coates-Park S, Rich JA, Stetler-Stevenson WG & & Peeney D 2024 The TIMP protein family: diverse roles in pathophysiology. American Journal of Physiology. Cell Physiology 326 C917C934. (https://doi.org/10.1152/ajpcell.00699.2023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Czaplinska D, Ialchina R, Andersen HB, Yao J, Stigliani A, Dannesboe J, Flinck M, Chen X, Mitrega J, Gnosa SP, et al.2023 Crosstalk between tumor acidosis, p53 and extracellular matrix regulates pancreatic cancer aggressiveness. International Journal of Cancer 152 12101225. (https://doi.org/10.1002/ijc.34367)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di Sario A, Bendia E, Taffetani S, Marzioni M, Candelaresi C, Pigini P, Schindler U, Kleemann HW, Trozzi L, Macarri G, et al.2003 Selective Na+/H+ exchange inhibition by cariporide reduces liver fibrosis in the rat. Hepatology 37 256266. (https://doi.org/10.1053/jhep.2003.50028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD & & Parks EJ 2005 Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation 115 13431351. (https://doi.org/10.1172/JCI23621)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elpek 2014 Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World Journal of Gastroenterology 20 72607276. (https://doi.org/10.3748/wjg.v20.i23.7260)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flinck M, Kramer SH & & Pedersen SF 2018 Roles of pH in control of cell proliferation. Acta Physiologica (Oxford, England) 223 e13068. (https://doi.org/10.1111/apha.13068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao H, Jin Z, Bandyopadhyay G, Wang G, Zhang D, Rocha KCE, Liu X, Zhao H, Kisseleva T, Brenner DA, et al.2022 Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis. Cell Metabolism 34 12011213.e5. (https://doi.org/10.1016/j.cmet.2022.07.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • He Q, Fu Y, Ding X, Li D, Wang Z, Tian D & & Yan W 2018 High-mobility group box 1 induces endoplasmic reticulum stress and activates hepatic stellate cells. Laboratory Investigation 98 12001210. (https://doi.org/10.1038/s41374-018-0085-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hendus-Altenburger R, Pedraz-Cuesta E, Olesen CW, Papaleo E, Schnell JA, Hopper JTS, Robinson CV, Pedersen SF & & Kragelund BB 2016 The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biology 14 31. (https://doi.org/10.1186/s12915-016-0252-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hendus-Altenburger R, Wang X, Sjogaard-Frich LM, Pedraz-Cuesta E, Sheftic SR, Bendsoe AH, Page R, Kragelund BB, Pedersen SF & & Peti W 2019 Molecular basis for the binding and selective dephosphorylation of Na(+)/H(+) exchanger 1 by calcineurin. Nature Communications 10 3489. (https://doi.org/10.1038/s41467-019-11391-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hisamitsu T, Nakamura TY & & Wakabayashi S 2012 Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy. Molecular and Cellular Biology 32 32653280. (https://doi.org/10.1128/MCB.00145-12)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hua H, Dai M, Luo Y, Lin H, Xu G, Hu X, Xu L, Zhang H, Tang Z, Chang L, et al.2019 Basal PPARα inhibits bile acid metabolism adaptation in chronic cholestatic model induced by α-naphthylisothiocyanate. Toxicology Letters 300 3139. (https://doi.org/10.1016/j.toxlet.2018.10.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kamp F & & Hamilton JA 1992 pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proceedings of the National Academy of Sciences of the United States of America 89 1136711370. (https://doi.org/10.1073/pnas.89.23.11367)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kanaya E, Shiraki T & & Jingami H 2004 The nuclear bile acid receptor FXR is activated by PGC-1alpha in a ligand-dependent manner. Biochemical Journal 382 913921. (https://doi.org/10.1042/BJ20040432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kisseleva T & & Brenner D 2021 Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews. Gastroenterology and Hepatology 18 151166. (https://doi.org/10.1038/s41575-020-00372-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kusumoto K, Haist JV & & Karmazyn M 2001 Na(+)/H(+) exchange inhibition reduces hypertrophy and heart failure after myocardial infarction in rats. American Journal of Physiology. Heart and Circulatory Physiology 280 H738H745. (https://doi.org/10.1152/ajpheart.2001.280.2.H738)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lan T, Hu Y, Hu F, Li H, Chen Y, Zhang J, Yu Y, Jiang S, Weng Q, Tian S, , et al.2022 Hepatocyte glutathione S-transferase mu 2 prevents non-alcoholic steatohepatitis by suppressing ASK1 signaling. Journal of Hepatology 76 407419. (https://doi.org/10.1016/j.jhep.2021.09.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee YA & & Friedman SL 2022 Inflammatory and fibrotic mechanisms in NAFLD-Implications for new treatment strategies. Journal of Internal Medicine 291 1131. (https://doi.org/10.1111/joim.13380)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li YH, Choi DH, Lee EH, Seo SR, Lee S & & Cho EH 2016 Sirtuin 3 (SIRT3) regulates α-smooth muscle actin (α-SMA) production through the succinate dehydrogenase-G protein-coupled receptor 91 (GPR91) pathway in hepatic stellate cells. Journal of Biological Chemistry 291 1027710292. (https://doi.org/10.1074/jbc.M115.692244)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loft A, Alfaro AJ, Schmidt SF, Pedersen FB, Terkelsen MK, Puglia M, Chow KK, Feuchtinger A, Troullinaki M, Maida A, et al.2021 Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metabolism 33 16851700.e9. (https://doi.org/10.1016/j.cmet.2021.06.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malaguarnera M, Di RM, Nicoletti F & & Malaguarnera L 2009 Molecular mechanisms involved in NAFLD progression. Journal of Molecular Medicine 87 679695. (https://doi.org/10.1007/s00109-009-0464-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meima ME, Mackley JR & & Barber DL 2007 Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1. Current Opinion in Nephrology and Hypertension 16 365372. (https://doi.org/10.1097/MNH.0b013e3281bd888d)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Montagner A, Polizzi A, Fouché E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Régnier M, Lukowicz C, Benhamed F, et al.2016 Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65 12021214. (https://doi.org/10.1136/gutjnl-2015-310798)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moravcová A, Červinková Z, Kučera O, Mezera V, Rychtrmoc D & & Lotková H 2015 The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiological Research 64(Supplement 5) S627S636. (https://doi.org/10.33549/physiolres.933224)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Niture S, Gadi S, Qi Q, Gyamfi MA, Varghese RS, Rios-Colon L, Chimeh U, Vandana R, Ressom HW & & Kumar D 2023 MicroRNA-483-5p inhibits hepatocellular carcinoma cell proliferation, cell steatosis, and fibrosis by targeting PPARα and TIMP2. Cancers (Basel) 15. (https://doi.org/10.3390/cancers15061715)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paik JM, Golabi P, Younossi Y, Mishra A & & Younossi ZM 2020 Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology 72 16051616. (https://doi.org/10.1002/hep.31173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pawlak M, Lefebvre P & & Staels B 2015 Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology 62 720733. (https://doi.org/10.1016/j.jhep.2014.10.039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedersen SF & & Counillon L 2019 The SLC9A-C mammalian Na(+)/H(+) exchanger family: molecules, mechanisms, and physiology. Physiological Reviews 99 20152113. (https://doi.org/10.1152/physrev.00028.2018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pedersen SF, O'donnell ME, Anderson SE & & Cala PM 2006 Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl(-) cotransport in the heart, brain, and blood. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 291 R1R25. (https://doi.org/10.1152/ajpregu.00782.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pouyssegur J, Sardet C, Franchi A, L'allemain G & & Paris S 1984 A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proceedings of the National Academy of Sciences of the United States of America 81 48334837. (https://doi.org/10.1073/pnas.81.15.4833)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Powell EE, Wong VWS & & Rinella M 2021 Non-alcoholic fatty liver disease. Lancet 397 22122224. (https://doi.org/10.1016/S0140-6736(2032511-3)

  • Prasad V, Chirra S, Kohli R & & Shull GE 2014 NHE1 deficiency in liver: implications for non-alcoholic fatty liver disease. Biochemical and Biophysical Research Communications 450 10271031. (https://doi.org/10.1016/j.bbrc.2014.06.095)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prasad V, Lorenz JN, Miller ML, Vairamani K, Nieman ML, Wang Y & & Shull GE 2013 Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress. Journal of Molecular and Cellular Cardiology 65 3342. (https://doi.org/10.1016/j.yjmcc.2013.09.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rada P, González-Rodríguez Á, García-Monzón C & & Valverde ÁM 2020 Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death and Disease 11 802. (https://doi.org/10.1038/s41419-020-03003-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA & & Zhang F 2013 Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8 22812308. (https://doi.org/10.1038/nprot.2013.143)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rentsch ML, Ossum CG, Hoffmann EK & & Pedersen SF 2007 Roles of Na+/H+ exchange in regulation of p38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts. Pflugers Archiv 454 649662. (https://doi.org/10.1007/s00424-007-0233-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, Fantoni LI, Marra F, Bertolotti M, Banni S, et al.2009 Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. Journal of Gastroenterology and Hepatology 24 830840. (https://doi.org/10.1111/j.1440-1746.2008.05733.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rolver MG, Elingaard-Larsen LO, Andersen AP, Counillon L & & Pedersen SF 2020 Pyrazine ring-based Na(+)/H(+) exchanger (NHE) inhibitors potently inhibit cancer cell growth in 3D culture, independent of NHE1. Scientific Reports 10 5800. (https://doi.org/10.1038/s41598-020-62430-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rolver MG, Holland LKK, Ponniah M, Prasad NS, Yao J, Schnipper J, Kramer S, Elingaard-Larsen L, Pedraz-Cuesta E, Liu B, et al.2023 Chronic acidosis rewires cancer cell metabolism through PPARα signaling. International Journal of Cancer 152 16681684. (https://doi.org/10.1002/ijc.34404)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, et al.2000 Role of LXRs in control of lipogenesis. Genes and Development 14 28312838. (https://doi.org/10.1101/gad.850400)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schuster S, Cabrera D, Arrese M & & Feldstein AE 2018 Triggering and resolution of inflammation in NASH. Nature Reviews. Gastroenterology and Hepatology 15 349364. (https://doi.org/10.1038/s41575-018-0009-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwabe RF, Tabas I & & Pajvani UB 2020 Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158 19131928. (https://doi.org/10.1053/j.gastro.2019.11.311)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sefried S, Haring HU, Weigert C & & Eckstein SS 2018 Suitability of hepatocyte cell lines HepG2, AML12 and THLE-2 for investigation of insulin signalling and hepatokine gene expression. Open Biology 8. (https://doi.org/10.1098/rsob.180147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stock C & & Schwab A 2009 Protons make tumor cells move like clockwork. Pflugers Archiv 458 981992. (https://doi.org/10.1007/s00424-009-0677-8)

  • Tomita K, Freeman BL, Bronk SF, Lebrasseur NK, White TA, Hirsova P & & Ibrahim SH 2016 CXCL10-mediates macrophage, but not other innate immune cells-associated inflammation in murine nonalcoholic steatohepatitis. Scientific Reports 6 28786. (https://doi.org/10.1038/srep28786)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tomita K, Kabashima A, Freeman BL, Bronk SF, Hirsova P & & Ibrahim SH 2017 Mixed lineage kinase 3 mediates the induction of CXCL10 by a STAT1-dependent mechanism during hepatocyte lipotoxicity. Journal of Cellular Biochemistry 118 32493259. (https://doi.org/10.1002/jcb.25973)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trauner M, Claudel T, Fickert P, Moustafa T & & Wagner M 2010 Bile acids as regulators of hepatic lipid and glucose metabolism. Digestive Diseases 28 220224. (https://doi.org/10.1159/000282091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsuchida T & & Friedman SL 2017 Mechanisms of hepatic stellate cell activation. Nature Reviews. Gastroenterology and Hepatology 14 397411. (https://doi.org/10.1038/nrgastro.2017.38)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiang M, Wang P-X, Wang A-B, Zhang X-J, Zhang Y, Zhang P, Mei F-H, Chen M-H & & Li H 2016 Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. Journal of Hepatology 64 13651377. (https://doi.org/10.1016/j.jhep.2016.02.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L & & Wymer M 2016 Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64 7384. (https://doi.org/10.1002/hep.28431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ & & Edwards PA 2004 Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes and Development 18 157169. (https://doi.org/10.1101/gad.1138104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu C, Kim K, Wang X, Bartolome A, Salomao M, Dongiovanni P, Meroni M, Graham MJ, Yates KP, Diehl AM, et al.2018 Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Science Translational Medicine 10. (https://doi.org/10.1126/scitranslmed.aat0344)

    • PubMed
    • Search Google Scholar
    • Export Citation