This paper forms part of a special collection on the theme of corticosteroids and cardiovascular disease. The guest editors for this collection were Massimiliano Caprio and Morag Young.
The mineralocorticoid system, comprising the renin-angiotensin-aldosterone system (RAAS) and associated receptors, is traditionally viewed as a regulator of sodium and fluid balance and blood pressure (BP), with the main mineralocorticoid hormone aldosterone acting via the mineralocorticoid receptor (MR) in distal renal tubules. Over the past few decades, there has been a wider understanding of the role of the mineralocorticoid system in regulating both classical BP-dependent and non-BP-dependent systemic effects. Mounting evidence indicates the novel role of the mineralocorticoid system in cardiometabolic health, with excess mineralocorticoid system activity being associated with adiposity, diabetes, insulin resistance and cardiovascular diseases independent of its effect on BP, and RAAS blockade and MR antagonists offering protection against cardiometabolic dysfunction. The metabolic manifestations of mineralocorticoid system overactivation are mainly mediated by their interactions with adipose tissue, which orchestrates energy, lipids, and glucose homeostasis via effects on the functions of brown and white adipocytes and immune cells. Adipose tissue can, in turn, influence mineralocorticoid system activity by harboring its own RAAS system and by releasing mineralocorticoid-secretory factors/adipokines, resulting in further progression of cardiometabolic dysfunction. This article discusses the interplay between the mineralocorticoid system and adipose tissue in the pathophysiology of cardiometabolic diseases.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 92 | 92 | 19 |
PDF Downloads | 123 | 123 | 17 |
Ahima RS & & Flier JS 2000 Adipose tissue as an endocrine organ. Trends in Endocrinology and Metabolism 11 327–332. (https://doi.org/10.1016/s1043-2760(0000301-5)
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM & & Smith SC JR 2009 Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 120 1640–1645. (https://doi.org/10.1161/CIRCULATIONAHA.109.192644)
Alvarez-Gallego F, González-Blázquez R, Gil-Ortega M, Somoza B, Calderón-Dominguez M, Moratinos J, Garcia-Garcia V, Fernández P, González-Moreno D, Viana M, et al.2023 Angiotensin II type 2 receptor as a novel activator of brown adipose tissue in obesity. BioFactors 49 1106–1120. (https://doi.org/10.1002/biof.1981)
Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3RD, Kang L, Rabinovitch PS, Szeto HH, et al.2009 Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. Journal of Clinical Investigation 119 573–581. (https://doi.org/10.1172/JCI37048)
Araki K, Masaki T, Katsuragi I, Tanaka K, Kakuma T & & Yoshimatsu H 2006 Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet-induced obese mice. Hypertension 48 51–57. (https://doi.org/10.1161/01.HYP.0000225402.69580.1d)
Armani A, Cinti F, Marzolla V, Morgan J, Cranston GA, Antelmi A, Carpinelli G, Canese R, Pagotto U, Quarta C, et al.2014 Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB Journal 28 3745–3757. (https://doi.org/10.1096/fj.13-245415)
Armanini D, Strasser T & & Weber PC 1985 Characterization of aldosterone binding sites in circulating human mononuclear leukocytes. American Journal of Physiology 248 E388–E390. (https://doi.org/10.1152/ajpendo.1985.248.3.E388)
Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE & & Evans RM 1987 Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237 268–275. (https://doi.org/10.1126/science.3037703)
Bahadir O, Uzunlulu M, Oguz A & & Bahadir MA 2007 Effects of telmisartan and losartan on insulin resistance in hypertensive patients with metabolic syndrome. Hypertension Research 30 49–53. (https://doi.org/10.1291/hypres.30.49)
Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R & & Cinti S 2010 The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology. Endocrinology and Metabolism 298 E1244–E1253. (https://doi.org/10.1152/ajpendo.00600.2009)
Bauersachs J & & López-Andrés N 2022 Mineralocorticoid receptor in cardiovascular diseases-Clinical trials and mechanistic insights. British Journal of Pharmacology 179 3119–3134. (https://doi.org/10.1111/bph.15708)
Berbée JFP, Boon MR, Khedoe PPSJ, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, et al.2015 Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nature Communications 6 6356. (https://doi.org/10.1038/ncomms7356)
Björntorp P 1971 Sjöström L,+SJOSTROM L: Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metabolism: Clinical and Experimental 20 703–713. (https://doi.org/10.1016/0026-0495(7190084-9)
Bochud M, Nussberger J, Bovet P, Maillard MR, Elston RC, Paccaud F, Shamlaye C & & Burnier M 2006 Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 48 239–245. (https://doi.org/10.1161/01.HYP.0000231338.41548.fc)
Bosch J, Yusuf S, Gerstein HC, Pogue J, Sheridan P, Dagenais G, Diaz R, Avezum A, Lanas F, et al.2006 Effect of ramipril on the incidence of diabetes. New England Journal of Medicine 355 1551–1562. (https://doi.org/10.1056/NEJMoa065061)
Boschmann M, Ringel J, Klaus S & & Sharma AM 2001 Metabolic and hemodynamic response of adipose tissue to angiotensin II. Obesity Research 9 486–491. (https://doi.org/10.1038/oby.2001.63)
Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Corrêa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, et al.2012 Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59 1069–1078. (https://doi.org/10.1161/HYPERTENSIONAHA.111.190223)
Buglioni A, Cannone V, Sangaralingham SJ, Heublein DM, Scott CG, Bailey KR, Rodeheffer RJ, Sarzani R & & Burnett JC 2015 Aldosterone predicts cardiovascular, renal, and metabolic disease in the general community: A 4-year follow-up. Journal of the American Heart Association 4. (https://doi.org/10.1161/JAHA.115.002505)
Cannon B & & Nedergaard J 2008 Developmental biology: neither fat nor flesh. Nature 454 947–948. (https://doi.org/10.1038/454947a)
Caprio M, Antelmi A, Chetrite G, Muscat A, Mammi C, Marzolla V, Fabbri A, Zennaro MC & & Fève B 2011 Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: potential implications for the treatment of metabolic syndrome. Endocrinology 152 113–125. (https://doi.org/10.1210/en.2010-0674)
Caprio M, Fève B, Claës A, Viengchareun S, Lombès M & & Zennaro MC 2007 Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB Journal 21 2185–2194. (https://doi.org/10.1096/fj.06-7970com)
Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, Favret G, Melis A, Cavarape A & & Sechi LA 2006 Insulin sensitivity in patients with primary aldosteronism: a follow-up study. Journal of Clinical Endocrinology and Metabolism 91 3457–3463. (https://doi.org/10.1210/jc.2006-0736)
Catrysse L & & Van Loo G 2018 Adipose tissue macrophages and their polarization in health and obesity. Cellular Immunology 330 114–119. (https://doi.org/10.1016/j.cellimm.2018.03.001)
Conn JW 1965 Hypertension, the potassium ion and impaired carbohydrate tolerance. New England Journal of Medicine 273 1135–1143. (https://doi.org/10.1056/NEJM196511182732106)
Cooper SA, Whaley-Connell A, Habibi J, Wei Y, Lastra G, Manrique C, Stas S & & Sowers JR 2007 Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. American Journal of Physiology. Heart and Circulatory Physiology 293 H2009–H2023. (https://doi.org/10.1152/ajpheart.00522.2007)
Cypess AM 2023 Does activating brown fat contribute to important metabolic benefits in humans? Yes! Journal of Clinical Investigation 133. (https://doi.org/10.1172/JCI175282)
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, et al.2009 Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 360 1509–1517. (https://doi.org/10.1056/NEJMoa0810780)
Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C, et al.2013 Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine 19 635–639. (https://doi.org/10.1038/nm.3112)
Da Eira D, Jani S, Stefanovic M & & Ceddia RB 2023 Obesogenic versus ketogenic diets in the regulation of the renin-angiotensin system in rat white and brown adipose tissues. Nutrition 105 111862. (https://doi.org/10.1016/j.nut.2022.111862)
Darimont C, Vassaux G, Ailhaud G & & Negrel R 1994 Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 135 2030–2036. (https://doi.org/10.1210/endo.135.5.7956925)
De Kloet AD, Krause EG, Kim DH, Sakai RR, Seeley RJ & & Woods SC 2009 The effect of angiotensin-converting enzyme inhibition using captopril on energy balance and glucose homeostasis. Endocrinology 150 4114–4123. (https://doi.org/10.1210/en.2009-0065)
Dusserre E, Moulin P & & Vidal H 2000 Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochimica et Biophysica Acta 1500 88–96. (https://doi.org/10.1016/s0925-4439(9900091-5)
Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, Mccann SM, Scherbaum WA & & Bornstein SR 2003 Human adipocytes secrete mineralocorticoid-releasing factors. Proceedings of the National Academy of Sciences of the United States of America 100 14211–14216. (https://doi.org/10.1073/pnas.2336140100)
Engeli S, Gorzelniak K, Kreutz R, Runkel N, Distler A & & Sharma AM 1999 Co-expression of renin-angiotensin system genes in human adipose tissue. Journal of Hypertension 17 555–560. (https://doi.org/10.1097/00004872-199917040-00014)
Engeli S, Böhnke J, Feldpausch M, Gorzelniak K, Heintze U, Janke J, Luft FC & & Sharma AM 2004 Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obesity Research 12 9–17. (https://doi.org/10.1038/oby.2004.3)
Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC & & Sharma AM 2005 Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45 356–362. (https://doi.org/10.1161/01.HYP.0000154361.47683.d3)
Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, Rabbia F, Federspil G & & Mulatero P 2006 Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. Journal of Clinical Endocrinology and Metabolism 91 454–459. (https://doi.org/10.1210/jc.2005-1733)
Feldmann HM, Golozoubova V, Cannon B & & Nedergaard J 2009 UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metabolism 9 203–209. (https://doi.org/10.1016/j.cmet.2008.12.014)
Frederich RC Jr, Kahn BB, Peach MJ & & Flier JS 1992 Tissue-specific nutritional regulation of angiotensinogen in adipose tissue. Hypertension 19 339–344. (https://doi.org/10.1161/01.hyp.19.4.339)
Fuller PJ, Yang J & & Young MJ 2019 Mechanisms of mineralocorticoid receptor signaling. Vitamins and Hormones 109 37–68. (https://doi.org/10.1016/bs.vh.2018.09.004)
Funder JW, Pearce PT, Smith R & & Smith AI 1988 Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242 583–585. (https://doi.org/10.1126/science.2845584)
Gan L, Li N, Heizhati M, Lin M, Zhu Q, Yao X, Wu T, Wang M, Luo Q, Zhang D, et al.2022 Higher plasma aldosterone is associated with increased risk of cardiovascular events in hypertensive patients with suspected OSA: UROSAH data. Frontiers in Endocrinology (Lausanne) 13 1017177. (https://doi.org/10.3389/fendo.2022.1017177)
Garg R, Kneen L, Williams GH & & Adler GK 2014 Effect of mineralocorticoid receptor antagonist on insulin resistance and endothelial function in obese subjects. Diabetes, Obesity and Metabolism 16 268–272. (https://doi.org/10.1111/dom.12224)
Giacchetti G, Ronconi V, Turchi F, Agostinelli L, Mantero F, Rilli S & & Boscaro M 2007 Aldosterone as a key mediator of the cardiometabolic syndrome in primary aldosteronism: an observational study. Journal of Hypertension 25 177–186. (https://doi.org/10.1097/HJH.0b013e3280108e6f)
Goodfriend TL, Kelley DE, Goodpaster BH & & Winters SJ 1999 Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obesity Research 7 355–362. (https://doi.org/10.1002/j.1550-8528.1999.tb00418.x)
Goossens GH, Blaak EE, Saris WH & & Van Baak MA 2004 Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. Journal of Clinical Endocrinology and Metabolism 89 2690–2696. (https://doi.org/10.1210/jc.2003-032053)
Goto R, Kondo T, Ono K, Kitano S, Miyakawa N, Watanabe T, Sakaguchi M, Sato M, Igata M, Kawashima J, et al.2019 Mineralocorticoid receptor may regulate glucose homeostasis through the induction of interleukin-6 and glucagon-like peptide-1 in pancreatic islets. Journal of Clinical Medicine 8. (https://doi.org/10.3390/jcm8050674)
Gregoire FM, Smas CM & & Sul HS 1998 Understanding adipocyte differentiation. Physiological Reviews 78 783–809. (https://doi.org/10.1152/physrev.1998.78.3.783)
Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH & & Adler GK 2008 Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 117 2253–2261. (https://doi.org/10.1161/CIRCULATIONAHA.107.748640)
Hannemann A, Meisinger C, Bidlingmaier M, Döring A, Thorand B, Heier M, Belcredi P, Ladwig KH, Wallaschofski H, Friedrich N, et al.2011 Association of plasma aldosterone with the metabolic syndrome in two German populations. European Journal of Endocrinology 164 751–758. (https://doi.org/10.1530/EJE-10-1074)
Hanslik G, Wallaschofski H, Dietz A, Riester A, Reincke M, Allolio B, Lang K, Quack I, Rump LC, Willenberg HS, et al.2015 Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn's registry. European Journal of Endocrinology 173 665–675. (https://doi.org/10.1530/EJE-15-0450)
Hanssen MJW, Hoeks J, Brans B, Van Der Lans AAJJ, Schaart G, Van Den Driessche JJ, Jörgensen JA, Boekschoten MV, Hesselink MKC, Havekes B, et al.2015 Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nature Medicine 21 863–865. (https://doi.org/10.1038/nm.3891)
Hawkins UA, Gomez-Sanchez EP, Gomez-Sanchez CM & & Gomez-Sanchez CE 2012 The ubiquitous mineralocorticoid receptor: clinical implications. Current Hypertension Reports 14 573–580. (https://doi.org/10.1007/s11906-012-0297-0)
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, et al.2022 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation 145 e895–e1032. (https://doi.org/10.1161/CIR.0000000000001063)
Hibi M, Oishi S, Matsushita M, Yoneshiro T, Yamaguchi T, Usui C, Yasunaga K, Katsuragi Y, Kubota K, Tanaka S, et al.2016 Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans. International Journal of Obesity 40 1655–1661. (https://doi.org/10.1038/ijo.2016.124)
Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, Kihara S, Funahashi T & & Shimomura I 2009 Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovascular Research 84 164–172. (https://doi.org/10.1093/cvr/cvp191)
Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T & & Shimomura I 2012 Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochemical and Biophysical Research Communications 419 182–187. (https://doi.org/10.1016/j.bbrc.2012.01.139)
Hoppmann J, Perwitz N, Meier B, Fasshauer M, Hadaschik D, Lehnert H & & Klein J 2010 The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses. Journal of Endocrinology 204 153–164. (https://doi.org/10.1677/JOE-09-0292)
Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA & & Belin De Chantemèle EJ 2015 Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation 132 2134–2145. (https://doi.org/10.1161/CIRCULATIONAHA.115.018226)
Ibáñez L & & De Zegher F 2023 Adolescent PCOS: a postpubertal central obesity syndrome. Trends in Molecular Medicine 29 354–363. (https://doi.org/10.1016/j.molmed.2023.02.006)
Jang C, Jalapu S, Thuzar M, Law PW, Jeavons S, Barclay JL & & Ho KKY 2014 Infrared thermography in the detection of brown adipose tissue in humans. Physiological Reports 2. (https://doi.org/10.14814/phy2.12167)
Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homøe P, Loft A, De Jong J, Mathur N, Cannon B, Nedergaard J, et al.2013 A classical brown adipose tissue mRNA signature partly overlaps with Brite in the supraclavicular region of adult humans. Cell Metabolism 17 798–805. (https://doi.org/10.1016/j.cmet.2013.04.011)
Johansen ML, Schou M, Rossignol P, Holm MR, Rasmussen J, Brandt N, Frandsen M, Chabanova E, Dela F, Faber J, et al.2019 Effect of the mineralocorticoid receptor antagonist eplerenone on liver fat and metabolism in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial (MIRAD trial). Diabetes, Obesity and Metabolism 21 2305–2314. (https://doi.org/10.1111/dom.13809)
Jones BH, Standridge MK & & Moustaid N 1997a Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138 1512–1519. (https://doi.org/10.1210/endo.138.4.5038)
Jones BH, Standridge MK, Taylor JW & & Moustaïd N 1997b Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. American Journal of Physiology 273 R236–R242. (https://doi.org/10.1152/ajpregu.1997.273.1.R236)
Joseph JJ, Echouffo Tcheugui JB, Effoe VS, Hsueh WA, Allison MA & & Golden SH 2018 Renin-angiotensin-aldosterone system, glucose metabolism and incident type 2 diabetes mellitus: MESA. Journal of the American Heart Association 7 e009890. (https://doi.org/10.1161/JAHA.118.009890)
Joseph JJ, Echouffo-Tcheugui JB, Kalyani RR, Yeh HC, Bertoni AG, Effoe VS, Casanova R, Sims M, Wu WC, Wand GS, et al.2017 Aldosterone, renin, cardiovascular events, and all-cause mortality among African Americans: the Jackson Heart study. JACC. Heart Failure 5 642–651. (https://doi.org/10.1016/j.jchf.2017.05.012)
Karlsson C, Lindell K, Ottosson M, Sjöström L, Carlsson B & & Carlsson LM 1998 Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. Journal of Clinical Endocrinology and Metabolism 83 3925–3929. (https://doi.org/10.1210/jcem.83.11.5276)
Karst H, Den Boon FS, Vervoort N, Adrian M, Kapitein LC & & Joëls M 2022 Non-genomic steroid signaling through the mineralocorticoid receptor: involvement of a membrane-associated receptor? Molecular and Cellular Endocrinology 541 111501. (https://doi.org/10.1016/j.mce.2021.111501)
Klöting N & & Blüher M 2014 Adipocyte dysfunction, inflammation and metabolic syndrome. Reviews in Endocrine and Metabolic Disorders 15 277–287. (https://doi.org/10.1007/s11154-014-9301-0)
Kraus D, Jäger J, Meier B, Fasshauer M & & Klein J 2005 Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Hormone and Metabolic Research 37 455–459. (https://doi.org/10.1055/s-2005-870240)
Krug AW, Stelzner L, Rao AD, Lichtman AH, Williams GH & & Adler GK 2013 Effect of low dose mineralocorticoid receptor antagonist eplerenone on glucose and lipid metabolism in healthy adult males. Metabolism: Clinical and Experimental 62 386–391. (https://doi.org/10.1016/j.metabol.2012.08.011)
Kurata A, Nishizawa H, Kihara S, Maeda N, Sonoda M, Okada T, Ohashi K, Hibuse T, Fujita K, Yasui A, et al.2006 Blockade of angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney International 70 1717–1724. (https://doi.org/10.1038/sj.ki.5001810)
Łabuzek K, Liber S, Bułdak Ł, Machnik G, Liber J & & Okopień B 2013 Eplerenone promotes alternative activation in human monocyte-derived macrophages. Pharmacological Reports 65 226–234. (https://doi.org/10.1016/s1734-1140(1370983-6)
Lee MH, Song HK, Ko GJ, Kang YS, Han SY, Han KH, Kim HK, Han JY & & Cha DR 2008 Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Kidney International 74 890–900. (https://doi.org/10.1038/ki.2008.313)
Lee P, Zhao JT, Swarbrick MM, Gracie G, Bova R, Greenfield JR, Freund J & & Ho KKY 2011 High prevalence of brown adipose tissue in adult humans. Journal of Clinical Endocrinology and Metabolism 96 2450–2455. (https://doi.org/10.1210/jc.2011-0487)
Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, Werner CD, Chen KY & & Celi FS 2014 Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63 3686–3698. (https://doi.org/10.2337/db14-0513)
Lehrke M & & Lazar MA 2004 Inflamed about obesity. Nature Medicine 10 126–127. (https://doi.org/10.1038/nm0204-126)
Li A, Shi W, Wang J, Wang X, Zhang Y, Lei Z & & Jiao XY 2022 The gene knockout of angiotensin II type 1a receptor improves high-fat diet-induced obesity in rat via promoting adipose lipolysis. PLoS One 17 e0267331. (https://doi.org/10.1371/journal.pone.0267331)
Liu Y, Lin L, Yuan C, Shen S, Tang Y, Liu Z, Zhu Y & & Zhou L 2022 Recovery from diabetes mellitus in primary aldosteronism patients after adrenalectomy. BMC Endocrine Disorders 22 331. (https://doi.org/10.1186/s12902-022-01254-6)
Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP & & Flier JS 1993 Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366 740–742. (https://doi.org/10.1038/366740a0)
Luther JM, Luo P, Kreger MT, Brissova M, Dai C, Whitfield TT, Kim HS, Wasserman DH, Powers AC & & Brown NJ 2011 Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia 54 2152–2163. (https://doi.org/10.1007/s00125-011-2158-9)
Mammi C, Marzolla V, Armani A, Feraco A, Antelmi A, Maslak E, Chlopicki S, Cinti F, Hunt H, Fabbri A, et al.2016 A novel combined glucocorticoid-mineralocorticoid receptor selective modulator markedly prevents weight gain and fat mass expansion in mice fed a high-fat diet. International Journal of Obesity 40 964–972. (https://doi.org/10.1038/ijo.2016.13)
Manosroi W, Atthakomol P, Wattanawitawas P & & Buranapin S 2022 Differences in glycemic abnormalities between primary aldosteronism and essential hypertension: a systematic review and meta-analysis. Frontiers in Endocrinology (Lausanne) 13 870047. (https://doi.org/10.3389/fendo.2022.870047)
Marzolla V, Feraco A, Gorini S, Mammi C, Marrese C, Mularoni V, Boitani C, Lombès M, Kolkhof P, Ciriolo MR, et al.2020 The novel non-steroidal MR antagonist finerenone improves metabolic parameters in high-fat diet-fed mice and activates brown adipose tissue via AMPK-ATGL pathway. FASEB Journal 34 12450–12465. (https://doi.org/10.1096/fj.202000164R)
Marzolla V, Feraco A, Limana F, Kolkhof P, Armani A & & Caprio M 2022 Class-specific responses of brown adipose tissue to steroidal and nonsteroidal mineralocorticoid receptor antagonists. Journal of Endocrinological Investigation 45 215–220. (https://doi.org/10.1007/s40618-021-01635-z)
Massiéra F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, Negrel R, Ailhaud G, Seydoux J, et al.2001a Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB Journal 15 2727–2729. (https://doi.org/10.1096/fj.01-0457fje)
Massiera F, Seydoux J, Geloen A, Quignard-Boulange A, Turban S, Saint-Marc P, Fukamizu A, Negrel R, Ailhaud G & & Teboul M 2001b Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology 142 5220–5225. (https://doi.org/10.1210/endo.142.12.8556)
Mathai ML, Naik S, Sinclair AJ, Weisinger HS & & Weisinger RS 2008 Selective reduction in body fat mass and plasma leptin induced by angiotensin-converting enzyme inhibition in rats. International Journal of Obesity 32 1576–1584. (https://doi.org/10.1038/ijo.2008.126)
Monticone S, D'ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F & & Mulatero P 2018 Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet. Diabetes and Endocrinology 6 41–50. (https://doi.org/10.1016/S2213-8587(1730319-4)
Mcmurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, Hua TA, Belenkov Y, Boolell M, Buse JB, Buckley BM, et al.2010 Effect of valsartan on the incidence of diabetes and cardiovascular events. New England Journal of Medicine 362 1477–1490. (https://doi.org/10.1056/NEJMoa1001121)
O'mara AE, Johnson JW, Linderman JD, Brychta RJ, Mcgehee S, Fletcher LA, Fink YA, Kapuria D, Cassimatis TM, Kelsey N, et al.2020 Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. Journal of Clinical Investigation 130 2209–2219. (https://doi.org/10.1172/JCI131126)
Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard D & & Carpentier AC 2012 Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. Journal of Clinical Investigation 122 545–552. (https://doi.org/10.1172/JCI60433)
Polyzos SA, Kountouras J, Mantzoros CS, Polymerou V & & Katsinelos P 2017 Effects of combined low-dose spironolactone plus vitamin E vs vitamin E monotherapy on insulin resistance, non-invasive indices of steatosis and fibrosis, and adipokine levels in non-alcoholic fatty liver disease: a randomized controlled trial. Diabetes, Obesity and Metabolism 19 1805–1809. (https://doi.org/10.1111/dom.12989)
Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, Van Beek EJR, Morton NM, Walker BR & & Stimson RH 2016 Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metabolism 24 130–141. (https://doi.org/10.1016/j.cmet.2016.06.011)
Rickard AJ, Morgan J, Bienvenu LA, Fletcher EK, Cranston GA, Shen JZ, Reichelt ME, Delbridge LM & & Young MJ 2012 Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension 60 1443–1450. (https://doi.org/10.1161/HYPERTENSIONAHA.112.203158)
Rondinone CM, Rodbard D & & Baker ME 1993 Aldosterone stimulated differentiation of mouse 3T3-L1 cells into adipocytes. Endocrinology 132 2421–2426. (https://doi.org/10.1210/endo.132.6.8504747)
Saklayen MG 2018 The global epidemic of the metabolic syndrome. Current Hypertension Reports 20 12. (https://doi.org/10.1007/s11906-018-0812-z)
Salans LB, Horton ES & & Sims EA 1971 Experimental obesity in man: cellular character of the adipose tissue. Journal of Clinical Investigation 50 1005–1011. (https://doi.org/10.1172/JCI106570)
Shibayama Y, Wada N, Baba S, Miyano Y, Obara S, Iwasaki R, Nakajima H, Sakai H, Usubuchi H, Terae S, et al.2018 Relationship between visceral fat and plasma aldosterone concentration in patients with primary aldosteronism. Journal of the Endocrine Society 2 1236–1245. (https://doi.org/10.1210/js.2018-00187)
Shimabukuro M, Tanaka H & & Shimabukuro T 2007 Effects of telmisartan on fat distribution in individuals with the metabolic syndrome. Journal of Hypertension 25 841–848. (https://doi.org/10.1097/HJH.0b013e3280287a83)
Sindelka G, Widimský J, Haas T, Prázný M, Hilgertová J & & Skrha J 2000 Insulin action in primary hyperaldosteronism before and after surgical or pharmacological treatment. Experimental and Clinical Endocrinology and Diabetes 108 21–25. (https://doi.org/10.1055/s-0032-1329211)
Skurk T, Van Harmelen V & & Hauner H 2004 Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB. Arteriosclerosis, Thrombosis, and Vascular Biology 24 1199–1203. (https://doi.org/10.1161/01.ATV.0000131266.38312.2e)
Smith GI, Mittendorfer B & & Klein S 2019 Metabolically healthy obesity: facts and fantasies. Journal of Clinical Investigation 129 3978–3989. (https://doi.org/10.1172/JCI129186)
Spyroglou A, Handgriff L, Müller L, Schwarzlmüller P, Parasiliti-Caprino M, Fuss C. T., Remde H, Hirsch A, O'Toole SM, Thuzar M, et al.2022 The metabolic phenotype of patients with primary aldosteronism: impact of subtype and sex - a multicenter-study of 3566 Caucasian and Asian subjects. European Journal of Endocrinology 187 361–372. (https://doi.org/10.1530/EJE-22-0040)
Stowasser M & & Gordon RD 2016 Primary aldosteronism: changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. Physiological Reviews 96 1327–1384. (https://doi.org/10.1152/physrev.00026.2015)
Sun K, Su T, Li M, Xu B, Xu M, Lu J, Liu J, Bi Y & & Ning G 2014 Serum potassium level is associated with metabolic syndrome: a population-based study. Clinical Nutrition 33 521–527. (https://doi.org/10.1016/j.clnu.2013.07.010)
Sysoeva VY, Ageeva LV, Tyurin-Kuzmin PA, Sharonov GV, Dyikanov DT, Kalinina NI & & Tkachuk VA 2017 Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor. Stem Cell Research 25 115–122. (https://doi.org/10.1016/j.scr.2017.10.022)
Than A, Xu S, Li R, Leow MKS, Sun L & & Chen P 2017 Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduction and Targeted Therapy 2 17022. (https://doi.org/10.1038/sigtrans.2017.22)
Thuzar M & & Ho KKY 2016 Mechanisms in endocrinology: brown adipose tissue in humans: regulation and metabolic significance. European Journal of Endocrinology 175 R11–R25. (https://doi.org/10.1530/EJE-15-1217)
Thuzar M & & Stowasser M 2021 The mineralocorticoid receptor-an emerging player in metabolic syndrome? Journal of Human Hypertension 35 117–123. (https://doi.org/10.1038/s41371-020-00467-3)
Thuzar M, Law WP, Ratnasingam J, Jang C, Dimeski G & & Ho KKY 2018 Glucocorticoids suppress brown adipose tissue function in humans: A double-blind placebo-controlled study. Diabetes, Obesity and Metabolism 20 840–848. (https://doi.org/10.1111/dom.13157)
Thuzar M, Law WP, Dimeski G, Stowasser M & & Ho KKY 2019 Mineralocorticoid antagonism enhances brown adipose tissue function in humans: A randomized placebo-controlled cross-over study. Diabetes, Obesity and Metabolism 21 509–516. (https://doi.org/10.1111/dom.13539)
Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, et al.2007 Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proceedings of the National Academy of Sciences of the United States of America 104 4401–4406. (https://doi.org/10.1073/pnas.0610615104)
Tomaschitz A, Pilz S, Ritz E, Meinitzer A, Boehm BO & & März W 2010 Plasma aldosterone levels are associated with increased cardiovascular mortality: the Ludwigshafen Risk and cardiovascular Health (LURIC) study. European Heart Journal 31 1237–1247. (https://doi.org/10.1093/eurheartj/ehq019)
Tsukuda K, Mogi M, Iwanami J, Kanno H, Nakaoka H, Wang XL, Bai HY, Shan BS, Kukida M, Higaki A, et al.2016 Enhancement of adipocyte browning by angiotensin II Type 1 receptor blockade. PLoS One 11 e0167704. (https://doi.org/10.1371/journal.pone.0167704)
Tuck ML, Sowers J, Dornfeld L, Kledzik G & & Maxwell M 1981 The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. New England Journal of Medicine 304 930–933. (https://doi.org/10.1056/NEJM198104163041602)
Umemura S, Nyui N, Tamura K, Hibi K, Yamaguchi S, Nakamaru M, Ishigami T, Yabana M, Kihara M, Inoue S, et al.1997 Plasma angiotensinogen concentrations in obese patients. American Journal of Hypertension 10 629–633. (https://doi.org/10.1016/s0895-7061(9700053-8)
Urbanet R, Nguyen Dinh Cat A, Feraco A, Venteclef N, El Mogrhabi S, Sierra-Ramos C, Alvarez De La Rosa D, Adler GK, Quilliot D, Rossignol P, et al.2015 Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase. Hypertension 66 149–157. (https://doi.org/10.1161/HYPERTENSIONAHA.114.04981)
Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Schütz G, Lumeng CN & & Mortensen RM 2010 Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. Journal of Clinical Investigation 120 3350–3364. (https://doi.org/10.1172/JCI41080)
Van Der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, Hansen J, Jörgensen JA, Wu J, Mottaghy FM, et al.2013 Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. Journal of Clinical Investigation 123 3395–3403. (https://doi.org/10.1172/JCI68993)
Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S & & Arner P 2000 Increased adipose angiotensinogen gene expression in human obesity. Obesity Research 8 337–341. (https://doi.org/10.1038/oby.2000.40)
Van Herpen NA & & Schrauwen-Hinderling VB 2008 Lipid accumulation in non-adipose tissue and lipotoxicity. Physiology and Behavior 94 231–241. (https://doi.org/10.1016/j.physbeh.2007.11.049)
Van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, Gaye A, Gögele M, Heier M, Hiekkalinna T, et al.2014 The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocrine Disorders 14 9. (https://doi.org/10.1186/1472-6823-14-9)
Viengchareun S, Penfornis P, Zennaro MC & & Lombès M 2001 Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. American Journal of Physiology. Endocrinology and Metabolism 280 E640–E649. (https://doi.org/10.1152/ajpendo.2001.280.4.E640)
Vishvanath L, Macpherson KA, Hepler C, Wang QA, Shao M, Spurgin SB, Wang MY, Kusminski CM, Morley TS & & Gupta RK 2016 Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metabolism 23 350–359. (https://doi.org/10.1016/j.cmet.2015.10.018)
Wada T, Ishikawa A, Watanabe E, Nakamura Y, Aruga Y, Hasegawa H, Onogi Y, Honda H, Nagai Y, Takatsu K, et al.2017 Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. Journal of Endocrinology 235 179–191. (https://doi.org/10.1530/JOE-17-0351)
Wang QA, Tao C, Gupta RK & & Scherer PE 2013 Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine 19 1338–1344. (https://doi.org/10.1038/nm.3324)
Weiland F & & Verspohl EJ 2008 Variety of angiotensin receptors in 3T3-L1 preadipose cells and differentiated adipocytes. Hormone and Metabolic Research 40 760–766. (https://doi.org/10.1055/s-0028-1082041)
Wu VC, Chueh SJ, Chen L, Chang CH, Hu YH, Lin YH, Wu KD, Yang WS & TAIPAI Study Group 2017 Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. Journal of Hypertension 35 1698–1708. (https://doi.org/10.1097/HJH.0000000000001361)
Yang Y, Wei RB, Xing Y, Tang L, Zheng XY, Wang ZC, Gao YW, Li MX & & Chen XM 2013 A meta-analysis of the effect of angiotensin receptor blockers and calcium channel blockers on blood pressure, glycemia and the HOMA-IR index in non-diabetic patients. Metabolism: Clinical and Experimental 62 1858–1866. (https://doi.org/10.1016/j.metabol.2013.08.008)
Yasue S, Masuzaki H, Okada S, Ishii T, Kozuka C, Tanaka T, Fujikura J, Ebihara K, Hosoda K, Katsurada A, et al.2010 Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. American Journal of Hypertension 23 425–431. (https://doi.org/10.1038/ajh.2009.263)
Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y & & Saito M 2011 Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 19 13–16. (https://doi.org/10.1038/oby.2010.105)
Young MJ & & Rickard AJ 2015 Mineralocorticoid receptors in the heart: lessons from cell-selective transgenic animals. Journal of Endocrinology 224 R1–R13. (https://doi.org/10.1530/JOE-14-0471)
Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P & & Quignard-Boulange A 2005 Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes 54 991–999. (https://doi.org/10.2337/diabetes.54.4.991)
Yvan-Charvet L, Massiéra F, Lamandé N, Ailhaud G, Teboul M, Moustaid-Moussa N, Gasc JM & & Quignard-Boulangé A 2009 Deficiency of angiotensin type 2 receptor rescues obesity but not hypertension induced by overexpression of angiotensinogen in adipose tissue. Endocrinology 150 1421–1428. (https://doi.org/10.1210/en.2008-1120)
Zeng H, Zhang Y, Huang S, Wu J, Ren W, Zhou L, Huang L & & Ye Y 2023 Metformin combined with spironolactone vs. metformin alone in polycystic ovary syndrome: a meta-analysis. Frontiers in Endocrinology (Lausanne) 14 1223768. (https://doi.org/10.3389/fendo.2023.1223768)
Zennaro MC, Le Menuet D, Viengchareun S, Walker F, Ricquier D & & Lombès M 1998 Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action. Journal of Clinical Investigation 101 1254–1260. (https://doi.org/10.1172/JCI1915)
Zhou Y, Li H & & Xia N 2021 The interplay between adipose tissue and vasculature: role of oxidative stress in obesity. Frontiers in Cardiovascular Medicine 8 650214. (https://doi.org/10.3389/fcvm.2021.650214)
Zorad S, Dou JT, Benicky J, Hutanu D, Tybitanclova K, Zhou J & & Saavedra JM 2006 Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma. European Journal of Pharmacology 552 112–122. (https://doi.org/10.1016/j.ejphar.2006.08.062)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519