This paper forms part of a special collection on incretins. The guest editors for this collection were Timo Müller and Erin Mulvihill.
Bone is a dynamic tissue continuously undergoing remodeling processes of resorption and formation to maintain bone mass and health. Food intake and the release of the gut-derived incretin hormones, including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) and its ‘sister hormone’ glucagon-like peptide 2 (GLP-2), appear to regulate bone turnover processes in the postprandial state as part of the so-called gut–bone axis. The effects of these gut hormones on bone metabolism depend on their circulating concentrations. While at physiological concentrations, elicited by nutrient intake, GIP seems to be the main contributor to postprandial bone resorption; supraphysiological concentrations of gut hormones induce more potent and robust antiresorptive effects. This review provides an overview of the literature describing the role of gut-derived hormones in the regulation and maintenance of bone tissue. In addition, we describe the effects of gut hormone-based treatment modalities on bone health and discuss the potential of gut hormone-based strategies for the treatment of bone disorders in the future.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 107 | 107 | 49 |
PDF Downloads | 124 | 124 | 56 |
Al Refaie A , Baldassini L , Mondillo C , et al. 2024 Glucagon-like peptide-1 receptor agonists and diabetic osteopathy: another positive effect of incretines? A 12 months longitudinal study. Calcif Tissue Int 115 160–168. (https://doi.org/10.1007/s00223-024-01240-1)
Aoyama E , Watari I , Podyma-Inoue KA , et al. 2014 Expression of glucagon-like peptide-1 receptor and glucose-dependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int J Mol Med 34 475–482. (https://doi.org/10.3892/ijmm.2014.1787)
Aronne LJ , Sattar N , Horn DB , et al. 2024 Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT-4 randomized clinical trial. JAMA 331 38–48. (https://doi.org/10.1001/jama.2023.24945)
Askov-Hansen C , Jeppesen PB , Lund P , et al. 2013 Effect of glucagon-like peptide-2 exposure on bone resorption: effectiveness of high concentration versus prolonged exposure. Regul Pept 181 4–8. (https://doi.org/10.1016/j.regpep.2012.11.002)
Balks HJ , Holst JJ , von zur Mühlen A , et al. 1997 Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J Clin Endocrinol Metab 82 786–790. (https://doi.org/10.1210/jcem.82.3.3816)
Barrett-Connor E & Kritz-Silverstein D 1996 Does hyperinsulinemia preserve bone? Diabetes Care 19 1388–1392. (https://doi.org/10.2337/diacare.19.12.1388)
Basu R , Peterson J , Rizza R , et al. 2011 Effects of physiological variations in circulating insulin levels on bone turnover in humans. J Clin Endocrinol Metab 96 1450–1455. (https://doi.org/10.1210/jc.2010-2877)
Bergmann NC , Lund A , Gasbjerg LS , et al. 2019 Separate and combined effects of GIP and GLP-1 infusions on bone metabolism in overweight men without diabetes. J Clin Endocrinol Metab 104 2953–2960. (https://doi.org/10.1210/jc.2019-00008)
Bergmann NC , Davies MJ , Lingvay I , et al. 2023 Semaglutide for the treatment of overweight and obesity: a review. Diabetes Obes Metabol 25 18–35. (https://doi.org/10.1111/dom.14863)
Bjarnason NH , Henriksen EEG , Alexandersen P , et al. 2002 Mechanism of circadian variation in bone resorption. Bone 30 307–313. (https://doi.org/10.1016/s8756-3282(01)00662-7)
Bjerre Knudsen L , Madsen LW , Andersen S , et al. 2010 Glucagon-like peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 151 1473–1486. (https://doi.org/10.1210/en.2009-1272)
Bollag RJ , Zhong Q , Phillips P , et al. 2000 Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 141 1228–1235. (https://doi.org/10.1210/endo.141.3.7366)
Bollag RJ , Zhong Q , Ding KH , et al. 2001 Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol 177 35–41. (https://doi.org/10.1016/s0303-7207(01)00405-1)
Borm AK , Klevesath MS , Borcea V , et al. 1999 The effect of pramlintide (amylin analogue) treatment on bone metabolism and bone density in patients with type 1 diabetes mellitus. Horm Metab Res 31 472–475. (https://doi.org/10.1055/s-2007-978777)
Bremholm L , Hornum M , Henriksen BM , et al. 2009 Glucagon-like peptide-2 increases mesenteric blood flow in humans. Scand J Gastroenterol 44 314–319. (https://doi.org/10.1080/00365520802538195)
Bronský J , Průša R & Nevoral J 2006 The role of amylin and related peptides in osteoporosis. Clin Chim Acta 373 9–16. (https://doi.org/10.1016/j.cca.2006.05.009)
Buchan AM , Polak JM , Capella C , et al. 1978 Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry 56 37–44. (https://doi.org/10.1007/BF00492251)
Cai T-T , Li H-Q , Jiang L-L , et al. 2021 Effects of GLP-1 receptor agonists on bone mineral density in patients with type 2 diabetes mellitus: a 52-week clinical study. BioMed Res Int 2021 3361309. (https://doi.org/10.1155/2021/3361309)
Chavassieux P , Portero-Muzy N , Roux J-P , et al. 2015 Are biochemical markers of bone turnover representative of bone histomorphometry in 370 postmenopausal women? J Clin Endocrinol Metab 100 4662–4668. (https://doi.org/10.1210/jc.2015-2957)
Christensen MB , Lund A , Calanna S , et al. 2018 Glucose-dependent insulinotropic polypeptide (GIP) inhibits bone resorption independently of insulin and glycemia. J Clin Endocrinol Metab 103 288–294. (https://doi.org/10.1210/jc.2017-01949)
Christensen MB , Lund AB , Jørgensen NR , et al. 2020 Glucose-dependent insulinotropic polypeptide (GIP) reduces bone resorption in patients with type 2 diabetes. J Endocr Soc 4 bvaa097. (https://doi.org/10.1210/jendso/bvaa097)
Clowes JA , Hannon RA , Yap TS , et al. 2002a Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30 886–890. (https://doi.org/10.1016/s8756-3282(02)00728-7)
Clowes JA , Robinson RT , Heller SR , et al. 2002b Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab 87 3324–3329. (https://doi.org/10.1210/jcem.87.7.8660)
Clowes JA , Allen HC , Prentis DM , et al. 2003 Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab 88 4867–4873. (https://doi.org/10.1210/jc.2002-021447)
Daniilopoulou I , Vlachou E , Lambrou GI , et al. 2022 The impact of GLP1 agonists on bone metabolism: a systematic review. Medicina 58 224. (https://doi.org/10.3390/medicina58020224)
Ding K-H , Shi X-M , Zhong Q , et al. 2008 Impact of glucose-dependent insulinotropic peptide on age-induced bone loss. J Bone Miner Res 23 536–543. (https://doi.org/10.1359/jbmr.071202)
Drucker DJ & Yusta B 2014 Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 76 561–583. (https://doi.org/10.1146/annurev-physiol-021113-170317)
Drucker DJ , Erlich P , Asa SL , et al. 1996 Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A 93 7911–7916. (https://doi.org/10.1073/pnas.93.15.7911)
El Khatib M , Billiauws L & Joly F 2023 The indications and results of the use of teduglutide in patients with short bowel. Curr Opin Clin Nutr Metab Care 26 449–454. (https://doi.org/10.1097/MCO.0000000000000964)
Elrick H , Stimmler L , Hlad CJ , et al. 1964 Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 24 1076–1082. (https://doi.org/10.1210/jcem-24-10-1076)
Florencio-Silva R , Sasso GRd S , Sasso-Cerri E , et al. 2015 Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int 2015 421746. (https://doi.org/10.1155/2015/421746)
Fortin J-P , Schroeder JC , Zhu Y , et al. 2010 Pharmacological characterization of human incretin receptor missense variants. J Pharmacol Exp Therapeut 332 274–280. (https://doi.org/10.1124/jpet.109.160531)
Frías JP , Davies MJ , Rosenstock J , et al. 2021 Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 385 503–515. (https://doi.org/10.1056/NEJMoa2107519)
Furness JB , Rivera LR , Cho H-J , et al. 2013 The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10 729–740. (https://doi.org/10.1038/nrgastro.2013.180)
Gabe MBN , van der Velden WJC , Gadgaard S , et al. 2020 Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and long-term impairment of the GIP system. Basic Clin Pharmacol Toxicol 126 (Supplement 6) 122–132. (https://doi.org/10.1111/bcpt.13289)
Gabe MBN , Skov-Jeppesen K , Gasbjerg LS , et al. 2022 GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment. Pharmacol Res 176 106058. (https://doi.org/10.1016/j.phrs.2022.106058)
Gao Y , Patil S & Jia J 2021 The development of molecular biology of osteoporosis. Int J Mol Sci 22 8182. (https://doi.org/10.3390/ijms22158182)
Gasbjerg LS , Hartmann B , Christensen MB , et al. 2020 GIP’s effect on bone metabolism is reduced by the selective GIP receptor antagonist GIP(3-30)NH2. Bone 130 115079. (https://doi.org/10.1016/j.bone.2019.115079)
Gasbjerg LS , Bari EJ , Christensen M , et al. 2021 Exendin(9‐39)NH2: recommendations for clinical use based on a systematic literature review. Diabetes Obes Metabol 23 2419–2436. (https://doi.org/10.1111/dom.14507)
Gault VA , O’Harte FPM & Flatt PR 2003 Glucose-dependent insulinotropic polypeptide (GIP): anti-diabetic and anti-obesity potential? Neuropeptides 37 253–263. (https://doi.org/10.1016/j.npep.2003.09.002)
Gobron B , Couchot M , Irwin N , et al. 2023 Development of a first-in-class unimolecular dual GIP/GLP-2 analogue, GL-0001, for the treatment of bone fragility. J Bone Miner Res 38 733–748. (https://doi.org/10.1002/jbmr.4792)
Gottschalck IB , Jeppesen PB , Holst JJ , et al. 2008 Reduction in bone resorption by exogenous glucagon-like peptide-2 administration requires an intact gastrointestinal tract. Scand J Gastroenterol 43 929–937. (https://doi.org/10.1080/00365520801965381)
Greenhill C 2024 Phase I results for AMG 133. Nat Rev Endocrinol 20 193. (https://doi.org/10.1038/s41574-024-00967-z)
Hansen NL , Brønden A , Nexøe-Larsen CC , et al. 2020 Glucagon-like peptide 2 inhibits postprandial gallbladder emptying in man: a randomized, double-blinded, crossover study. Clin Transl Gastroenterol 11 e00257. (https://doi.org/10.14309/ctg.0000000000000257)
Hansen MS , Wölfel EM , Jeromdesella S , et al. 2024 Once-weekly semaglutide versus placebo in adults with increased fracture risk: a randomised, double-blinded, two-centre, phase 2 trial. EClinicalMedicine 72 102624. (https://doi.org/10.1016/j.eclinm.2024.102624)
Hartmann B , Harr MB , Jeppesen PB , et al. 2000 In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab 85 2884–2888. (https://doi.org/10.1210/jcem.85.8.6717)
Hartmann B , Longo M , Mathiesen DS , et al. 2023 Signs of a glucose and insulin-independent gut-bone Axis and aberrant bone homeostasis in type 1 diabetes. J Clin Endocrinol Metab 109 e259–e265. (https://doi.org/10.1210/clinem/dgad431)
Heimbürger SMN , Hoe B , Nielsen CN , et al. 2022 GIP affects hepatic fat and brown adipose tissue thermogenesis but not white adipose tissue transcriptome in type 1 diabetes. J Clin Endocrinol Metab 107 3261–3274. (https://doi.org/10.1210/clinem/dgac542)
Helsted MM , Gasbjerg LS , Lanng AR , et al. 2020 The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 140 115553. (https://doi.org/10.1016/j.bone.2020.115553)
Henriksen DB , Alexandersen P , Bjarnason NH , et al. 2003 Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18 2180–2189. (https://doi.org/10.1359/jbmr.2003.18.12.2180)
Henriksen DB , Alexandersen P , Hartmann B , et al. 2007 Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone 40 723–729. (https://doi.org/10.1016/j.bone.2006.09.025)
Henriksen DB , Alexandersen P , Hartmann B , et al. 2009 Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 45 833–842. (https://doi.org/10.1016/j.bone.2009.07.008)
Holst JJ 2007 The physiology of glucagon-like peptide 1. Physiol Rev 87 1409–1439. (https://doi.org/10.1152/physrev.00034.2006)
Holst JJ , Orskov C , Vagn Nielsen O , et al. 1987 Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 211 169–174. (https://doi.org/10.1016/0014-5793(87)81430-8)
Hygum K , Harsløf T , Jørgensen NR , et al. 2020 Bone resorption is unchanged by liraglutide in type 2 diabetes patients: a randomised controlled trial. Bone 132 115197. (https://doi.org/10.1016/j.bone.2019.115197)
Iepsen EW , Lundgren JR , Hartmann B , et al. 2015 GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women. J Clin Endocrinol Metab 100 2909–2917. (https://doi.org/10.1210/jc.2015-1176)
Iqbal J , Wu H-X , Hu N , et al. 2022 Effect of glucagon-like peptide-1 receptor agonists on body weight in adults with obesity without diabetes mellitus-a systematic review and meta-analysis of randomized control trials. Obes Rev 23 e13435. (https://doi.org/10.1111/obr.13435)
Johansen NJ , Dejgaard TF , Lund A , et al. 2022 Effects of short-acting exenatide added three times daily to insulin therapy on bone metabolism in type 1 diabetes. Diabetes Obes Metabol 24 221–227. (https://doi.org/10.1111/dom.14568)
Johnson KC , Bray GA , Cheskin LJ , et al. 2017 The effect of intentional weight loss on fracture risk in persons with diabetes: results from the look AHEAD randomized clinical trial. J Bone Miner Res 32 2278–2287. (https://doi.org/10.1002/jbmr.3214)
Kieffer TJ 2003 GIP or not GIP? That is the question. Trends Pharmacol Sci 24 110–112. (https://doi.org/10.1016/S0165-6147(03)00031-2)
Killion EA , Lu S-C , Fort M , et al. 2020 Glucose-dependent insulinotropic polypeptide receptor therapies for the treatment of obesity, do agonists = antagonists? Endocr Rev 41 bnz002. (https://doi.org/10.1210/endrev/bnz002)
Kizilkaya HS , Sørensen KV , Kibsgaard CJ , et al. 2021 Loss of function glucose-dependent insulinotropic polypeptide receptor variants are associated with alterations in BMI, bone strength and cardiovascular outcomes. Front Cell Dev Biol 9 749607. (https://doi.org/10.3389/fcell.2021.749607)
Knop FK , Urva S , Rettiganti M , et al. 2024 A long-acting glucose-dependent insulinotropic polypeptide receptor agonist improves the gastrointestinal tolerability of glucagon-like peptide-1 receptor agonist therapy. Diabetes Obes Metabol 26 5474–5478. (https://doi.org/10.1111/dom.15875)
Koivisto H , Hietala J & Niemelä O 2007 An inverse relationship between markers of fibrogenesis and collagen degradation in patients with or without alcoholic liver disease. Am J Gastroenterol 102 773–779. (https://doi.org/10.1111/j.1572-0241.2006.01036.x)
Kong Q-X , Ruan Q , Fan C , et al. 2021 Evaluation of the risk of fracture in type 2 diabetes mellitus patients with incretins: an updated meta-analysis. Endokrynol Pol 72 319–328. (https://doi.org/10.5603/EP.a2021.0031)
Liu D , Bai J-J , Yao J-J , et al. 2021 Association of insulin glargine treatment with bone mineral density in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 14 1909–1917. (https://doi.org/10.2147/DMSO.S302627)
Liu C , Bao X , Tian Y , et al. 2023 Polymorphisms in the glucagon-like peptide-1 receptor gene and their interactions on the risk of osteoporosis in postmenopausal Chinese women. PLoS One 18 e0295451. (https://doi.org/10.1371/journal.pone.0295451)
Maagensen H , Junker AE , Jørgensen NR , et al. 2018 Bone turnover markers in patients with nonalcoholic fatty liver disease and/or type 2 diabetes during oral glucose and isoglycemic intravenous glucose. J Clin Endocrinol Metab 103 2042–2049. (https://doi.org/10.1210/jc.2018-00176)
Mabilleau G , Mieczkowska A , Irwin N , et al. 2013 Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219 59–68. (https://doi.org/10.1530/JOE-13-0146)
Mabilleau G , Mieczkowska A , Irwin N , et al. 2014 Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties. Bone 63 61–68. (https://doi.org/10.1016/j.bone.2014.02.013)
Mabilleau G , Perrot R , Mieczkowska A , et al. 2016 Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption. Bone 91 102–112. (https://doi.org/10.1016/j.bone.2016.07.014)
Mabilleau G , Pereira M & Chenu C 2018 Novel skeletal effects of glucagon-like peptide-1 (GLP-1) receptor agonists. J Endocrinol 236 R29–R42. (https://doi.org/10.1530/JOE-17-0278)
Mansur SA , Mieczkowska A , Flatt PR , et al. 2019 The GLP-1 receptor agonist exenatide ameliorates bone composition and tissue material properties in high fat fed diabetic mice. Front Endocrinol 10 51. (https://doi.org/10.3389/fendo.2019.00051)
Martin C 2006 The physiology of amylin and insulin: maintaining the balance between glucose secretion and glucose uptake. Diabetes Educat 32 (Supplement 3) 101S–104S. (https://doi.org/10.1177/0145721706288S237)
Mcintyre N , Holdsworth CD & Turner DS 1964 New interpretation of oral glucose tolerance. Lancet 2 20–21. (https://doi.org/10.1016/s0140-6736(64)90011-x)
Mieczkowska A , Irwin N , Flatt PR , et al. 2013 Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone 56 337–342. (https://doi.org/10.1016/j.bone.2013.07.003)
Mieczkowska A , Mansur S , Bouvard B , et al. 2015 Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength. Osteoporos Int 26 209–218. (https://doi.org/10.1007/s00198-014-2845-8)
Mishra R , Raj R , Elshimy G , et al. 2023 Adverse events related to tirzepatide. J Endocr Soc 7 bvad016. (https://doi.org/10.1210/jendso/bvad016)
Mortensen K , Christensen LL , Holst JJ , et al. 2003 GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114 189–196. (https://doi.org/10.1016/s0167-0115(03)00125-3)
Nauck MA , Heimesaat MM , Orskov C , et al. 1993 Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Investig 91 301–307. (https://doi.org/10.1172/JCI116186)
Nauck MA , Quast DR , Wefers J , et al. 2021 The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metabol 23 (Supplement 3) 5–29. (https://doi.org/10.1111/dom.14496)
Nissen A , Christensen M , Knop FK , et al. 2014 Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab 99 E2325–E2329. (https://doi.org/10.1210/jc.2014-2547)
Nissen A , Marstrand S , Skov‐Jeppesen K , et al. 2019 A pilot study showing acute inhibitory effect of GLP-1 on the bone resorption marker CTX in humans. JBMR Plus 3 e10209. (https://doi.org/10.1002/jbm4.10209)
Nuche-Berenguer B , Moreno P , Esbrit P , et al. 2009 Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 84 453–461. (https://doi.org/10.1007/s00223-009-9220-3)
Pacheco-Pantoja EL , Ranganath LR , Gallagher JA , et al. 2011 Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11 12. (https://doi.org/10.1186/1472-6793-11-12)
Pereira M , Jeyabalan J , Jørgensen CS , et al. 2015 Chronic administration of glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81 459–467. (https://doi.org/10.1016/j.bone.2015.08.006)
Pyke C , Heller RS , Kirk RK , et al. 2014 GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155 1280–1290. (https://doi.org/10.1210/en.2013-1934)
Ramsey W & Isales CM 2017 Intestinal incretins and the regulation of bone physiology. Adv Exp Med Biol 1033 13–33. (https://doi.org/10.1007/978-3-319-66653-2_2)
Sanz C , Vázquez P , Blázquez C , et al. 2010 Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab 298 E634–E643. (https://doi.org/10.1152/ajpendo.00460.2009)
Schiellerup SP , Skov-Jeppesen K , Windeløv JA , et al. 2019 Gut hormones and their effect on bone metabolism. Potential drug therapies in future osteoporosis treatment. Front Endocrinol 10 75. (https://doi.org/10.3389/fendo.2019.00075)
Schini M , Vilaca T , Gossiel F , et al. 2023 Bone turnover markers: basic biology to clinical applications. Endocr Rev 44 417–473. (https://doi.org/10.1210/endrev/bnac031)
Skov-Jeppesen K , Svane MS , Martinussen C , et al. 2019 GLP-2 and GIP exert separate effects on bone turnover: a randomized, placebo-controlled, crossover study in healthy young men. Bone 125 178–185. (https://doi.org/10.1016/j.bone.2019.05.014)
Skov-Jeppesen K , Hepp N , Oeke J , et al. 2021 The antiresorptive effect of GIP, but not GLP-2, is preserved in patients with hypoparathyroidism-A randomized crossover study. J Bone Miner Res 36 1448–1458. (https://doi.org/10.1002/jbmr.4308)
Skov-Jeppesen K , Christiansen CB , Hansen LS , et al. 2024 Effects of exogenous GIP and GLP-2 on bone turnover in individuals with type 2 diabetes. J Clin Endocrinol Metab 109 1773–1780. (https://doi.org/10.1210/clinem/dgae022)
Starup-Linde J , Lykkeboe S , Gregersen S , et al. 2016 Bone structure and predictors of fracture in type 1 and type 2 diabetes. J Clin Endocrinol Metab 101 928–936. (https://doi.org/10.1210/jc.2015-3882)
Stensen S , Gasbjerg LS , Helsted MM , et al. 2020 GIP and the gut-bone axis – physiological, pathophysiological and potential therapeutic implications. Peptides 125 170197. (https://doi.org/10.1016/j.peptides.2019.170197)
Stensen S , Gasbjerg LS , Krogh LL , et al. 2021 Effects of endogenous GIP in patients with type 2 diabetes. Eur J Endocrinol 185 33–45. (https://doi.org/10.1530/EJE-21-0135)
Styrkarsdottir U , Tragante V , Stefansdottir L , et al. 2023 Obesity variants in the gipr gene are not associated with risk of fracture or bone mineral density. J Clin Endocrinol Metab 109 e1608–e1615. (https://doi.org/10.1210/clinem/dgad734)
Tonks KT , White CP , Center JR , et al. 2017 Bone turnover is suppressed in insulin resistance, independent of adiposity. J Clin Endocrinol Metab 102 1112–1121. (https://doi.org/10.1210/jc.2016-3282)
Torekov SS , Harsløf T , Rejnmark L , et al. 2014 A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk. J Clin Endocrinol Metab 99 E729–E733. (https://doi.org/10.1210/jc.2013-3766)
Tuominen JT , Impivaara O , Puukka P , et al. 1999 Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 22 1196–1200. (https://doi.org/10.2337/diacare.22.7.1196)
Usdin TB , Mezey E , Button DC , et al. 1993 Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 133 2861–2870. (https://doi.org/10.1210/endo.133.6.8243312)
Vasikaran S , Cooper C , Eastell R , et al. 2011a International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49 1271–1274. (https://doi.org/10.1515/CCLM.2011.602)
Vasikaran S , Eastell R , Bruyère O , et al. 2011b Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22 391–420. (https://doi.org/10.1007/s00198-010-1501-1)
Véniant MM , Lu S-C , Atangan L , et al. 2024 A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat Metab 6 290–303. (https://doi.org/10.1038/s42255-023-00966-w)
Vestergaard P 2007 Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int 18 427–444. (https://doi.org/10.1007/s00198-006-0253-4)
Vilsbøll T , Knop FK , Krarup T , et al. 2003 The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J Clin Endocrinol Metab 88 4897–4903. (https://doi.org/10.1210/jc.2003-030738)
Wang J & Kim CH 2022 Differential risk of cancer associated with glucagon-like peptide-1 receptor agonists: analysis of real-world databases. Endocr Res 47 18–25. (https://doi.org/10.1080/07435800.2021.1955255)
Waser B , Blank A , Karamitopoulou E , et al. 2015 Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas. Mod Pathol 28 391–402. (https://doi.org/10.1038/modpathol.2014.113)
Westberg-Rasmussen S , Starup-Linde J , Hermansen K , et al. 2017 Differential impact of glucose administered intravenously or orally on bone turnover markers in healthy male subjects. Bone 97 261–266. (https://doi.org/10.1016/j.bone.2017.01.027)
Xie D , Cheng H , Hamrick M , et al. 2005 Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 37 759–769. (https://doi.org/10.1016/j.bone.2005.06.021)
Yamada C , Yamada Y , Tsukiyama K , et al. 2008 The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149 574–579. (https://doi.org/10.1210/en.2007-1292)
Zhang L , He J , Sun X , et al. 2020 Relationship between glucagon-like peptide-1 receptor gene polymorphism and bone mineral density in postmenopausal women in Shanghai. Ann Palliat Med 9 1732–1741. (https://doi.org/10.21037/apm-19-396)
Zhang Y-S , Zheng Y-D , Yuan Y , et al. 2021 Effects of anti-diabetic drugs on fracture risk: a systematic review and network meta-analysis. Front Endocrinol 12 735824. (https://doi.org/10.3389/fendo.2021.735824)
Zhong Q , Itokawa T , Sridhar S , et al. 2007 Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 292 E543–E548. (https://doi.org/10.1152/ajpendo.00364.2006)
Zibellini J , Seimon RV , Lee CMY , et al. 2015 Does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J Bone Miner Res 30 2168–2178. (https://doi.org/10.1002/jbmr.2564)
Online ISSN: 1479-6805
Print ISSN: 0022-0795
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519