TEDML: a new machine learning (ML) approach for predicting thyroid eye disease and identifying key biomarkers

in Journal of Endocrinology
Authors:
Jing Zhu Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China

Search for other papers by Jing Zhu in
Current site
Google Scholar
PubMed
Close
,
Shu Zhu Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China

Search for other papers by Shu Zhu in
Current site
Google Scholar
PubMed
Close
,
Bin Liu Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China

Search for other papers by Bin Liu in
Current site
Google Scholar
PubMed
Close
,
Xin Zheng Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China

Search for other papers by Xin Zheng in
Current site
Google Scholar
PubMed
Close
,
Xiaofei Yin Experimental Teaching Center of Biotechnology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China

Search for other papers by Xiaofei Yin in
Current site
Google Scholar
PubMed
Close
,
Lingling Pu Experimental Teaching Center of Biotechnology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China

Search for other papers by Lingling Pu in
Current site
Google Scholar
PubMed
Close
, and
Jing Yang Experimental Teaching Center of Biotechnology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China

Search for other papers by Jing Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6310-8380

Correspondence should be addressed to J Yang: jingyang@cmc.edu.cn

(J Zhu, S Zhu and B Liu contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Thyroid eye disease (TED) features immune infiltration and metabolic dysregulation. Understanding these processes and identifying potential biomarkers are crucial for improving diagnosis and treatment. To this end, immune cell infiltration was analyzed and gene set variation analysis (GSVA) was conducted on the GSE58331 dataset to identify differences between TED and normal tissues. Differentially expressed genes were identified using GSE58331 and GSE105149. Subsequently, a prediction model (TEDML) was developed by combining 113 machine learning algorithms to identify key biomarkers. In addition, enrichment analyses were performed to understand biological functions and pathways involved in TED, and drug sensitivity analyses were conducted to identify potential therapeutic agents. Immune infiltration analysis revealed higher levels of CD4+ Tem, CD4+ Tcm, NKT, NK cells and neutrophils in TED patients compared to controls, with lower levels of macrophages M1 and M2. GSVA indicated significant enrichment in immune-related processes and metabolic pathways. The TEDML model, constructed from the Stepglm[forward] algorithm, demonstrated high accuracy (area under curve of 1 on the training set, 0.893 in validation set), identifying six key genes (CSF3R, ALDH1A1, MXRA5, VSIG4, DPP4 and MDH1). Drug sensitivity analysis suggested that azathioprine and methylprednisolone might be effective at different stages of TED, with CSF3R as a potential therapeutic target. Overall, the TEDML model is accurate and reliable, and the identification of CSF3R as a key biomarker and its correlation with drug sensitivity offers new insights into targeted therapy for TED.

 

  • Collapse
  • Expand
  • Achuthan AA , Lee KMC & Hamilton JA 2021 Targeting GM-CSF in inflammatory and autoimmune disorders. Semin Immunol 54 101523. (https://doi.org/10.1016/j.smim.2021.101523)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Albahra S , Gorbett T , Robertson S , et al. 2023 Artificial intelligence and machine learning overview in pathology & laboratory medicine: a general review of data preprocessing and basic supervised concepts. Semin Diagn Pathol 40 7187. (https://doi.org/10.1053/j.semdp.2023.02.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aliper AM , Frieden-Korovkina VP , Buzdin A , et al. 2014 A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med 3 737746. (https://doi.org/10.1002/cam4.239)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Allam MM , El-Zawawy HT , Kader Okda AA , et al. 2023 Azathioprine as an adjuvant therapy in severe Graves' disease: a randomized controlled open-label clinical trial. Front Endocrinol 14 1168936. (https://doi.org/10.3389/fendo.2023.1168936)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alsamri MT , Alabdouli A , Alkalbani AM , et al. 2021 Genetic variants of small airways and interstitial pulmonary disease in children. Sci Rep 11 2715. (https://doi.org/10.1038/s41598-021-81280-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anagnostis P , Boboridis K , Adamidou F , et al. 2017 Natural course of mild Graves' orbitopathy: is it a chronic remitting or a transient disease? J Endocrinol Investig 40 257261. (https://doi.org/10.1007/s40618-016-0555-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Antonelli A , Fallahi P , Elia G , et al. 2020 Graves' disease: clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. Best Pract Res Clin Endocrinol Metab 34 101388. (https://doi.org/10.1016/j.beem.2020.101388)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Babić Leko M , Gunjača I , Pleić N , et al. 2021 Environmental factors affecting thyroid-stimulating hormone and thyroid hormone levels. Int J Mol Sci 22 6521. (https://doi.org/10.3390/ijms22126521)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbesino G , Salvi M & Freitag SK 2022 Future projections in thyroid eye disease. J Clin Endocrinol Metab 107 S47S56. (https://doi.org/10.1210/clinem/dgac252)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartalena L & Tanda ML 2022 Current concepts regarding Graves' orbitopathy. J Intern Med 292 692716. (https://doi.org/10.1111/joim.13524)

  • Bartalena L , Piantanida E , Gallo D , et al. 2020 Epidemiology, natural history, risk factors, and prevention of Graves' orbitopathy. Front Endocrinol 11 615993. (https://doi.org/10.3389/fendo.2020.615993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burch HB , Perros P , Bednarczuk T , et al. 2022 Management of thyroid eye disease: a consensus statement by the American Thyroid Association and the European Thyroid Association. Thyroid 32 14391470. (https://doi.org/10.1089/thy.2022.0251)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cambier S , Gouwy M & Proost P 2023 The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 20 217251. (https://doi.org/10.1038/s41423-023-00974-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen B , Sun X , Huang H , et al. 2024 An integrated machine learning framework for developing and validating a diagnostic model of major depressive disorder based on interstitial cystitis-related genes. J Affect Disord 359 2232. (https://doi.org/10.1016/j.jad.2024.05.061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen S , Diao J , Yue Z , et al. 2023 Identification and validation of ferroptosis-related genes and immune cell infiltration in thyroid associated ophthalmopathy. Front Genet 14 1118391. (https://doi.org/10.3389/fgene.2023.1118391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Côrte-Real BF , Arroyo Hornero R , Dyczko A , et al. 2022 Dissecting the role of CSF2RB expression in human regulatory T cells. Front Immunol 13 1005965. (https://doi.org/10.3389/fimmu.2022.1005965)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dalal PJ , Muller WA & Sullivan DP 2020 Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol 190 535542. (https://doi.org/10.1016/j.ajpath.2019.11.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Díaz-Villamarín X , Fernández-Varón E , Rojas Romero MC , et al. 2023 Azathioprine dose tailoring based on pharmacogenetic information: insights of clinical implementation. Biomed Pharmacother 168 115706. (https://doi.org/10.1016/j.biopha.2023.115706)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Draman MS , Zhang L , Dayan C , et al. 2021 Orbital signaling in Graves' orbitopathy. Front Endocrinol 12 739994. (https://doi.org/10.3389/fendo.2021.739994)

  • Du B , Wang Y , Yang M , et al. 2021 Clinical features and clinical course of thyroid-associated ophthalmopathy: a case series of 3620 Chinese cases. Eye 35 22942301. (https://doi.org/10.1038/s41433-020-01246-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fallahi P , Ferrari SM , Ragusa F , et al. 2020 Th1 chemokines in autoimmune endocrine disorders. J Clin Endocrinol Metab 105 10461060. (https://doi.org/10.1210/clinem/dgz289)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fallahi P , Ragusa F , Paparo SR , et al. 2023 Teprotumumab for the treatment of thyroid eye disease. Expet Opin Biol Ther 23 123131. (https://doi.org/10.1080/14712598.2023.2172328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fang S , Lu Y , Huang Y , et al. 2021 Mechanisms that underly T cell immunity in Graves' orbitopathy. Front Endocrinol 12 648732. (https://doi.org/10.3389/fendo.2021.648732)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girnita L , Smith TJ & Janssen JAMJ 2022 It takes two to tango: IGF-I and TSH receptors in thyroid eye disease. J Clin Endocrinol Metab 107 S1S12. (https://doi.org/10.1210/clinem/dgac045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guevara-Aguirre J , Peña G , Acosta W , et al. 2023 Cancer in growth hormone excess and growth hormone deficit. Endocr Relat Cancer 30 e220402. (https://doi.org/10.1530/erc-22-0402)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gulbins A , Görtz G , Gulbins E , et al. 2023a Sphingolipids in thyroid eye disease. Front Endocrinol 14 1170884. (https://doi.org/10.3389/fendo.2023.1170884)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gulbins A , Horstmann M , Daser A , et al. 2023b Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front Endocrinol 14 1211473. (https://doi.org/10.3389/fendo.2023.1211473)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo Y , Cheng Y , Li H , et al. 2023 The potential of artemisinins as novel treatment for thyroid eye disease by inhibiting adipogenesis in orbital fibroblasts. Invest Ophthalmol Vis Sci 64 28. (https://doi.org/10.1167/iovs.64.7.28)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hai YP , Lee ACH , Chen K , et al. 2023 Traditional Chinese medicine in thyroid-associated orbitopathy. J Endocrinol Investig 46 11031113. (https://doi.org/10.1007/s40618-023-02024-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoang TD , Stocker DJ , Chou EL , et al. 2022 2022 update on clinical management of Graves disease and thyroid eye disease. Endocrinol Metab Clin North Am 51 287304. (https://doi.org/10.1016/j.ecl.2021.12.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang J , Chen M , Liang Y , et al. 2022 Integrative metabolic analysis of orbital adipose/connective tissue in patients with thyroid-associated ophthalmopathy. Front Endocrinol 13 1001349. (https://doi.org/10.3389/fendo.2022.1001349)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hutchings KR , Fritzhand SJ , Esmaeli B , et al. 2023 Graves' eye disease: clinical and radiological diagnosis. Biomedicines 11 312. (https://doi.org/10.3390/biomedicines11020312)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ipsa E , Cruzat VF , Kagize JN , et al. 2019 Growth hormone and insulin-like growth factor action in reproductive tissues. Front Endocrinol 10 777. (https://doi.org/10.3389/fendo.2019.00777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kahana A 2021 Orbital inflammatory disorders: new knowledge, future challenges. Curr Opin Ophthalmol 32 255261. (https://doi.org/10.1097/icu.0000000000000743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kravchenko V & Zakharchenko T 2023 Thyroid hormones and minerals in immunocorrection of disorders in autoimmune thyroid diseases. Front Endocrinol 14 1225494. (https://doi.org/10.3389/fendo.2023.1225494)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee ACH & Kahaly GJ 2023 Pathophysiology of thyroid-associated orbitopathy. Clin Endocrinol Metab 37 101620. (https://doi.org/10.1016/j.beem.2022.101620)

  • Lee CE , Kim J , Yoon JS , et al. 2024 Role of inositol-requiring enzyme 1 and autophagy in the pro-fibrotic mechanism underlying Graves' orbitopathy. Yonsei Med J 65 397405. (https://doi.org/10.3349/ymj.2023.0294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lewiński A , Karbownik-Lewińska M , Wieczorek-Szukała K , et al. 2021 Contribution of ghrelin to the pathogenesis of growth hormone deficiency. Int J Mol Sci 22 9066. (https://doi.org/10.3390/ijms22169066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Z , Cestari DM & Fortin E 2018 Thyroid eye disease: what is new to know? Curr Opin Ophthalmol 29 528534. (https://doi.org/10.1097/icu.0000000000000529)

  • Liu ZB , Liu Y , Liu MM , et al. 2022 PD-L1 inhibits T Cell-induced cytokines and hyaluronan expression via the CD40-CD40L pathway in orbital fibroblasts from patients with thyroid associated ophthalmopathy. Front Immunol 13 849480. (https://doi.org/10.3389/fimmu.2022.849480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsushima K , Yang D & Oppenheim JJ 2022 Interleukin-8: an evolving chemokine. Cytokine 153 155828. (https://doi.org/10.1016/j.cyto.2022.155828)

  • Mehta HM & Corey SJ 2021 G-CSF, the guardian of granulopoiesis. Semin Immunol 54 101515. (https://doi.org/10.1016/j.smim.2021.101515)

  • Menconi F , Profilo MA , Leo M , et al. 2014 Spontaneous improvement of untreated mild Graves' ophthalmopathy: Rundle's curve revisited. Thyroid 24 6066. (https://doi.org/10.1089/thy.2013.0240)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meyer P , Das T , Ghadiri N , et al. 2019 Clinical pathophysiology of thyroid eye disease: the cone model. Eye 33 244253. (https://doi.org/10.1038/s41433-018-0302-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nahm FS 2022 Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiology 75 2536. (https://doi.org/10.4097/kja.21209)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park SD , Saunders AS , Reidy MA , et al. 2022 A review of granulocyte colony-stimulating factor receptor signaling and regulation with implications for cancer. Front Oncol 12 932608. (https://doi.org/10.3389/fonc.2022.932608)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rana HS , Akella SS , Clabeaux CE , et al. 2022 Ocular surface disease in thyroid eye disease: a narrative review. Ocul Surf 24 6773. (https://doi.org/10.1016/j.jtos.2022.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rigutto-Farebrother J 2023 Optimizing growth: the case for iodine. Nutrients 15 814. (https://doi.org/10.3390/nu15040814)

  • Rosen ED & MacDougald OA 2006 Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7 885896. (https://doi.org/10.1038/nrm2066)

  • Scarabosio A , Surico PL , Singh RB , et al. 2024 Thyroid eye disease: advancements in orbital and ocular pathology management. J Personalized Med 14 776. (https://doi.org/10.3390/jpm14070776)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shahraki K , Pak VI , Najafi A , et al. 2023 Non-coding RNA-mediated epigenetic alterations in Grave's ophthalmopathy: a scoping systematic review. Noncoding RNA Res 8 426450. (https://doi.org/10.1016/j.ncrna.2023.04.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharma R , Kopchick JJ , Puri V , et al. 2020 Effect of growth hormone on insulin signaling. Mol Cell Endocrinol 518 111038. (https://doi.org/10.1016/j.mce.2020.111038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shu X , Shao Y , Chen Y , et al. 2024 Immune checkpoints: new insights into the pathogenesis of thyroid eye disease. Front Immunol 15 1392956. (https://doi.org/10.3389/fimmu.2024.1392956)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith TJ 2021 Insulin-like growth factor pathway and the thyroid. Front Endocrinol 12 653627. (https://doi.org/10.3389/fendo.2021.653627)

  • Smith TJ 2022 Understanding pathogenesis intersects with effective treatment for thyroid eye disease. J Clin Endocrinol Metab 107 S13S26. (https://doi.org/10.1210/clinem/dgac328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith T J , Koumas L , Gagnon A , et al. 2002 Orbital fibroblast heterogeneity may determine the clinical presentation of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab 87 385392. (https://doi.org/10.1210/jcem.87.1.8164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szuber N , Elliott M & Tefferi A 2020 Chronic neutrophilic leukemia: 2020 update on diagnosis, molecular genetics, prognosis, and management. Am J Hematol 95 212224. (https://doi.org/10.1002/ajh.25688)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor PN , Zhang L , Lee RWJ , et al. 2020 New insights into the pathogenesis and nonsurgical management of Graves orbitopathy. Nat Rev Endocrinol 16 104116. (https://doi.org/10.1038/s41574-019-0305-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trott M , Smith L , Veronese N , et al. 2022 Eye disease and mortality, cognition, disease, and modifiable risk factors: an umbrella review of meta-analyses of observational studies. Eye 36 369378. (https://doi.org/10.1038/s41433-021-01684-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y , Shao Y , Zhang H , et al. 2022 Comprehensive analysis of key genes and pathways for biological and clinical implications in thyroid-associated ophthalmopathy. BMC Genom 23 630. (https://doi.org/10.1186/s12864-022-08854-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wróblewski M , Wróblewska J , Nuszkiewicz J , et al. 2023 The role of selected trace elements in oxidoreductive homeostasis in patients with thyroid diseases. Int J Mol Sci 24 4840. (https://doi.org/10.3390/ijms24054840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ye Y , Dai L , Mugaanyi J , et al. 2024 Novel insights into the pathogenesis of thyroid eye disease through ferroptosis-related gene signature and immune infiltration analysis. Aging 16 60086034. (https://doi.org/10.18632/aging.205685)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu CY , Ford RL , Wester ST , et al. 2022 Update on thyroid eye disease: Regional variations in prevalence, diagnosis, and management. Indian J Ophthalmol 70 23352345. (https://doi.org/10.4103/ijo.IJO_3217_21)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang P & Zhu H 2022 Cytokines in thyroid-associated ophthalmopathy. J Immunol Res 2022 112. (https://doi.org/10.1155/2022/2528046)

  • Zhang X , Zhao Q & Li B 2023 Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 14 1217253. (https://doi.org/10.3389/fphar.2023.1217253)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Z , Tao Y , Zhao H , et al. 2021 Adipose extracellular vesicles: messengers from and to macrophages in regulating immunometabolic homeostasis or disorders. Front Immunol 12 666344. (https://doi.org/10.3389/fimmu.2021.666344)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu N , Yang Y , Wang H , et al. 2022 CSF2RB is a unique biomarker and correlated with immune infiltrates in lung adenocarcinoma. Front Oncol 12 822849. (https://doi.org/10.3389/fonc.2022.822849)

    • PubMed
    • Search Google Scholar
    • Export Citation