Single cell resolution of neurosteroidogenesis in the murine brain: intermediary biosynthesis

in Journal of Endocrinology
Authors:
Prasanthi P Koganti Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA

Search for other papers by Prasanthi P Koganti in
Current site
Google Scholar
PubMed
Close
and
Vimal Selvaraj Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA

Search for other papers by Vimal Selvaraj in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8728-3765

Correspondence should be addressed to V Selvaraj: vs88@cornell.edu

This paper forms part of a special collection marking 30 Years Since the Identification and Characterization of the StAR Protein. The Guest Editors for this collection were Doug Stocco, Barbara Clark and Ernesto Podesta.

Restricted access
Rent on DeepDyve

Sign up for journal news

Neurosteroids synthesized within the central nervous system modulate neurotransmission, enhance neuroprotection, regulate immune responses and influence cognitive and behavioral processes. Beyond de novo synthesis of pregnenolone (PREG) from cholesterol, the brain also engages in intermediary synthesis, converting local or circulating precursors into active neurosteroids. However, the specific cell types and brain regions involved remain poorly defined. In this study, we used single-cell transcriptomic data to map the expression of steroidogenic genes and identify cell populations in the murine brain responsible for intermediary neurosteroid biosynthesis. Our findings reveal that the synthesis of bioactive steroids downstream of PREG is not streamlined but selectively compartmentalized. Notably, cells involved in de novo neurosteroid biosynthesis are largely disjointed from intermediary steps, indicating reliance on regional diffusion and/or systemic sources. Capacity for synthesis of androgens and corticosteroids anew are practically absent. While sterol sulfotransferases are expressed, sterol sulfatase required for desulfation is absent, indicating irreversible sulfonation of PREG and dehydroepiandrosterone (DHEA). Other enzymes involved in bioconversions of pregnanes and androstanes, when expressed, showed cell type- and region-specific ramifications. Although certain limitations exist in fully deciphering these results due to certain gaps in enzyme substrate specificity and isoform catalytic preferences, our study reveals valuable insights into the brain’s intermediary neurosteroid pathways. The distinct compartmentalization of these processes suggests precise control over steroid regulation, which could have far-reaching functional implications. By mapping the neurosteroidogenic potential in the murine brain and sex-associated variations, this study sets the stage for future investigations into the roles of neurosteroids in brain function and their therapeutic potential in neurological disorders.

Supplementary Materials

 

  • Collapse
  • Expand
  • Abaffy T , Lu H-Y & Matsunami H 2023 Sex steroid hormone synthesis, metabolism, and the effects on the mammalian olfactory system. Cell Tissue Res 391 1942. (https://doi.org/10.1007/s00441-022-03707-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adamski J & Jakob FJ 2001 A guide to 17β-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 171 14. (https://doi.org/10.1016/S0303-7207(00)00383-X)

  • Agís-Balboa RC , Pinna G , Zhubi A , et al. 2006 Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 103 1460214607. (https://doi.org/10.1073/pnas.0606544103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Allitt BJ , Johnstone VPA , Richards KL , et al. 2017 Progesterone sharpens temporal response profiles of sensory cortical neurons in animals exposed to traumatic brain injury. Cell Transplant 26 12021223. (https://doi.org/10.1177/0963689717714326)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andersson S & Russell DW 1990 Structural and biochemical properties of cloned and expressed human and rat steroid 5 alpha-reductases. Proc Natl Acad Sci U S A 87 36403644. (https://doi.org/10.1073/pnas.87.10.3640)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Apicco DJ , Zhang C , Maziuk B , et al. 2019 Dysregulation of RNA splicing in tauopathies. Cell Rep 29 43774388.e4. (https://doi.org/10.1016/j.celrep.2019.11.093)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bäckström T , Das R & Bixo M 2022 Positive GABAA receptor modulating steroids and their antagonists: implications for clinical treatments. J Neuroendocrinol 34 e13013. (https://doi.org/10.1111/jne.13013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Balan I , Patterson R , Boero G , et al. 2023 Brexanolone therapeutics in post-partum depression involves inhibition of systemic inflammatory pathways. EBioMedicine 89 104473. (https://doi.org/10.1016/j.ebiom.2023.104473)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baulieu E-E 1981 Steroid hormones in the brain: several mechanisms? In Steroid Hormone Regulation of the Brain, pp 314. Eds K Fuxe , J-Å Gustafsson & L Wetterberg . Oxford, UK: Pergamon. (https://doi.org/10.1016/B978-0-08-026864-4.50007-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beyenburg S , Watzka M , Clusmann H , et al. 2001 Messenger RNA of steroid 21-hydroxylase (CYP21) is expressed in the human hippocampus. Neurosci Lett 308 111114. (https://doi.org/10.1016/S0304-3940(01)01991-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bianchi M & Baulieu E-E 2012 3β-Methoxy-pregnenolone (MAP4343) as an innovative therapeutic approach for depressive disorders. Proc Natl Acad Sci U S A 109 17131718. (https://doi.org/10.1073/pnas.1121485109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boon WC , Chow JDY & Simpson ER 2010 The multiple roles of estrogens and the enzyme aromatase. Prog Brain Res 181 209232. (https://doi.org/10.1016/S0079-6123(08)81012-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bowlby MR 1993 Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor channels in hippocampal neurons. Mol Pharmacol 43 813819. (https://doi.org/10.1016/s0026-895x(25)13660-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caruso D , Pesaresi M , Abbiati F , et al. 2013 Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology 38 22782290. (https://doi.org/10.1016/j.psyneuen.2013.04.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chai Z , Brereton P , Suzuki T , et al. 2003 17β-Hydroxysteroid dehydrogenase type XI localizes to human steroidogenic cells. Endocrinology 144 20842091. (https://doi.org/10.1210/en.2002-221030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen Z-W , Bracamontes JR , Budelier MM , et al. 2019 Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biol 17 e3000157. (https://doi.org/10.1371/journal.pbio.3000157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng Y-J & Karavolas HJ 1973 Conversion of progesterone to 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnan-20-one by rat medial basal hypothalami and the effects of estradiol and stage of estrous cycle on the conversion. Endocrinology 93 11571162. (https://doi.org/10.1210/endo-93-5-1157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Compagnone NA & Mellon SH 2000 Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21 156. (https://doi.org/10.1006/frne.1999.0188)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corpéchot C , Robel P , Axelson M , et al. 1981 Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci U S A 78 47044707. (https://doi.org/10.1073/pnas.78.8.4704)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corpéchot C , Synguelakis M , Talha S , et al. 1983 Pregnenolone and its sulfate ester in the rat brain. Brain Res 270 119125. (https://doi.org/10.1016/0006-8993(83)90797-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cyr M , Ghribi O , Thibault C , et al. 2001 Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Res Rev 37 153161. (https://doi.org/10.1016/S0165-0173(01)00115-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deligiannidis KM , Meltzer-Brody S , Gunduz-Bruce H , et al. 2021 Effect of zuranolone vs placebo in postpartum depression: a randomized clinical trial. JAMA Psychiatry 78 951959. (https://doi.org/10.1001/jamapsychiatry.2021.1559)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Demirgören S , Majewska MD , Spivak CE , et al. 1991 Receptor binding and electrophysiological effects of dehydroepiandrosterone sulfate, an antagonist of the GABAA receptor. Neuroscience 45 127135. (https://doi.org/10.1016/0306-4522(91)90109-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Do Rego JL , Seong JY , Burel D , et al. 2009 Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30 259301. (https://doi.org/10.1016/j.yfrne.2009.05.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Do Rego JL , Seong JY , Burel D , et al. 2012 Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Front Endocrinol 3 4. (https://doi.org/10.3389/fendo.2012.00004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong S , Zhang Q , Kong D , et al. 2018 Gender difference in the effect of progesterone on neonatal hypoxic/ischemic brain injury in mouse. Exp Neurol 306 190198. (https://doi.org/10.1016/j.expneurol.2018.05.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du Yan S , Fu J , Soto C , et al. 1997 An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389 689695. (https://doi.org/10.1038/39522)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fomitcheva J , Baker ME , Anderson E , et al. 1998 Characterization of ke 6, a new 17β-hydroxysteroid dehydrogenase, and its expression in gonadal tissues. J Biol Chem 273 2266422671. (https://doi.org/10.1074/jbc.273.35.22664)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fouad Mansour M , Pelletier M & Tchernof A 2016 Characterization of 5α-reductase activity and isoenzymes in human abdominal adipose tissues. J Steroid Biochem Mol Biol 161 4553. (https://doi.org/10.1016/j.jsbmb.2016.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gardner SM , Vogt A , Penning TM , et al. 2024 Substrate specificity and kinetic mechanism of 3-hydroxy-Δ5-C27-steroid oxidoreductase. J Biol Chem 300 107945. (https://doi.org/10.1016/j.jbc.2024.107945)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giatti S , Diviccaro S , Serafini MM , et al. 2020 Sex differences in steroid levels and steroidogenesis in the nervous system: physiopathological role. Front Neuroendocrinol 56 100804. (https://doi.org/10.1016/j.yfrne.2019.100804)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grino PB , Griffin JE & Wilson JD 1990 Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology 126 11651172. (https://doi.org/10.1210/endo-126-2-1165)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu Q , Korach KS & Moss RL 1999 Rapid action of 17β-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 140 660666. (https://doi.org/10.1210/endo.140.2.6500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamden JE , Gray KM , Salehzadeh M , et al. 2021 Steroid profiling of glucocorticoids in microdissected mouse brain across development. Developmental Neurobiol 81 189206. (https://doi.org/10.1002/dneu.22808)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haney M , Vallée M , Fabre S , et al. 2023 Signaling-specific inhibition of the CB1 receptor for cannabis use disorder: phase 1 and phase 2a randomized trials. Nat Med 29 14871499. (https://doi.org/10.1038/s41591-023-02381-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hannah-Shmouni F , Chen W & Merke DP 2017 Genetics of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 46 435458. (https://doi.org/10.1016/j.ecl.2017.01.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hao Y , Hao S , Andersen-Nissen E , et al. 2021 Integrated analysis of multimodal single-cell data. Cell 184 35733587.e29. (https://doi.org/10.1016/j.cell.2021.04.048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hao Y , Stuart T , Kowalski MH , et al. 2024 Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol 42 293304. (https://doi.org/10.1038/s41587-023-01767-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haraguchi S & Tsutsui K 2020 Pineal neurosteroids: biosynthesis and physiological functions. Front Endocrinol 11 549. (https://doi.org/10.3389/fendo.2020.00549)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hawrylycz MJ , Lein ES , Guillozet-Bongaarts AL , et al. 2012 An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489 391399. (https://doi.org/10.1038/nature11405)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • He X-Y , Yang Y-Z , Peehl DM , et al. 2003 Oxidative 3α-hydroxysteroid dehydrogenase activity of human type 10 17β-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 87 191198. (https://doi.org/10.1016/j.jsbmb.2003.07.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hojo Y , Hattori T , Enami T , et al. 2004 Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017α and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A 101 865870. (https://doi.org/10.1073/pnas.2630225100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hosie AM , Wilkins ME , da Silva HMA , et al. 2006 Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444 486489. (https://doi.org/10.1038/nature05324)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hrcka Krausova B , Kysilov B , Cerny J , et al. 2020 Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. J Neurosci 40 59225936. (https://doi.org/10.1523/JNEUROSCI.3010-19.2020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwahashi K , Kawai Y , Suwaki H , et al. 1993 A localization study of the cytochrome P-45021-linked monooxygenase system in adult rat brain. J Steroid Biochem Mol Biol 44 163169. (https://doi.org/10.1016/0960-0760(93)90024-Q)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joëls M , Karst H & Sarabdjitsingh RA 2018 The stressed brain of humans and rodents. Acta Physiol 223 e13066. (https://doi.org/10.1111/apha.13066)

  • Kelly MJ , Qiu J & Rønnekleiv OK 2005 Estrogen signaling in the hypothalamus. In Vitamins & Hormones, pp 123145. New York, NY, USA: Elsevier. (https://doi.org/10.1016/S0083-6729(05)71005-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koganti PP & Selvaraj V 2025 Single cell resolution of neurosteroidogenesis in the murine brain: de novo biosynthesis. J Endocrinol 265 e240318. (https://doi.org/10.1530/JOE-24-0318)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kundakovic M & Rocks D 2022 Sex hormone fluctuation and increased female risk for depression and anxiety disorders: from clinical evidence to molecular mechanisms. Front Neuroendocrinol 66 101010. (https://doi.org/10.1016/j.yfrne.2022.101010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Le Goascogne C , Sananès N , Gouézou M , et al. 1991 Immunoreactive cytochrome P-450(17 alpha) in rat and guinea-pig gonads, adrenal glands and brain. J Reprod Fertil 93 609622. (https://doi.org/10.1530/jrf.0.0930609)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lloyd-Evans E & Waller-Evans H 2020 Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays Biochem 64 591606. (https://doi.org/10.1042/EBC20200043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lukacik P , Keller B , Bunkoczi G , et al. 2007 Structural and biochemical characterization of human orphan DHRS10 reveals a novel cytosolic enzyme with steroid dehydrogenase activity. Biochem J 402 419427. (https://doi.org/10.1042/BJ20061319)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lustbader JW , Cirilli M , Lin C , et al. 2004 ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304 448452. (https://doi.org/10.1126/science.1091230)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maguire JL & Mennerick S 2024 Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology 49 7382. (https://doi.org/10.1038/s41386-023-01626-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mahfouz A , Lelieveldt BPF , Grefhorst A , et al. 2016 Genome-wide coexpression of steroid receptors in the mouse brain: identifying signaling pathways and functionally coordinated regions. Proc Natl Acad Sci U S A 113 27382743. (https://doi.org/10.1073/pnas.1520376113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Majewska MD , Mienville J-M & Vicini S 1988 Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett 90 279284. (https://doi.org/10.1016/0304-3940(88)90202-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Majewska MD , Bluet-Pajot M-T , Robel P , et al. 1989 Pregnenolone sulfate antagonizes barbiturate-induced hypnosis. Pharmacol Biochem Behav 33 701703. (https://doi.org/10.1016/0091-3057(89)90410-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Majewska MD , Dermirgören S & London ED 1990a Binding of pregnenolone sulfate to rat brain membranes suggests multiple sites of steroid action at the GABAA receptor. Eur J Pharmacol 189 307315. (https://doi.org/10.1016/0922-4106(90)90124-G)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Majewska MD , Demirgören S , Spivak CE , et al. 1990b The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res 526 143146. (https://doi.org/10.1016/0006-8993(90)90261-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McEwen BS 1991 Steroid hormones are multifunctional messengers to the brain. Trends Endocrinol Metab 2 6267. (https://doi.org/10.1016/1043-2760(91)90042-l)

  • Meffre D , Pianos A , Liere P , et al. 2007 Steroid profiling in brain and plasma of male and pseudopregnant female rats after traumatic brain injury: analysis by gas chromatography/mass spectrometry. Endocrinology 148 25052517. (https://doi.org/10.1210/en.2006-1678)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mellon SH & Griffin LD 2002 Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13 3543. (https://doi.org/10.1016/s1043-2760(01)00503-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mellon SH & Miller WL 1989 Extraadrenal steroid 21-hydroxylation is not mediated by P450c21. J Clin Invest 84 14971502. (https://doi.org/10.1172/JCI114325)

  • Meltzer-Brody S , Colquhoun H , Riesenberg R , et al. 2018 Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 392 10581070. (https://doi.org/10.1016/S0140-6736(18)31551-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendell AL & MacLusky NJ 2018 Neurosteroid metabolites of gonadal steroid hormones in neuroprotection: implications for sex differences in neurodegenerative disease. Front Mol Neurosci 11 359. (https://doi.org/10.3389/fnmol.2018.00359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Milenkovic D , Nuthikattu S , Norman JE , et al. 2024 Single nuclei transcriptomics reveals obesity-induced endothelial and neurovascular dysfunction: implications for cognitive decline. Int J Mol Sci 25 11169. (https://doi.org/10.3390/ijms252011169)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moeller G & Adamski J 2009 Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 301 719. (https://doi.org/10.1016/j.mce.2008.10.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Möller G , Leenders F , van Grunsven EG , et al. 1999 Characterization of the HSD17B4 gene: d-specific multifunctional protein 2/17β-hydroxysteroid dehydrogenase IV. J Steroid Biochem Mol Biol 69 441446. (https://doi.org/10.1016/s0960-0760(99)00066-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monnet FP & Maurice T 2006 The sigma1 protein as a target for the non-genomic effects of neuro(active)steroids: molecular, physiological, and behavioral aspects. J Pharmacol Sci 100 93118. (https://doi.org/10.1254/jphs.cr0050032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morissette M , Le Saux M , D’Astous M , et al. 2008 Contribution of estrogen receptors alpha and beta to the effects of estradiol in the brain. J Steroid Biochem Mol Biol 108 327338. (https://doi.org/10.1016/j.jsbmb.2007.09.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mortaud S , Donsez-Darcel E , Roubertoux PL , et al. 1996 Murine steroid sulfatase gene expression in the brain during postnatal development and adulthood. Neurosci Lett 215 145148. (https://doi.org/10.1016/0304-3940(96)12944-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naftolin F , Ryan KJ & Petro Z 1971 Aromatization of androstenedione by the diencephalon. J Clin Endocrinol Metab 33 368370. (https://doi.org/10.1210/jcem-33-2-368)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naftolin F , Ryan KJ , Davies IJ , et al. 1975 The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res 31 295319. (https://doi.org/10.1016/b978-0-12-571131-9.50012-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nokelainen P , Peltoketo H , Vihko R , et al. 1998 Expression cloning of a novel estrogenic mouse 17β-hydroxysteroid dehydrogenase/17-ketosteroid reductase (m17HSD7), previously described as a prolactin receptor-associated protein (PRAP) in rat. Mol Endocrinol 12 10481059. (https://doi.org/10.1210/mend.12.7.0134)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oyola MG & Handa RJ 2017 Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. Stress 20 476494. (https://doi.org/10.1080/10253890.2017.1369523)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paul SM & Purdy RH 1992 Neuroactive steroids. FASEB J 6 23112322. (https://doi.org/10.1096/fasebj.6.6.1347506)

  • Payne AH , Abbaszade IG , Clarke TR , et al. 1997 The multiple murine 3β-hydroxysteroid dehydrogenase isoforms: structure, function, and tissue- and developmentally specific expression. Steroids 62 169175. (https://doi.org/10.1016/S0039-128X(96)00177-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prough RA , Clark BJ & Klinge CM 2016 Novel mechanisms for DHEA action. J Mol Endocrinol 56 R139R155. (https://doi.org/10.1530/JME-16-0013)

  • Purdy RH , Morrow AL , Moore PH , et al. 1991 Stress-induced elevations of gamma-aminobutyric acid type a receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88 45534557. (https://doi.org/10.1073/pnas.88.10.4553)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raux P-L , Drutel G , Revest J-M , et al. 2022 New perspectives on the role of the neurosteroid pregnenolone as an endogenous regulator of type-1 cannabinoid receptor (CB1R) activity and function. J Neuroendocrinol 34 e13034. (https://doi.org/10.1111/jne.13034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reddy DS & Rogawski MA 2002 Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 22 37953805. (https://doi.org/10.1523/JNEUROSCI.22-09-03795.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robel P & Baulieu E-E 1994 Neurosteroids: biosynthesis and function. Trends Endocrinol Metab 5 18. (https://doi.org/10.1016/1043-2760(94)90114-7)

  • Rose KA , Stapleton G , Dott K , et al. 1997 Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7α-hydroxy dehydroepiandrosterone and 7α-hydroxy pregnenolone. Proc Natl Acad Sci U S A 94 49254930. (https://doi.org/10.1073/pnas.94.10.4925)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rupprecht R , Reul JM , Trapp T , et al. 1993 Progesterone receptor-mediated effects of neuroactive steroids. Neuron 11 523530. (https://doi.org/10.1016/0896-6273(93)90156-l)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Setchell KD , Schwarz M , O’Connell NC , et al. 1998 Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 102 16901703. (https://doi.org/10.1172/JCI2962)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shafqat N , Marschall H-U , Filling C , et al. 2003 Expanded substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3α/7α/7β/17β/20β/21-HSD. Biochem J 376 4960. (https://doi.org/10.1042/bj20030877)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shea HC , Head DD , Setchell KDR , et al. 2007 Analysis of HSD3B7 knockout mice reveals that a 3α-hydroxyl stereochemistry is required for bile acid function. Proc Natl Acad Sci U S A 104 1152611533. (https://doi.org/10.1073/pnas.0705089104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shirakawa H , Katsuki H , Kume T , et al. 2005 Pregnenolone sulphate attenuates AMPA cytotoxicity on rat cortical neurons. Eur J Neurosci 21 23292335. (https://doi.org/10.1111/j.1460-9568.2005.04079.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singhal M , Modi N , Bansal L , et al. 2024 The emerging role of neurosteroids: novel drugs brexanalone, sepranolone, zuranolone, and ganaxolone in mood and neurological disorders. Cureus 16 e65866. (https://doi.org/10.7759/cureus.65866)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sivcev S , Kudova E & Zemkova H 2023 Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 234 109542. (https://doi.org/10.1016/j.neuropharm.2023.109542)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith CC & McMahon LL 2005 Estrogen-Induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased. J Neurosci 25 77807791. (https://doi.org/10.1523/JNEUROSCI.0762-05.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Srivastava DP , Woolfrey KM , Jones KA , et al. 2008 Rapid enhancement of two-step wiring plasticity by estrogen and NMDA receptor activity. Proc Natl Acad Sci U S A 105 1465014655. (https://doi.org/10.1073/pnas.0801581105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strömstedt M & Waterman MR 1995 Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Mol Brain Res 34 7588. (https://doi.org/10.1016/0169-328X(95)00140-N)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strott CA 2002 Sulfonation and molecular action. Endocr Rev 23 703732. (https://doi.org/10.1210/er.2001-0040)

  • Su TP , London ED & Jaffe JH 1988 Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240 219221. (https://doi.org/10.1126/science.2832949)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sze Y , Gill AC & Brunton PJ 2018 Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J Neuroendocrinol 30 e12644. (https://doi.org/10.1111/jne.12644)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tameh AA , Karimian M , Zare-Dehghanani Z , et al. 2018 Role of steroid therapy after ischemic stroke by n-methyl-d-aspartate receptor gene regulation. J Stroke Cerebrovasc Dis 27 30663075. (https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thompson SM 2024 Modulators of GABAA receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology 49 8395. (https://doi.org/10.1038/s41386-023-01728-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uemura M , Tamura K , Chung S , et al. 2008 Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci 99 8186. (https://doi.org/10.1111/j.1349-7006.2007.00656.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vaitkevicius H , Ramsay RE , Swisher CB , et al. 2022 Intravenous ganaxolone for the treatment of refractory status epilepticus: results from an open-label, dose-finding, phase 2 trial. Epilepsia 63 23812391. (https://doi.org/10.1111/epi.17343)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vallée M , Mayo W , Darnaudéry M , et al. 1997 Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci U S A 94 1486514870. (https://doi.org/10.1073/pnas.94.26.14865)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veliça P , Davies NJ , Rocha PP , et al. 2009 Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers. Mol Cancer 8 121. (https://doi.org/10.1186/1476-4598-8-121)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wickham H 2016 ggplot2: Elegant Graphics for Data Analysis. London, UK: Springer Nature Publishing. (https://doi.org/10.1007/978-3-319-24277-4)

  • Wirth M 2011 Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion. Front Endocrinol 2 19. (https://doi.org/10.3389/fendo.2011.00019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wnuk A & Kajta M 2017 Steroid and xenobiotic receptor signalling in apoptosis and autophagy of the nervous system. Int J Mol Sci 18 2394. (https://doi.org/10.3390/ijms18112394)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu FS , Gibbs TT & Farb DH 1991 Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 40 333336. (https://doi.org/10.1016/s0026-895x(25)12923-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu F-S , Yu H-M & Tsai J-J 1998 Mechanism underlying potentiation by progesterone of the kainate-induced current in cultured neurons. Brain Res 779 354358. (https://doi.org/10.1016/S0006-8993(97)01312-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yaghoubi N , Malayev A , Russek SJ , et al. 1998 Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res 803 153160. (https://doi.org/10.1016/s0006-8993(98)00644-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao Z , van Velthoven CTJ , Kunst M , et al. 2023 A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624 317332. (https://doi.org/10.1038/s41586-023-06812-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y , Chen K , Sloan SA , et al. 2014 An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34 1192911947. (https://doi.org/10.1523/JNEUROSCI.1860-14.2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zwain IH & Yen SS 1999 Dehydroepiandrosterone: biosynthesis and metabolism in the brain. Endocrinology 140 880887. (https://doi.org/10.1210/endo.140.2.6528)

    • PubMed
    • Search Google Scholar
    • Export Citation