Metabolic dysfunction is exacerbated in visceral, not subcutaneous, adipose tissue in gestational diabetes

in Journal of Endocrinology
Authors:
Alan C Maloney Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA

Search for other papers by Alan C Maloney in
Current site
Google Scholar
PubMed
Close
,
Jillian L Barnas Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA

Search for other papers by Jillian L Barnas in
Current site
Google Scholar
PubMed
Close
,
Laura M Clart Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA

Search for other papers by Laura M Clart in
Current site
Google Scholar
PubMed
Close
,
Victoria J Vieira-Potter Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA

Search for other papers by Victoria J Vieira-Potter in
Current site
Google Scholar
PubMed
Close
, and
Jill A Kanaley Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA

Search for other papers by Jill A Kanaley in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to J A Kanaley: kanaleyj@missouri.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Adipose tissue (AT) releases adipokines and inflammatory cytokines, which may have an adverse impact on the mother and fetus during pregnancy. Mothers with gestational diabetes mellitus (GDM) differentially express adipokines and cytokines compared to normal glucose tolerant (NGT) mothers, but the mechanisms are unknown. The purpose of this study was to identify molecular mechanisms in subcutaneous (SQAT) and visceral AT (VAT) which may help characterize GDM and pinpoint those that contribute to its pathology. SQAT and VAT samples were collected from 22 NGT and six GDM pregnant women undergoing a C-section. A panel of inflammatory, mitochondrial, and metabolic genes and proteins (via q-rtPCR and Western blot) was measured. Blood was assessed for concentrations of adiponectin, brain neurotrophic factor, C-reactive protein, and non-esterified fatty acids (via ELISA). In GDM, VAT protein content was lower for oxidative phosphorylation complexes CI-CIII, adiponectin, and adipose triglyceride lipase. Gene expression of adiponectin, estrogen receptor β, uncoupling protein 1, and peroxisome proliferator–activated receptor gamma was also lower in GDM mothers, while gene expression of an anti-inflammatory macrophage marker was higher. No differences in the measured blood markers were found. Mothers with GDM differentially express AT adipokines and genes associated with inflammation, insulin resistance, and altered lipid metabolism relative to mothers with NGT.

 

  • Collapse
  • Expand
  • Ahmadian M , Suh JM , Hah N , et al. 2013 PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19 557566. (https://doi.org/10.1038/nm.3159)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • American Diabetes Association Professional Practice Committee 2021 2. Classification and diagnosis of diabetes: standards of medical care in diabetes – 2022. Diabetes Care 45 S17S38. (https://doi.org/10.2337/dc22-S002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Atègbo J-M , Grissa O , Yessoufou A , et al. 2006 Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab 91 41374143. (https://doi.org/10.1210/jc.2006-0980)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baldelli S , Aiello G , Mansilla Di Martino E , et al. 2024 The role of adipose tissue and nutrition in the regulation of adiponectin. Nutrients 16 2436. (https://doi.org/10.3390/nu16152436)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbour LA , McCurdy CE , Hernandez TL , et al. 2007 Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care 30 S112S119. (https://doi.org/10.2337/dc07-s202)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barrett HL , Kubala MH , Scholz Romero K , et al. 2014 Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM). PLoS One 9 e104826. (https://doi.org/10.1371/journal.pone.0104826)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bellamy L , Casas J-P , Hingorani AD , et al. 2009 Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373 17731779. (https://doi.org/10.1016/S0140-6736(09)60731-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bourdages M , Demers M-É , Dubé S , et al. 2018 First-trimester abdominal adipose tissue thickness to predict gestational diabetes. J Obstet Gynaecol Can 40 883887. (https://doi.org/10.1016/j.jogc.2017.09.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boyle KE , Hwang H , Janssen RC , et al. 2014 Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle. PLoS One 9 e106872. (https://doi.org/10.1371/journal.pone.0106872)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brochu-Gaudreau K , Rehfeldt C , Blouin R , et al. 2010 Adiponectin action from head to toe. Endocrine 37 1132. (https://doi.org/10.1007/s12020-009-9278-8)

  • Castoldi A , Naffah de Souza C , Câmara NOS , et al. 2016 The macrophage switch in obesity development. Front Immunol 6 637. (https://doi.org/10.3389/fimmu.2015.00637)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Catalano PM , Nizielski SE , Shao J , et al. 2002 Downregulated IRS-1 and PPARgamma in obese women with gestational diabetes: relationship to FFA during pregnancy. Am J Physiol Endocrinol Metab 282 E522E533. (https://doi.org/10.1152/ajpendo.00124.2001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention 2024 Gestational diabetes. Atlanta, GA, USA: CDC. (https://www.cdc.gov/diabetes/about/gestational-diabetes.html)

  • Cinkajzlová A , Anderlová K , Šimják P , et al. 2020 Subclinical inflammation and adipose tissue lymphocytes in pregnant females with gestational diabetes mellitus. J Clin Endocrinol Metab 105 e3892e3902. (https://doi.org/10.1210/clinem/dgaa528)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cisneiros RM , Dutra LP , Silveira FJC , et al. 2013 Visceral adiposity in the first half of pregnancy predicts newborn weight among adolescent mothers. J Obstet Gynaecol Can 35 704709. (https://doi.org/10.1016/S1701-2163(15)30860-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Considine RV , Sinha MK , Heiman ML , et al. 1996 Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334 292295. (https://doi.org/10.1056/NEJM199602013340503)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dabelea D , Mayer-Davis EJ , Lamichhane AP , et al. 2008 Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH case-control study. Diabetes Care 31 14221426. (https://doi.org/10.2337/dc07-2417)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • ElSayed NA , Aleppo G , Aroda VR , et al. 2022 2. Classification and diagnosis of diabetes: standards of care in diabetes – 2023. Diabetes Care 46 S19S40. (https://doi.org/10.2337/dc23-S002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao Y , She R & Sha W 2017 Gestational diabetes mellitus is associated with decreased adipose and placenta peroxisome proliferator-activator receptor γ expression in a Chinese population. Oncotarget 8 113928113937. (https://doi.org/10.18632/oncotarget.23043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herrera E 2002 Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 19 4355. (https://doi.org/10.1385/ENDO:19:1:43)

  • Hube F , Lietz U , Igel M , et al. 1996 Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. Horm Metab Res 28 690693. (https://doi.org/10.1055/s-2007-979879)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibrahim MM 2010 Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11 1118. (https://doi.org/10.1111/j.1467-789X.2009.00623.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirichenko TV , Markina YV , Bogatyreva AI , et al. 2022 The role of adipokines in inflammatory mechanisms of obesity. Int J Mol Sci 23 14982. (https://doi.org/10.3390/ijms232314982)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kirwan JP , Hauguel-De Mouzon S , Lepercq J , et al. 2002 TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 51 22072213. (https://doi.org/10.2337/diabetes.51.7.2207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kleiblova P , Dostalova I , Bartlova M , et al. 2010 Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol Cell Endocrinol 314 150156. (https://doi.org/10.1016/j.mce.2009.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kong C-M , Subramanian A , Biswas A , et al. 2019 Changes in stemness properties, differentiation potential, oxidative stress, senescence and mitochondrial function in Wharton’s jelly stem cells of umbilical cords of mothers with gestational diabetes mellitus. Stem Cell Rev Rep 15 415426. (https://doi.org/10.1007/s12015-019-9872-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koźniewski K , Wąsowski M , Jonas MI , et al. 2022 Epigenetic regulation of estrogen receptor genes’ expressions in adipose tissue in the course of obesity. Int J Mol Sci 23 5989. (https://doi.org/10.3390/ijms23115989)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lain KY & Catalano PM 2007 Metabolic changes in pregnancy. Clin Obstet Gynecol 50 938948. (https://doi.org/10.1097/GRF.0b013e31815a5494)

  • Lappas M 2014 Effect of pre-existing maternal obesity, gestational diabetes and adipokines on the expression of genes involved in lipid metabolism in adipose tissue. Metab Clin Exp 63 250262. (https://doi.org/10.1016/j.metabol.2013.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao T-L , Tzeng C-R , Yu C-L , et al. 2015 Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis. Ann N Y Acad Sci 1350 5260. (https://doi.org/10.1111/nyas.12872)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McElwain CJ , Manna S , Musumeci A , et al. 2023 Defective visceral adipose tissue adaptation in gestational diabetes mellitus. J Clin Endocrinol Metab 109 12751284. (https://doi.org/10.1210/clinem/dgad699)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliva K , Barker G , Rice GE , et al. 2013 2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue. J Endocrinol 218 165178. (https://doi.org/10.1530/JOE-13-0010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ott R , Stupin JH , Melchior K , et al. 2018 Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome. Clin Epigenetics 10 131. (https://doi.org/10.1186/s13148-018-0567-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ott R , Melchior K , Stupin JH , et al. 2019 Reduced insulin receptor expression and altered DNA methylation in fat tissues and blood of women with GDM and offspring. J Clin Endocrinol Metab 104 137149. (https://doi.org/10.1210/jc.2018-01659)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Padilla J , Jenkins NT , Roberts MD , et al. 2013 Differential changes in vascular mRNA levels between rat iliac and renal arteries produced by cessation of voluntary running. Exp Physiol 98 337347. (https://doi.org/10.1113/expphysiol.2012.066076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park P-H , Huang H , McMullen MR , et al. 2008 Suppression of lipopolysaccharide-stimulated tumor necrosis factor-alpha production by adiponectin is mediated by transcriptional and post-transcriptional mechanisms. J Biol Chem 283 2685026858. (https://doi.org/10.1074/jbc.M802787200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pérez-Pérez A , Sánchez-Jiménez F , Vilariño-García T , et al. 2020 Role of leptin in inflammation and vice versa. Int J Mol Sci 21 5887. (https://doi.org/10.3390/ijms21165887)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Philipps LH , Santhakumaran S , Gale C , et al. 2011 The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia 54 19571966. (https://doi.org/10.1007/s00125-011-2180-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plows JF , Stanley JL , Baker PN , et al. 2018 The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19 3342. (https://doi.org/10.3390/ijms19113342)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ponnusamy S , Tran QT , Harvey I , et al. 2017 Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue. FASEB J 31 266281. (https://doi.org/10.1096/fj.201600787RR)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Queathem ED , Welly RJ , Clart LM , et al. 2021 White adipose tissue depots respond to chronic beta-3 adrenergic receptor activation in a sexually dimorphic and depot divergent manner. Cells 10 3453. (https://doi.org/10.3390/cells10123453)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rancourt RC , Ott R , Ziska T , et al. 2020 Visceral adipose tissue inflammatory factors (TNF-alpha, SOCS3) in gestational diabetes (GDM): epigenetics as a clue in GDM pathophysiology. Int J Mol Sci 21 479. (https://doi.org/10.3390/ijms21020479)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santoro A , McGraw TE & Kahn BB 2021 Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metab 33 748757. (https://doi.org/10.1016/j.cmet.2021.03.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Šimják P , Cinkajzlová A , Anderlová K , et al. 2018 The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol 238 R63R77. (https://doi.org/10.1530/JOE-18-0032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stroh AM & Stanford KI 2023 Exercise-induced regulation of adipose tissue. Curr Opin Genet Dev 81 102058. (https://doi.org/10.1016/j.gde.2023.102058)

  • Tagoma A , Haller-Kikkatalo K , Oras A , et al. 2022 Plasma cytokines during pregnancy provide insight into the risk of diabetes in the gestational diabetes risk group. J Diabetes Investig 13 15961606. (https://doi.org/10.1111/jdi.13828)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Telejko B , Kalejta K , Kuzmicki M , et al. 2015 The association of bone turnover markers with pro- and anti-inflammatory adipokines in patients with gestational diabetes. Ann Agric Environ Med 22 307312. (https://doi.org/10.5604/12321966.1152085)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tumurbaatar B , Poole AT , Olson G , et al. 2017 Adipose tissue insulin resistance in gestational diabetes. Metab Syndr Relat Disord 15 8692. (https://doi.org/10.1089/met.2016.0124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu J , Zhao YH , Chen YP , et al. 2014 Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: a systematic review and meta-analysis. Sci World J 2014 926932. (https://doi.org/10.1155/2014/926932)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z , Zhou Z & Li H 2023 The role of lipid dysregulation in gestational diabetes mellitus: early prediction and postpartum prognosis. J Diabetes Investig 15 1525. (https://doi.org/10.1111/jdi.14119)

    • PubMed
    • Search Google Scholar
    • Export Citation