1. The effect of oxytocin on both the rat uterus and frog bladder is abolished by solutions of 1 mm N-ethylmaleimide (NEM).
2. NEM, however, has a variety of effects on these tissues. It inhibits sodium transport across the bladder, it prevents relaxation of the uterus and the return of water transfer to normal after it has been affected by oxytocin, and it inhibits contraction of the uterus by acetylcholine.
3. Reduced and oxidized glutathione (GSH and GSSG) inhibit the action of oxytocin on the uterus reversably and this inhibition is competitive.
4. GSH and GSSG also inhibited the increase in water transfer by oxytocin across the frog bladder, GSSG was more potent. Sodium transport across the bladder was transiently reduced by GSH and decreases by about 50% in the presence of GSSG.
5. The results are discussed in relation to the possible mechanism of interaction of neurohypophysial hormones with their receptors. It is concluded that both S-S and SH groups are present at the receptor sites in both the rat uterus and frog bladder.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 3 | 2 | 0 |
PDF Downloads | 2 | 0 | 0 |