The synthesis of steroids from [7α-3H]cholesterol, [7α-3H]pregnenolone and [7α-3H]progesterone by lizard and turtle ovarian tissues in vitro was studied. Progesterone, 17α-hydroxyprogesterone, dehydroepiandrosterone, androstenedione, testosterone, oestrone and oestradiol were identified as products. In the turtle (Pseudemys), conversion of pregnenolone to progesterone was efficient, but transformation of progesterone to other steroids was relatively slow as indicated by the accumulation of progesterone over the incubation period. In Dipsosaurus, accumulation of radioactivity was greatest in testosterone, the quantities of which continued to increase at each sampling period. The rate of utilization of pregnenolone as a substrate was similar for the two species studied and the quantities of oestrone and oestradiol formed were lower in Pseudemys. The use of progesterone as precursor by Dipsosaurus ovarian tissue revealed a similar pattern of Δ4-steroid metabolism to that obtained with pregnenolone as precursor.
The effects of addition of purified follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on the metabolism of [14C]cholesterol in vitro was studied using Pseudemys follicular tissue. The pattern of cholesterol metabolism was similar to that for pregnenolone in this species. The synthesis of pregnenolone, progesterone, dehydroepiandrosterone and androstenedione in vitro was significantly enhanced in the presence of LH. Follicle-stimulating hormone had no effect on steroid synthesis except for a decrease of androstenedione formation. The stimulatory effect of LH on steroidogenesis in vitro is discussed in relation to the literature suggesting that mammalian FSH, but not LH, stimulates all phases of reptilian ovarian function when injected in vivo.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 1 | 0 | 0 |
PDF Downloads | 2 | 0 | 0 |