Search for other papers by Erin L Fee in
Google Scholar
PubMed
Search for other papers by Sarah J Stock in
Google Scholar
PubMed
School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Search for other papers by Matthew W Kemp in
Google Scholar
PubMed
Being born before 37 weeks’ gestation, or preterm birth, is a leading cause of early childhood death and life-long disability. Antenatal steroids (ANS) are recommended for women judged at risk of imminent preterm delivery. The primary intent of ANS treatment is to rapidly mature the fetal lungs to reduce the risk of mortality and lasting morbidity. Despite being used clinically for some 50 years, a large number of uncertainties remain surrounding the use of ANS. In particular, the choice of agent, dose/regimen, and appropriate gestational age range for ANS therapy all remain unclear. Unresolved concerns regarding the potential risk of harms from ANS treatment, especially in light of the modest benefits seen with expanding latepreterm administration, make it increasingly important to optimize the dosing and application of this important and widely used treatment. This review will serve to summarize past data, provide an update on recent developments, and chart a way forward to maximize the overall benefit of this important therapy.
Search for other papers by R Paul Robertson in
Google Scholar
PubMed
Glucagon is a peptide hormone that is produced primarily by the alpha cells in the islet of Langerhans in the pancreas, but also in intestinal enteroendocrine cells and in some neurons. Approximately 100 years ago, several research groups discovered that pancreatic extracts would cause a brief rise in blood glucose before they observed the decrease in glucose attributed to insulin. An overall description of the regulation of glucagon secretion requires the inclusion of its sibling insulin because they both are made primarily by the islet and they both regulate each other in different ways. For example, glucagon stimulates insulin secretion, whereas insulin suppresses glucagon secretion. The mechanism of action of glucagon on insulin secretion has been identified as a trimeric guanine nucleotide-binding protein (G-protein)-mediated event. The manner in which insulin suppresses glucagon release from the alpha cell is thought to be highly dependent on the peri-portal circulation of the islet through which blood flows downstream from beta cells to alpha cells. In this scenario, it is via the circulation that insulin is thought to suppress the release of glucagon. However, high levels of glucose also have been shown to suppress glucagon secretion. Consequently, the glucose-lowering effect of insulin may be additive to the direct effects of insulin to suppress alpha cell function, so that in vivo both the discontinuation of the insulin signal and the condition of low glucose jointly are responsible for induction of glucagon secretion.
Search for other papers by Charlotte Steenblock in
Google Scholar
PubMed
Search for other papers by Nicole Bechmann in
Google Scholar
PubMed
Search for other papers by Felix Beuschlein in
Google Scholar
PubMed
Search for other papers by Christian Wolfrum in
Google Scholar
PubMed
Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
Search for other papers by Stefan R Bornstein in
Google Scholar
PubMed
Obesity is associated with a higher risk of severe coronavirus disease 2019 (COVID-19) and increased mortality. In the current study, we have investigated the expression of ACE2, NRP1, and HMGB1, known to facilitate severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cell entry, in adipose tissue from non-COVID-19 control patients with normal weight, overweight, and obesity. All factors were expressed, but no significant differences between the groups were observed. Furthermore, diabetes status and medications did not affect the expression of ACE2. Only in obese men, the expression of ACE2 in adipose tissue was higher than in obese women. In the adipose tissue from patients who died from COVID-19, SARS-CoV-2 was detected in the adipocytes even though the patients died more than 3 weeks after the acute infection. This suggests that adipocytes may act as reservoirs for the virus. In COVID-19 patients, the expression of NRP1 was increased in COVID-19 patients with overweight and obesity. Furthermore, we observed an increased infiltration with macrophages in the COVID-19 adipose tissues compared to control adipose tissue. In addition, crown-like structures of dying adipocytes surrounded by macrophages were observed in the adipose tissue from COVID-19 patients. These data suggest that in obese individuals, in addition to an increased mass of adipose tissue that could potentially be infected, increased macrophage infiltration due to direct infection with SARS-CoV-2 and sustained viral shedding, rather than preinfection ACE2 receptor expression, may be responsible for the increased severity and mortality of COVID-19 in patients with obesity.
Search for other papers by Yuqi Wang in
Google Scholar
PubMed
Search for other papers by Bernd Riedstra in
Google Scholar
PubMed
Search for other papers by Martijn van Faassen in
Google Scholar
PubMed
Search for other papers by Alle Pranger in
Google Scholar
PubMed
Search for other papers by Ido Kema in
Google Scholar
PubMed
Search for other papers by Ton G G Groothuis in
Google Scholar
PubMed
In birds, exposure to maternal (yolk) testosterone affects a diversity of offspring post-hatching traits, which eventually affect offspring competitiveness. However, maternal testosterone is heavily metabolized at very early embryonic developmental stages to hydrophilic metabolites that are often assumed to be much less biologically potent. Either the rapid metabolism could either keep the maternal testosterone from reaching the embryos, opening the possibility for a mother–offspring conflict or the metabolites may facilitate the uptake of the lipophilic testosterone from the yolk into the embryonic circulation after which they are either converted back to the testosterone or functioning directly as metabolites. To test these possibilities, we injected isotope-labeled testosterone (T-[D5]) into the yolk of freshly laid Rock pigeon (Columba livia) eggs and determined the concentration and distribution of T-[D5] and its labeled metabolites within different egg fractions by liquid chromatography combined with tandem mass spectrometry at day 2, 5 and 10 of incubation. Although under a supraphysiological dosage injection, yolk testosterone decreased within 2 days and was metabolized into androstenedione, conjugated testosterone, etiocholanolone and other components that were unidentifiable due to methodological limitation. We show for the first time that testosterone, androstenedione and conjugated testosterone, but not etiocholanolone, reached the embryo including its brain. Their high concentrations in the yolk and extraembryonic membranes suggest that conversion takes place here. We also found no sex-specific metabolism, explaining why maternal testosterone does not affect sexual differentiation. Our findings showed that maternal testosterone is quickly converted by the embryo, with several but not all metabolites reaching the embryo providing evidence for both hypotheses.
Search for other papers by Carolina Gaudenzi in
Google Scholar
PubMed
Search for other papers by Karen R Mifsud in
Google Scholar
PubMed
Search for other papers by Johannes M H M Reul in
Google Scholar
PubMed
The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic–pituitary–adrenal axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well. The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat, and mouse MR isoforms and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by David Cottet-Dumoulin in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Quentin Perrier in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Vanessa Lavallard in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by David Matthey-Doret in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Laura Mar Fonseca in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Juliette Bignard in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Reine Hanna in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Géraldine Parnaud in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Fanny Lebreton in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Kevin Bellofatto in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Ekaterine Berishvili in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Thierry Berney in
Google Scholar
PubMed
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by Domenico Bosco in
Google Scholar
PubMed
Cell protein biosynthesis is regulated by different factors, but implication of intercellular contacts on alpha and beta cell protein biosyntheses activity has not been yet investigated. Islet cell biosynthetic activity is essential in regulating not only the hormonal reserve within cells but also in renewing all the proteins involved in the control of secretion. Here we aimed to assess whether intercellular interactions affected similarly secretion and protein biosynthesis of rat alpha and beta cells. Insulin and glucagon secretion were analyzed by ELISA or reverse hemolytic plaque assay, and protein biosynthesis evaluated at single cell level using bioorthogonal noncanonical amino acid tagging. Regarding beta cells, we showed a positive correlation between insulin secretion and protein biosynthesis. We also observed that homologous contacts increased both activities at low or moderate glucose concentrations. By contrast, at high glucose concentration, homologous contacts increased insulin secretion and not protein biosynthesis. In addition, heterogeneous contacts between beta and alpha cells had no impact on insulin secretion and protein biosynthesis. Regarding alpha cells, we showed that when they were in contact with beta cells, they increased their glucagon secretion in response to a drop of glucose concentration, but, on the other hand, they decreased their protein biosynthesis under any glucose concentrations. Altogether, these results emphasize the role of intercellular contacts on the function of islet cells, showing that intercellular contacts increased protein biosynthesis in beta cells, except at high glucose, and decreased protein biosynthesis in alpha cells even when glucagon secretion is stimulated.
Paris Brain Institue-Institut du Cerveau, CNRS UMR7225, INSERM U1127, Hôpital de la Pitié Salpêtrière, Paris, France
Search for other papers by Alberto González-Mayoral in
Google Scholar
PubMed
INSERM UMR 1195 (DHNS), Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
Search for other papers by Axel Eid in
Google Scholar
PubMed
Search for other papers by Razmig Derounian in
Google Scholar
PubMed
Search for other papers by Virginia Sofia Campanella in
Google Scholar
PubMed
Search for other papers by Andreia da Silva Ramos in
Google Scholar
PubMed
Search for other papers by Romy El Khoury in
Google Scholar
PubMed
Search for other papers by Charbel Massaad in
Google Scholar
PubMed
Search for other papers by Damien Le Menuet in
Google Scholar
PubMed
Myelination allows fast and synchronized nerve influxes and is provided by Schwann cells (SCs) in the peripheral nervous system. Glucocorticoid hormones are major regulators of stress, metabolism and immunity affecting all tissues. They act by binding to two receptors, the low-affinity glucocorticoid receptor (GR) and the high-affinity mineralocorticoid receptor (MR). Little is known about the effect of glucocorticoid hormones on the PNS, and this study focuses on deciphering the role of MR in peripheral myelination. In this work, the presence of a functional MR in SCs is demonstrated and the expression of MR protein in mouse sciatic nerve SC is evidenced. Besides, knockout of MR in SC (SCMRKO using Cre-lox system with DesertHedgeHog (Dhh) Cre promoter) was undertaken in mice. SCMRKO was not associated with alterations of performance in motor behavioral tests on 2- to 6-month-old male mice compared to their controls. No obvious modifications of myelin gene expression or MR signaling gene expression were observed in the SCMRKO sciatic nerves. Nevertheless, Gr transcript and GR protein amounts were significantly increased in SCMRKO nerves compared to controls, suggesting a possible compensatory effect. Besides, an increase in myelin sheath thickness was noted for axons with perimeters larger than 15 µm in SCMRKO illustrated by a significant 4.5% reduction in g-ratio (axon perimeter/myelin sheath perimeter). Thus, we defined MR as a new player in peripheral system myelination and in SC homeostasis.
Search for other papers by Elliott P Brooks in
Google Scholar
PubMed
Search for other papers by Lori Sussel in
Google Scholar
PubMed
Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-β cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to β cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new β cells for diabetes treatment.
Search for other papers by Rachel K Meyer in
Google Scholar
PubMed
BIO5 Institute, University of Arizona, Tucson, Arizona, USA
Search for other papers by Frank A Duca in
Google Scholar
PubMed
The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.
Search for other papers by Rui Gao in
Google Scholar
PubMed
Department of Physiology, Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Göteborg, Sweden
Search for other papers by Samuel Acreman in
Google Scholar
PubMed
Search for other papers by Jinfang Ma in
Google Scholar
PubMed
Search for other papers by Fernando Abdulkader in
Google Scholar
PubMed
Search for other papers by Anna Wendt in
Google Scholar
PubMed
CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Search for other papers by Quan Zhang in
Google Scholar
PubMed
Glucagon is the principal glucose-elevating hormone that forms the first-line defence against hypoglycaemia. Along with insulin, glucagon also plays a key role in maintaining systemic glucose homeostasis. The cells that secrete glucagon, pancreatic α-cells, are electrically excitable cells and use electrical activity to couple its hormone secretion to changes in ambient glucose levels. Exactly how glucose regulates α-cells has been a topic of debate for decades but it is clear that electrical signals generated by the cells play an important role in glucagon secretory response. Decades of studies have already revealed the key players involved in the generation of these electrical signals and possible mechanisms controlling them to tune glucagon release. This has offered the opportunity to fully understand the enigmatic α-cell physiology. In this review, we describe the current knowledge on cellular electrophysiology and factors regulating excitability, glucose sensing, and glucagon secretion. We also discuss α-cell pathophysiology and the perspective of addressing glucagon secretory defects in diabetes for developing better diabetes treatment, which bears the hope of eliminating hypoglycaemia as a clinical problem in diabetes care.