Browse

You are looking at 111 - 120 of 14,381 items for

  • Refine by access: All content x
Clear All
Yuqi Wang University of Groningen, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands

Search for other papers by Yuqi Wang in
Google Scholar
PubMed
Close
,
Bernd Riedstra University of Groningen, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands

Search for other papers by Bernd Riedstra in
Google Scholar
PubMed
Close
,
Martijn van Faassen Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Search for other papers by Martijn van Faassen in
Google Scholar
PubMed
Close
,
Alle Pranger Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Search for other papers by Alle Pranger in
Google Scholar
PubMed
Close
,
Ido Kema Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Search for other papers by Ido Kema in
Google Scholar
PubMed
Close
, and
Ton G G Groothuis University of Groningen, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands

Search for other papers by Ton G G Groothuis in
Google Scholar
PubMed
Close

In birds, exposure to maternal (yolk) testosterone affects a diversity of offspring post-hatching traits, which eventually affect offspring competitiveness. However, maternal testosterone is heavily metabolized at very early embryonic developmental stages to hydrophilic metabolites that are often assumed to be much less biologically potent. Either the rapid metabolism could either keep the maternal testosterone from reaching the embryos, opening the possibility for a mother–offspring conflict or the metabolites may facilitate the uptake of the lipophilic testosterone from the yolk into the embryonic circulation after which they are either converted back to the testosterone or functioning directly as metabolites. To test these possibilities, we injected isotope-labeled testosterone (T-[D5]) into the yolk of freshly laid Rock pigeon (Columba livia) eggs and determined the concentration and distribution of T-[D5] and its labeled metabolites within different egg fractions by liquid chromatography combined with tandem mass spectrometry at day 2, 5 and 10 of incubation. Although under a supraphysiological dosage injection, yolk testosterone decreased within 2 days and was metabolized into androstenedione, conjugated testosterone, etiocholanolone and other components that were unidentifiable due to methodological limitation. We show for the first time that testosterone, androstenedione and conjugated testosterone, but not etiocholanolone, reached the embryo including its brain. Their high concentrations in the yolk and extraembryonic membranes suggest that conversion takes place here. We also found no sex-specific metabolism, explaining why maternal testosterone does not affect sexual differentiation. Our findings showed that maternal testosterone is quickly converted by the embryo, with several but not all metabolites reaching the embryo providing evidence for both hypotheses.

Restricted access
Carolina Gaudenzi Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom

Search for other papers by Carolina Gaudenzi in
Google Scholar
PubMed
Close
,
Karen R Mifsud Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom

Search for other papers by Karen R Mifsud in
Google Scholar
PubMed
Close
, and
Johannes M H M Reul Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom

Search for other papers by Johannes M H M Reul in
Google Scholar
PubMed
Close

The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic–pituitary–adrenal axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well. The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat, and mouse MR isoforms and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.

Open access
David Cottet-Dumoulin Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by David Cottet-Dumoulin in
Google Scholar
PubMed
Close
,
Quentin Perrier Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Quentin Perrier in
Google Scholar
PubMed
Close
,
Vanessa Lavallard Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Vanessa Lavallard in
Google Scholar
PubMed
Close
,
David Matthey-Doret Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by David Matthey-Doret in
Google Scholar
PubMed
Close
,
Laura Mar Fonseca Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Laura Mar Fonseca in
Google Scholar
PubMed
Close
,
Juliette Bignard Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Juliette Bignard in
Google Scholar
PubMed
Close
,
Reine Hanna Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Reine Hanna in
Google Scholar
PubMed
Close
,
Géraldine Parnaud Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Géraldine Parnaud in
Google Scholar
PubMed
Close
,
Fanny Lebreton Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Fanny Lebreton in
Google Scholar
PubMed
Close
,
Kevin Bellofatto Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Kevin Bellofatto in
Google Scholar
PubMed
Close
,
Ekaterine Berishvili Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Ekaterine Berishvili in
Google Scholar
PubMed
Close
,
Thierry Berney Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Thierry Berney in
Google Scholar
PubMed
Close
, and
Domenico Bosco Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by Domenico Bosco in
Google Scholar
PubMed
Close

Cell protein biosynthesis is regulated by different factors, but implication of intercellular contacts on alpha and beta cell protein biosyntheses activity has not been yet investigated. Islet cell biosynthetic activity is essential in regulating not only the hormonal reserve within cells but also in renewing all the proteins involved in the control of secretion. Here we aimed to assess whether intercellular interactions affected similarly secretion and protein biosynthesis of rat alpha and beta cells. Insulin and glucagon secretion were analyzed by ELISA or reverse hemolytic plaque assay, and protein biosynthesis evaluated at single cell level using bioorthogonal noncanonical amino acid tagging. Regarding beta cells, we showed a positive correlation between insulin secretion and protein biosynthesis. We also observed that homologous contacts increased both activities at low or moderate glucose concentrations. By contrast, at high glucose concentration, homologous contacts increased insulin secretion and not protein biosynthesis. In addition, heterogeneous contacts between beta and alpha cells had no impact on insulin secretion and protein biosynthesis. Regarding alpha cells, we showed that when they were in contact with beta cells, they increased their glucagon secretion in response to a drop of glucose concentration, but, on the other hand, they decreased their protein biosynthesis under any glucose concentrations. Altogether, these results emphasize the role of intercellular contacts on the function of islet cells, showing that intercellular contacts increased protein biosynthesis in beta cells, except at high glucose, and decreased protein biosynthesis in alpha cells even when glucagon secretion is stimulated.

Open access
Alberto González-Mayoral INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France
Paris Brain Institue-Institut du Cerveau, CNRS UMR7225, INSERM U1127, Hôpital de la Pitié Salpêtrière, Paris, France

Search for other papers by Alberto González-Mayoral in
Google Scholar
PubMed
Close
,
Axel Eid INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France
INSERM UMR 1195 (DHNS), Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France

Search for other papers by Axel Eid in
Google Scholar
PubMed
Close
,
Razmig Derounian INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France

Search for other papers by Razmig Derounian in
Google Scholar
PubMed
Close
,
Virginia Sofia Campanella INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France

Search for other papers by Virginia Sofia Campanella in
Google Scholar
PubMed
Close
,
Andreia da Silva Ramos INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France

Search for other papers by Andreia da Silva Ramos in
Google Scholar
PubMed
Close
,
Romy El Khoury INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France

Search for other papers by Romy El Khoury in
Google Scholar
PubMed
Close
,
Charbel Massaad INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France

Search for other papers by Charbel Massaad in
Google Scholar
PubMed
Close
, and
Damien Le Menuet INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France

Search for other papers by Damien Le Menuet in
Google Scholar
PubMed
Close

Myelination allows fast and synchronized nerve influxes and is provided by Schwann cells (SCs) in the peripheral nervous system. Glucocorticoid hormones are major regulators of stress, metabolism and immunity affecting all tissues. They act by binding to two receptors, the low-affinity glucocorticoid receptor (GR) and the high-affinity mineralocorticoid receptor (MR). Little is known about the effect of glucocorticoid hormones on the PNS, and this study focuses on deciphering the role of MR in peripheral myelination. In this work, the presence of a functional MR in SCs is demonstrated and the expression of MR protein in mouse sciatic nerve SC is evidenced. Besides, knockout of MR in SC (SCMRKO using Cre-lox system with DesertHedgeHog (Dhh) Cre promoter) was undertaken in mice. SCMRKO was not associated with alterations of performance in motor behavioral tests on 2- to 6-month-old male mice compared to their controls. No obvious modifications of myelin gene expression or MR signaling gene expression were observed in the SCMRKO sciatic nerves. Nevertheless, Gr transcript and GR protein amounts were significantly increased in SCMRKO nerves compared to controls, suggesting a possible compensatory effect. Besides, an increase in myelin sheath thickness was noted for axons with perimeters larger than 15 µm in SCMRKO illustrated by a significant 4.5% reduction in g-ratio (axon perimeter/myelin sheath perimeter). Thus, we defined MR as a new player in peripheral system myelination and in SC homeostasis.

Restricted access
Elliott P Brooks Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Elliott P Brooks in
Google Scholar
PubMed
Close
and
Lori Sussel Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Lori Sussel in
Google Scholar
PubMed
Close

Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-β cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to β cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new β cells for diabetes treatment.

Free access
Rachel K Meyer School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA

Search for other papers by Rachel K Meyer in
Google Scholar
PubMed
Close
and
Frank A Duca School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
BIO5 Institute, University of Arizona, Tucson, Arizona, USA

Search for other papers by Frank A Duca in
Google Scholar
PubMed
Close

The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.

Free access
Rui Gao Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Rui Gao in
Google Scholar
PubMed
Close
,
Samuel Acreman Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
Department of Physiology, Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Göteborg, Sweden

Search for other papers by Samuel Acreman in
Google Scholar
PubMed
Close
,
Jinfang Ma Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK

Search for other papers by Jinfang Ma in
Google Scholar
PubMed
Close
,
Fernando Abdulkader Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil

Search for other papers by Fernando Abdulkader in
Google Scholar
PubMed
Close
,
Anna Wendt Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden

Search for other papers by Anna Wendt in
Google Scholar
PubMed
Close
, and
Quan Zhang Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal

Search for other papers by Quan Zhang in
Google Scholar
PubMed
Close

Glucagon is the principal glucose-elevating hormone that forms the first-line defence against hypoglycaemia. Along with insulin, glucagon also plays a key role in maintaining systemic glucose homeostasis. The cells that secrete glucagon, pancreatic α-cells, are electrically excitable cells and use electrical activity to couple its hormone secretion to changes in ambient glucose levels. Exactly how glucose regulates α-cells has been a topic of debate for decades but it is clear that electrical signals generated by the cells play an important role in glucagon secretory response. Decades of studies have already revealed the key players involved in the generation of these electrical signals and possible mechanisms controlling them to tune glucagon release. This has offered the opportunity to fully understand the enigmatic α-cell physiology. In this review, we describe the current knowledge on cellular electrophysiology and factors regulating excitability, glucose sensing, and glucagon secretion. We also discuss α-cell pathophysiology and the perspective of addressing glucagon secretory defects in diabetes for developing better diabetes treatment, which bears the hope of eliminating hypoglycaemia as a clinical problem in diabetes care.

Open access
Emma Wilson Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK

Search for other papers by Emma Wilson in
Google Scholar
PubMed
Close
,
Fiona J Ramage Department of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK

Search for other papers by Fiona J Ramage in
Google Scholar
PubMed
Close
,
Kimberley E Wever Department of Anesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by Kimberley E Wever in
Google Scholar
PubMed
Close
,
Emily S Sena Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK

Search for other papers by Emily S Sena in
Google Scholar
PubMed
Close
,
Malcolm R Macleod Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK

Search for other papers by Malcolm R Macleod in
Google Scholar
PubMed
Close
, and
Gillian L Currie Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK

Search for other papers by Gillian L Currie in
Google Scholar
PubMed
Close

In biomedicine and many other fields, there are growing concerns around the reproducibility of research findings, with many researchers being unable to replicate their own or others’ results. This raises important questions as to the validity and usefulness of much published research. In this review, we aim to engage researchers in the issue of research reproducibility and equip them with the necessary tools to increase the reproducibility of their research. We first highlight the causes and potential impact of non-reproducible research and emphasise the benefits of working reproducibly for the researcher and broader research community. We address specific targets for improvement and steps that individual researchers can take to increase the reproducibility of their work. We next provide recommendations for improving the design and conduct of experiments, focusing on in vivo animal experiments. We describe common sources of poor internal validity of experiments and offer practical guidance for limiting these potential sources of bias at different experimental stages, as well as discussing other important considerations during experimental design. We provide a list of key resources available to researchers to improve experimental design, conduct, and reporting. We then discuss the importance of open research practices such as study preregistration and the use of preprints and describe recommendations around data management and sharing. Our review emphasises the importance of reproducible work and aims to empower every individual researcher to contribute to the reproducibility of research in their field.

Open access
Antonella Rosario Ramona Cáceres Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU – CONICET Mendoza), Mendoza, Argentina
Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina

Search for other papers by Antonella Rosario Ramona Cáceres in
Google Scholar
PubMed
Close
,
Fiorella Campo Verde Arboccó Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU – CONICET Mendoza), Mendoza, Argentina

Search for other papers by Fiorella Campo Verde Arboccó in
Google Scholar
PubMed
Close
,
María de los Ángeles Sanhueza Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU – CONICET Mendoza), Mendoza, Argentina

Search for other papers by María de los Ángeles Sanhueza in
Google Scholar
PubMed
Close
,
Daniela Alejandra Cardone Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU – CONICET Mendoza), Mendoza, Argentina

Search for other papers by Daniela Alejandra Cardone in
Google Scholar
PubMed
Close
,
Graciela Beatriz Rodriguez Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina

Search for other papers by Graciela Beatriz Rodriguez in
Google Scholar
PubMed
Close
,
Marilina Casais Laboratorio de Biología de la Reproducción (LABIR), Universidad Nacional de San Luis, San Luis, Argentina

Search for other papers by Marilina Casais in
Google Scholar
PubMed
Close
,
Adriana Soledad Vega Orozco Laboratorio de Biología de la Reproducción (LABIR), Universidad Nacional de San Luis, San Luis, Argentina

Search for other papers by Adriana Soledad Vega Orozco in
Google Scholar
PubMed
Close
, and
Myriam Raquel Laconi Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU – CONICET Mendoza), Mendoza, Argentina
Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina

Search for other papers by Myriam Raquel Laconi in
Google Scholar
PubMed
Close

Neuroactive steroids can rapidly regulate multiple physiological functions in the central and peripheral nervous systems. The aims of the present study were to determine whether allopregnanolone (ALLO), administered in low nanomolar and high micromolar concentrations, can: (i) induce changes in the ovarian progesterone (P4) and estradiol (E2) release; (ii) modify the ovarian mRNA expression of Hsd3b1 (3β-hydroxysteroid dehydrogenase, 3β-HSD)3β-, Akr1c3 (20α-hydroxysteroid dehydrogenase, 20α-HSD), and Akr1c14 (3α-hydroxy steroid oxidoreductase, 3α-HSOR)); and (iii) modulate the ovarian expression of progesterone receptors A and B, α and β estrogenic receptors, luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR). To further characterize ALLO peripheral actions, the effects were evaluated using a superior mesenteric ganglion–ovarian nervous plexus–ovary (SMG–ONP–O) and a denervated ovary (DO) systems. ALLO SMG administration increased P4 concentration in the incubation liquid by decreasing ovarian 20α-HSD mRNA, and it also increased ovarian 3α-HSOR mRNA expression. In addition, ALLO neural peripheral modulation induced an increase in the expression of ovarian LHR, PRA, PRB, and ERα. Direct ALLO administration to the DO decreased E2 and increased P4 concentration in the incubation liquid. The mRNA expression of 3β-HSD decreased and 20α-HSD increased. Further, ALLO in the OD significantly changed ovarian FSHR and PRA expression. This is the first evidence of ALLO’s direct effect on ovarian steroidogenesis. Our results provide important insights about how this neuroactive steroid interacts both with the PNS and the ovary, and these findings might help devise some of the pleiotropic effects of neuroactive steroids on female reproduction. Moreover, ALLO modulation of ovarian physiology might help uncover novel treatment approaches for reproductive diseases.

Restricted access
Yasminye D Pettway Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Search for other papers by Yasminye D Pettway in
Google Scholar
PubMed
Close
,
Diane C Saunders Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Search for other papers by Diane C Saunders in
Google Scholar
PubMed
Close
, and
Marcela Brissova Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Search for other papers by Marcela Brissova in
Google Scholar
PubMed
Close

In commemoration of 100 years since the discovery of glucagon, we review current knowledge about the human α cell. Alpha cells make up 30–40% of human islet endocrine cells and play a major role in regulating whole-body glucose homeostasis, largely through the direct actions of their main secretory product – glucagon – on peripheral organs. Additionally, glucagon and other secretory products of α cells, namely acetylcholine, glutamate, and glucagon-like peptide-1, have been shown to play an indirect role in the modulation of glucose homeostasis through autocrine and paracrine interactions within the islet. Studies of glucagon’s role as a counterregulatory hormone have revealed additional important functions of the α cell, including the regulation of multiple aspects of energy metabolism outside that of glucose. At the molecular level, human α cells are defined by the expression of conserved islet-enriched transcription factors and various enriched signature genes, many of which have currently unknown cellular functions. Despite these common threads, notable heterogeneity exists amongst human α cell gene expression and function. Even greater differences are noted at the inter-species level, underscoring the importance of further study of α cell physiology in the human context. Finally, studies on α cell morphology and function in type 1 and type 2 diabetes, as well as other forms of metabolic stress, reveal a key contribution of α cell dysfunction to dysregulated glucose homeostasis in disease pathogenesis, making targeting the α cell an important focus for improving treatment.

Free access