Search for other papers by Natalie K Y Wee in
Google Scholar
PubMed
Department of Genetics and Molecular Biology, University of Campinas, São Paulo, Brazil
Search for other papers by Thaísa F C de Lima in
Google Scholar
PubMed
Search for other papers by Narelle E McGregor in
Google Scholar
PubMed
Search for other papers by Emma C Walker in
Google Scholar
PubMed
Search for other papers by Ingrid J Poulton in
Google Scholar
PubMed
Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Melbourne, Australia
Search for other papers by Martha Blank in
Google Scholar
PubMed
Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Melbourne, Australia
Search for other papers by Natalie A Sims in
Google Scholar
PubMed
Bone strength is partially determined during cortical bone consolidation, a process comprising coalescence of peripheral trabecular bone and its progressive mineralisation. Mice with genetic deletion of suppressor of cytokine signalling 3 (Socs3), an inhibitor of STAT3 signalling, exhibit delayed cortical bone consolidation, indicated by high cortical porosity, low mineral content, and low bone strength. Since leptin receptor (LepR) is expressed in the osteoblast lineage and is suppressed by SOCS3, we evaluated whether LepR deletion in osteocytes would rectify the Dmp1cre.Socs3fl/fl bone defect. First, we tested LepR deletion in osteocytes by generating Dmp1cre.LepRfl/fl mice and detected no significant bone phenotype. We then generated Dmp1cre.Socs3fl/fl.LepRfl/fl mice and compared them to Dmp1cre.Socs3fl/fl controls. Between 6 and 12 weeks of age, both Dmp1cre.Socs3fl/fl.LepRfl/fl and control (Dmp1cre.Socs3fl/fl ) mice showed an increasing proportion of more heavily mineralised bone, indicating some cortical consolidation with time. However, at 12 weeks of age, rather than resolving the phenotype, delayed consolidation was extended in female Dmp1cre.Socs3fl/fl.LepRfl/fl mice. This was indicated in both metaphysis and diaphysis by greater proportions of low-density bone, lower proportions of high-density bone, and greater cortical porosity than Dmp1cre.Socs3fl/fl controls. There was also no change in the proportion of osteocytes staining positive for phospho-STAT3, suggesting the effect of LepR deletion in Dmp1cre.Socs3fl/fl mice is STAT3-independent. This identifies a new role for leptin signalling in bone which opposes our original hypothesis. Although LepR in osteocytes has no irreplaceable physiological role in normal bone maturation, when STAT3 is hyperactive, LepR in Dmp1Cre-expressing cells supports cortical consolidation.
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Yanqiu Wang in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Zhou Jin in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Jiajun Sun in
Google Scholar
PubMed
Search for other papers by Xinxin Chen in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Pu Xie in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Yulin Zhou in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Shu Wang in
Google Scholar
PubMed
Graves’ disease (GD) is characterized by dysregulation of the immune system with aberrant immune cell function. However, there have been few previous studies on the role of monocytes in the pathology of GD. The object of this study was to investigate whether and how monocytes participate in GD pathology. CD14+ monocytes were isolated from untreated initial GD patients and healthy controls. Then, RNA-seq was performed to investigate changes in global mRNA expression in monocytes and found that type I interferon (IFN) signalling was among the top upregulated signalling pathways in GD monocytes. Type I IFN-induced sialic acid-binding immunoglobulin-like lectin1 (SIGLEC1) expression was significantly upregulated in untreated GD patients and correlated with thyroid parameters. Patient serum SIGLEC1 concentrations were reduced after anti-thyroid drug treatment. Inhibiting SIGLEC1 expression could inhibit proinflammatory cytokine (IL-1β, IL-6, IL-8, IL-10 and M-CSF) expression in monocytes. In conclusion, our study suggested that type I IFN-mediated monocyte activation could have a deleterious effect on the pathogenesis of GD. These observations indicated that the inhibition of type I IFN-activated monocytes/macrophages could have a therapeutic effect on GD remission.
Search for other papers by Prasanthi P Koganti in
Google Scholar
PubMed
Search for other papers by Amy H Zhao in
Google Scholar
PubMed
Search for other papers by Vimal Selvaraj in
Google Scholar
PubMed
MA-10 cells, established 4 decades ago from a murine Leydig cell tumor, has served as a key model system for studying steroidogenesis. Despite a precipitous loss in their innate ability to respond to luteinizing hormone (LH), the use of a cell-permeable cAMP analog for induction ensured their continued use. In parallel, a paradigm that serum-free conditions are essential for trophic steroidogenic stimulation was rationalized. Through the selection of LH-responsive single-cell MA-10 Slip clones, we uncovered that Leydig cells remain responsive in the presence of serum in vitro and that exogenous cholesterol delivery by lipoproteins provided a significantly elevated steroid biosynthetic response (>2-fold). In scrutinizing the underlying regulation, systems biology of the MA-10 cell proteome identified multiple Rho-GTPase signaling pathways as highly enriched. Testing Rho function in steroidogenesis revealed that its modulation can negate the specific elevation in steroid biosynthesis observed in the presence of lipoproteins/serum. This signaling modality primarily linked to the regulation of endocytic traffic is evident only in the presence of exogenous cholesterol. Inhibiting Rho function in vivo also decreased hCG-induced testosterone production in mice. Collectively, our findings dispel a long-held view that the use of serum could confound or interfere with trophic stimulation and underscore the need for exogenous lipoproteins when dissecting physiological signaling and cholesterol trafficking for steroid biosynthesis in vitro. The LH-responsive MA-10 Slip clones derived in this study present a reformed platform enabling biomimicry to study the cellular and molecular basis of mammalian steroidogenesis.
University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
Search for other papers by Wanying Qin in
Google Scholar
PubMed
University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
Search for other papers by Ting Zhang in
Google Scholar
PubMed
State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China
Search for other papers by Mingxia Ge in
Google Scholar
PubMed
Search for other papers by Huimin Zhou in
Google Scholar
PubMed
Search for other papers by Yuhui Xu in
Google Scholar
PubMed
Search for other papers by Rongfang Mu in
Google Scholar
PubMed
Search for other papers by Chaoguang Huang in
Google Scholar
PubMed
Search for other papers by Daowei Liu in
Google Scholar
PubMed
University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People’s Republic of China
Search for other papers by Bangrui Huang in
Google Scholar
PubMed
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People’s Republic of China
Search for other papers by Qian Wang in
Google Scholar
PubMed
Search for other papers by Qinghua Kong in
Google Scholar
PubMed
Search for other papers by Qingpeng Kong in
Google Scholar
PubMed
Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
Search for other papers by Fei Li in
Google Scholar
PubMed
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, People’s Republic of China
Search for other papers by Wenyong Xiong in
Google Scholar
PubMed
Receptor for activated C kinase 1 (RACK1) is a versatile protein involved in multiple biological processes. In a previous study by Zhao et al., hepatic RACK1 deletion in mice led to an inhibition of autophagy, blocked autophagy-dependent lipolysis, and caused steatosis. Using the same mouse model (RACK1hep−/−), we revealed new roles of RACK1 in maintaining bile acid homeostasis and hepatic glucose uptake, which further affected circulatory lipid and glucose levels. To be specific, even under hepatic steatosis, the plasma lipids were generally reduced in RACK1hep−/− mouse, which was due to the suppression of intestinal lipid absorption. Accordingly, a decrease in total bile acid level was found in RACK1hep−/− livers, gallbladders, and small intestine tissues, and specific decrease of 12-hydroxylated bile acids was detected by liquid chromatography–mass spectrometry. Consistently, reduced expression of CYP8B1 was found. A decrease in hepatic glycogen storage was also observed, which might be due to the inhibited glucose uptake by GLUT2 insufficiency. Interestingly, RACK1-KO-inducing hepatic steatosis did not raise insulin resistance (IR) nor IR-inducing factors like endoplasmic reticulum stress and inflammation. In summary, this study uncovers that hepatic RACK1 might be required in maintaining bile acid homeostasis and glucose uptake in hepatocytes. This study also provides an additional case of hepatic steatosis disassociation with insulin resistance.
Frank H. Netter School of Medicine, Quinnipiac University, North Haven, Connecticut, USA
Search for other papers by Farrah L Saleh in
Google Scholar
PubMed
Search for other papers by Aditi A Joshi in
Google Scholar
PubMed
Search for other papers by Aya Tal in
Google Scholar
PubMed
Search for other papers by Patricia Xu in
Google Scholar
PubMed
Search for other papers by Julie R Hens in
Google Scholar
PubMed
Search for other papers by Serena L Wong in
Google Scholar
PubMed
Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
Search for other papers by Clare A Flannery in
Google Scholar
PubMed
Girls with obesity are at increased risk of early puberty. Obesity is associated with insulin resistance and hyperinsulinemia. We hypothesized that insulin plays a physiological role in pubertal transition, and super-imposed hyperinsulinemia due to childhood obesity promotes early initiation of puberty in girls. To isolate the effect of hyperinsulinemia from adiposity, we compared pre-pubertal and pubertal states in hyperinsulinemic, lean muscle (M)-insulin-like growth factor 1 receptor (IGF-1R)-lysine (K)-arginine (R) (MKR) mice to normoinsulinemic WT, with puberty onset defined by vaginal opening (VO). Our results show MKR had greater insulin resistance and higher insulin levels (P < 0.05) than WT despite lower body weight (P < 0.0001) and similar IGF-1 levels (P = NS). Serum luteinizing hormone (LH) levels were higher in hyperinsulinemic MKR (P = 0.005), and insulin stimulation induced an increase in LH levels in WT. VO was earlier in hyperinsulinemic MKR vs WT (P < 0.0001). When compared on the day of VO, kisspeptin expression was higher in hyperinsulinemic MKR vs WT (P < 0.05), and gonadotropin-releasing hormone and insulin receptor isoform expression was similar (P = NS). Despite accelerated VO, MKR had delayed, disordered ovarian follicle and mammary gland development. In conclusion, we found that hyperinsulinemia alone without adiposity triggers earlier puberty. In our study, hyperinsulinemia also promoted dyssynchrony between pubertal initiation and progression, urging future studies in girls with obesity to assess alterations in transition to adulthood.
Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
Search for other papers by Shun-Neng Hsu in
Google Scholar
PubMed
Search for other papers by Louise A Stephen in
Google Scholar
PubMed
Search for other papers by Scott Dillon in
Google Scholar
PubMed
Search for other papers by Elspeth Milne in
Google Scholar
PubMed
Search for other papers by Behzad Javaheri in
Google Scholar
PubMed
Search for other papers by Andrew A Pitsillides in
Google Scholar
PubMed
Search for other papers by Amanda Novak in
Google Scholar
PubMed
Search for other papers by Jose Luis Millán in
Google Scholar
PubMed
Search for other papers by Vicky E MacRae in
Google Scholar
PubMed
Search for other papers by Katherine A Staines in
Google Scholar
PubMed
Search for other papers by Colin Farquharson in
Google Scholar
PubMed
Patients with advanced chronic kidney disease (CKD) often present with skeletal abnormalities, a condition known as renal osteodystrophy (ROD). While tissue non-specific alkaline phosphatase (TNAP) and PHOSPHO1 are critical for bone mineralization, their role in the etiology of ROD is unclear. To address this, ROD was induced in both WT and Phospho1 knockout (P1KO) mice through dietary adenine supplementation. The mice presented with hyperphosphatemia, hyperparathyroidism, and elevated levels of FGF23 and bone turnover markers. In particular, we noted that in CKD mice, bone mineral density (BMD) was increased in cortical bone (P < 0.05) but decreased in trabecular bone (P < 0.05). These changes were accompanied by decreased TNAP (P < 0.01) and increased PHOSPHO1 (P < 0.001) expression in WT CKD bones. In P1KO CKD mice, the cortical BMD phenotype was rescued, suggesting that the increased cortical BMD of CKD mice was driven by increased PHOSPHO1 expression. Other structural parameters were also improved in P1KO CKD mice. We further investigated the driver of the mineralization defects, by studying the effects of FGF23, PTH, and phosphate administration on PHOSPHO1 and TNAP expression by primary murine osteoblasts. We found both PHOSPHO1 and TNAP expressions to be downregulated in response to phosphate and PTH. The in vitro data suggest that the TNAP reduction in CKD-MBD is driven by the hyperphosphatemia and/or hyperparathyroidism noted in these mice, while the higher PHOSPHO1 expression may be a compensatory mechanism. Increased PHOSPHO1 expression in ROD may contribute to the disordered skeletal mineralization characteristic of this progressive disorder.
Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
Search for other papers by Aryane Cruz Oliveira Pinho in
Google Scholar
PubMed
Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
Search for other papers by Diana Santos in
Google Scholar
PubMed
Search for other papers by Inês Baldeiras in
Google Scholar
PubMed
Search for other papers by Ana Burgeiro in
Google Scholar
PubMed
Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
Search for other papers by Emelindo C Leal in
Google Scholar
PubMed
Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
APDP-Portuguese Diabetes Association, Lisbon, Portugal
Search for other papers by Eugenia Carvalho in
Google Scholar
PubMed
Introduction
Thoracic perivascular adipose tissue (tPVAT) has a phenotype resembling brown AT. Dysfunctional tPVAT appears to be linked to vascular dysfunction.
Methods
We evaluated uncoupling protein 1 (UCP1) expression by Western blot, oxidative stress by measuring lipid peroxidation, the antioxidant capacity by HPLC and spectrophotometry, and mitochondrial respiration by high-resolution respirometry (HRR) in tPVAT, compared to inguinal white AT (iWAT), obtained from non-diabetic (NDM) and streptozocin-induced diabetic (STZ-DM) mice. Mitochondrial respiration was assessed by HRR using protocol 1: complex I and II oxidative phosphorylation (OXPHOS) and protocol 2: fatty acid oxidation (FAO) OXPHOS. OXPHOS capacity in tPVAT was also evaluated after UCP1 inhibition by guanosine 5'-diphosphate (GDP).
Results
UCP1 expression was higher in tPVAT when compared with iWAT in both NDM and STZ-DM mice. The malondialdehyde concentration was elevated in tPVAT from STZ-DM compared to NDM mice. Glutathione peroxidase and reductase activities, as well as reduced glutathione levels, were not different between tPVAT from NDM and STZ-DM mice but were lower compared to iWAT of STZ-DM mice. OXPHOS capacity of tPVAT was significantly decreased after UCP1 inhibition by GDP in protocol 1. While there were no differences in the OXPHOS capacity between NDM and STZ-DM mice in protocol 1, it was increased in STZ-DM compared to NDM mice in protocol 2. Moreover, complex II- and FAO-linked respiration were elevated in STZ-DM mice under UCP1 inhibition.
Conclusions
Pharmacological therapies could be targeted to modulate UCP1 activity with a significant impact in the uncoupling of mitochondrial bioenergetics in tPVAT.
Search for other papers by Taira Wada in
Google Scholar
PubMed
Search for other papers by Yukiko Yamamoto in
Google Scholar
PubMed
Search for other papers by Yukiko Takasugi in
Google Scholar
PubMed
Search for other papers by Hirotake Ishii in
Google Scholar
PubMed
Search for other papers by Taketo Uchiyama in
Google Scholar
PubMed
Search for other papers by Kaori Saitoh in
Google Scholar
PubMed
Search for other papers by Masahiro Suzuki in
Google Scholar
PubMed
Tokyo Adachi Hospital, Adachi, Tokyo, Japan
Search for other papers by Makoto Uchiyama in
Google Scholar
PubMed
Search for other papers by Hikari Yoshitane in
Google Scholar
PubMed
Search for other papers by Yoshitaka Fukada in
Google Scholar
PubMed
Search for other papers by Shigeki Shimba in
Google Scholar
PubMed
Adiponectin is a cytokine secreted from adipocytes and regulates metabolism. Although serum adiponectin levels show diurnal variations, it is not clear if the effects of adiponectin are time-dependent. Therefore, this study conducted locomotor activity analyses and various metabolic studies using the adiponectin knockout (APN (−/−)) and the APN (+/+) mice to understand whether adiponectin regulates the circadian rhythm of glucose and lipid metabolism. We observed that the adiponectin gene deficiency does not affect the rhythmicity of core circadian clock genes expression in several peripheral tissues. In contrast, the adiponectin gene deficiency alters the circadian rhythms of liver and serum lipid levels and results in the loss of the time dependency of very-low-density lipoprotein-triglyceride secretion from the liver. In addition, the whole-body glucose tolerance of the APN (−/−) mice was normal at CT10 but reduced at CT22, compared to the APN (+/+) mice. The decreased glucose tolerance at CT22 was associated with insulin hyposecretion in vivo. In contrast, the gluconeogenesis activity was higher in the APN (−/−) mice than in the APN (+/+) mice throughout the day. These results indicate that adiponectin regulates part of the circadian rhythm of metabolism in the liver.
Department of Reproduction and Infertility, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
Search for other papers by Ling Cui in
Google Scholar
PubMed
Search for other papers by Chunlu Tan in
Google Scholar
PubMed
Search for other papers by Lili Huang in
Google Scholar
PubMed
Search for other papers by Weihao Wang in
Google Scholar
PubMed
Search for other papers by Zhengxiang Huang in
Google Scholar
PubMed
Search for other papers by Fang Geng in
Google Scholar
PubMed
Search for other papers by Mengjun Wu in
Google Scholar
PubMed
Search for other papers by Xiaolin Chen in
Google Scholar
PubMed
Search for other papers by Michael Cowley in
Google Scholar
PubMed
Search for other papers by Ferdinand Roelfsema in
Google Scholar
PubMed
Search for other papers by Chen Chen in
Google Scholar
PubMed
Obese women often have certain degree of reproductive dysfunction with infertility. Although the clinical impact of obesity on female infertility has been extensively studied, the effective and targeted treatment is still lacking. Melanocortin-4-receptor knock-out (MC4R KO) mouse is an over-eating obese model with hyperphagia, hyperinsulinemia, reduced growth hormone (GH), and insulin resistance. Dapagliflozin improved the metabolic and hormonal parameters in MC4R KO mice. MC4R KO female mice were treated with dapagliflozin for 14 weeks from 14-week age. Age-matched WT littermates and non-treated MC4R KO mice were used as control groups. Food intake was measured daily. Body weight was measured twice a week. Estrous cycles, GH, and luteinizing hormone (LH) profiles were measured. Selected tissues were collected at the end of experiments for gene expression profiles and hematoxylin–eosin staining. Regularity and mode of hormonal profiles were restored by the dapagliflozin treatment. Estrous cycle was partially normalized, number of CL was significantly increased, and the expression of Kiss1 and Gnrh1 in the hypothalamus and LH in the pituitary was markedly increased by the dapagliflozin treatment. It is conclsuded that dapagliflozin may recover LH and GH profiles partially through modification of relevant gene expression in the hypothalamus and pituitary, and result in an improved ovulation rate in obese mouse model. Dapagliflozin may therefore improve fertility in obese patients.
Search for other papers by Simin Younesi in
Google Scholar
PubMed
The Florey Institute of Neuroscience and Mental Health, Microscopy Facility, Melbourne, Victoria, Australia
Search for other papers by Alita Soch in
Google Scholar
PubMed
Barwon Health Laboratory, Barwon Health, University Hospital, Geelong, Victoria, Australia
Institute for Physical and Mental Health and Clinical Transformation, School of Medicine, Deakin University, Geelong, Victoria, Australia
Search for other papers by Luba Sominsky in
Google Scholar
PubMed
ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Victoria, Australia
Search for other papers by Sarah J Spencer in
Google Scholar
PubMed
Early life microglia are essential for brain development, and developmental disruption in microglial activity may have long-term implications for the neuroendocrine control of reproduction. We and others have previously shown that early life immune activation compromises the long-term potential for reproductive function in females. However, the supportive role of microglia in female reproductive development is still unknown. Here, we examined the long-term programming effects of transient neonatal microglial and monocyte ablation on hypothalamic–pituitary–gonadal (HPG) axis function in female rats. We employed a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia and monocytes, commencing on either postnatal day (P) 7 or 14, since the development of the HPG axis in female rodents primarily occurs during the first two to three postnatal weeks. After an acutely diminished expression of microglia and monocyte genes in the brain and ovaries, respectively, microglia had repopulated the brain by P21, albeit that cellular complexity was still reduced in both groups at this time. Removal of microglia and monocytes on P7, but not P14 reduced circulating luteinising hormone levels in adulthood and ovarian gonadotropin receptors mRNA. These changes were notably associated with fewer primary and antral follicles in these rats. These data suggest that transient ablation of microglia and monocytes at the start of the second but not the third postnatal week has long-term effects on ovarian health. The findings highlight the important developmental role of a healthy immune system for female potential reproductive capacity and the importance of critical developmental periods to adult ovarian health.