You are looking at 11 - 20 of 14,269 items for

  • Refine by Access: All content x
Clear All
Open access

Yuqi Wang, Bernd Riedstra, Martijn van Faassen, Alle Pranger, Ido P Kema, and Ton Groothuis

In birds, exposure to maternal (yolk) testosterone affects a diversity of offspring post-hatching traits, that eventually affect offspring competitiveness. However, maternal testosterone is heavily metabolized at very early embryonic developmental stages to hydrophilic metabolites that are often assumed to be much less biologically potent. The rapid metabolism could either keep the maternal testosterone from reaching the embryos, opening the possibility for a mother-offspring conflict, or the metabolites may facilitate the uptake of the lipophilic testosterone from the yolk into the embryonic circulation after which they are either converted back to the testosterone or functioning directly as metabolites. To test these possibilities, we injected isotope-labeled testosterone (T-[D5]) into the yolk of freshly laid Rock pigeon (Columba livia) eggs and determined the concentration and distribution of T-[D5] and its labelled metabolites within different egg fractions by LC-MS/MS at day 2, 5 and 10 of incubation. Although under a supraphysiological dosage injection, yolk testosterone decreased within 2 days and was metabolized into androstenedione, conjugated testosterone, etiocholanolone and other components that unidentifiable due to methodological limitation. We show for the first time that testosterone, androstenedione and conjugated testosterone, but not etiocholanolone, reached the embryo including its brain. Their high concentrations in the yolk and extraembryonic membranes suggest that conversion takes place here. We also found no sex-specific metabolism, explaining why maternal testosterone does not affect sexual differentiation. Our findings showed that maternal testosterone is quickly converted by the embryo, with several but not all metabolites reaching the embryo providing evidence for both hypotheses.

Restricted access

Rachel Katherine Meyer and Frank A Duca

The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects at the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.

Restricted access

N Zlocowski, L d V Sosa, B De la Cruz-Thea, C B Guido, M G Martín, J H Mukdsi, A I Torres, and J P Petiti

Interest in epigenetics has gained substantial momentum as a result of their identified role in the regulation of tumor progression as well as their ability to pharmacologically target genes. Pituitary neuroendocrine tumors (PitNETs) tend to be inactivated via epigenetic modification, and although emerging evidence has suggested a role for epigenetic factors in PitNET tumorigenesis, the degree to which these factors may be targeted by new therapeutic strategies still remains poorly understood. The objective of the present study was to examine the participation of the EZH2/H3K27me3 axis in the proliferation of lactotroph tumor cells. We demonstrated that the levels of EZH2 and H3K27me3 were increased in murine experimental prolactin (PRL) tumors with respect to a control pituitary, in contrast with the low p21 mRNA levels encountered, with an H3K27me3 enrichment being observed in its promoter region in a GH3 tumor cell. Furthermore, specific EZH2/H3K27me3 axis inhibition blocked the proliferation of primary tumor cell culture and GH3 cells, thereby making it an attractive therapeutic target for PRL PitNETs.

Open access

Bettina Geidl-Flueck and Philipp A Gerber

Despite the existence of numerous studies supporting a pathological link between fructose consumption and the development of the metabolic syndrome and its sequelae, such as non-alcoholic fatty liver disease (NAFLD), this link remains a contentious issue. With this article, we shed a light on the impact of sugar/fructose intake on hepatic de novo lipogenesis (DNL), an outcome parameter known to be dysregulated in subjects with type 2 diabetes and/or NAFLD. In this review, we present findings from human intervention studies using physiological doses of sugar as well as mechanistic animal studies. There is evidence from both human and animal studies that fructose is a more potent inducer of hepatic lipogenesis than glucose. This is most likely due to the liver’s prominent physiological role in fructose metabolism, which may be disrupted under pathological conditions by increased hepatic expression of fructolytic and lipogenic enzymes. Increased DNL may not only contribute to ectopic fat deposition (i.e. in the liver), but it may also impair several metabolic processes through DNL-related fatty acids (e.g. beta-cell function, insulin secretion, or insulin sensitivity).

Restricted access

R Paul Robertson

Glucagon is a peptide hormone that is produced primarily by the alpha cells in the islet of Langerhans in the pancreas, but also in intestinal enteroendocrine cells and in some neurons. Approximately 100 years ago several research groups discovered that pancreatic extracts would cause a brief rise blood glucose before they observed the decrease in glucose attributed to insulin. An overall description of the regulation of glucagon secretion requires inclusion of its sibling insulin because they both are made primarily by the islet and they both regulate each other in different ways. For example, glucagon stimulates insulin secretion, whereas insulin suppresses glucagon secretion. The mechanism of action of glucagon on insulin secretion has been identified as a trimeric guanine nucleotide-binding protein (G-protein)-mediated event. The manner in which insulin suppresses glucagon release from the alpha cell is thought to be highly dependent on the peri-portal circulation of the islet through which blood flows downstream from beta cells to alpha cells. In this scenario, it is via the circulation that insulin is thought to suppresses the release of glucagon. However, high levels of glucose also have been shown to suppress glucagon secretion. Consequently, the glucose lowering effect of insulin may be additive to the direct effects of insulin to suppress alpha cell function, so that in vivo both the discontinuation of the insulin signal and the condition of low glucose jointly are responsible for induction of glucagon secretion.

Open access

Carolina Gaudenzi, Karen Rosemary Mifsud, and Johannes Reul

The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic-pituitary-adrenal (HPA) axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well.

The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat and mouse MR isoforms, and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.

Open access

David Cottet-Dumoulin, Quentin Perrier, Vanessa Lavallard, David Matthey-Doret, Laura Mar Fonseca, Juliette Bignard, Reine Hanna, Geraldine Parnaud, Fanny Lebreton, Kevin Bellofatto, Ekaterine Berishvili, Thierry Berney, and Domenico Bosco

Cell protein biosynthesis is regulated by different factors, but implication of intercellular contacts on alpha and beta cell protein biosynthesis activity has not been yet investigated. Islet cell biosynthetic activity is essential in regulating not only the hormonal reserve within cells but also in renewing all the proteins involved in the control of secretion. Here we aimed to assess whether intercellular interactions affected similarly secretion and protein biosynthesis of rat alpha and beta cells. Insulin and glucagon secretion were analyzed by ELISA or reverse hemolytic plaque assay, and protein biosynthesis evaluated at single cell level using bioorthogonal noncanonical amino acid tagging. Regarding beta cells, we showed a positive correlation between insulin secretion and protein biosynthesis. We also observed that homologous contacts increased both activities at low or moderate glucose concentrations. By contrast, at high glucose concentration, homologous contacts increased insulin secretion and not protein biosynthesis. In addition, heterogeneous contacts between beta and alpha cells had no impact on insulin secretion and protein biosynthesis. Regarding alpha cells, we showed that when they were in contact with beta cells, they increased their glucagon secretion in response to a drop of glucose concentration but, on the other hand, they decreased their protein biosynthesis under any glucose concentrations. All together, these results emphasize the role of intercellular contacts on the function of islet cells, showing that intercellular contacts increased protein biosynthesis in beta cells, except at high glucose, and decreased protein biosynthesis in alpha cells even when glucagon secretion is stimulated.

Restricted access

Alberto González Mayoral, Axel Eid, Razmig Derounian, Virginia Sofia Campanella, Andreia da Silva Ramos, Romy El Khoury, Charbel Massaad, and Damien Le Menuet

Myelination allows fast and synchronized nerve influxes and is provided by Schwann cells in the peripheral nervous system. Glucocorticoid hormones are major regulators of stress, metabolism and immunity affecting all tissues. They act by binding to two receptors, the low affinity glucocorticoid receptor (GR) and the high affinity mineralocorticoid receptor (MR). Little is known on the effect of glucocorticoid hormones on the PNS and this study focuses on deciphering the role of MR in peripheral myelination. In this work, the presence of a functional MR in Schwann cells is demonstrated and the expression of MR protein in mouse sciatic nerve SC is evidenced. Besides, knockout of MR in SC (SCMRKO using Cre-lox system with DesertHedgeHog (Dhh) Cre promoter) was undertaken in mice. SCMRKO was not associated with alterations of performance in motor behavioral tests on 2- to 6-month old male mice compared to their controls. No obvious modifications of myelin gene expression or MR signaling gene expression were observed in the SCMRKO sciatic nerves. Nevertheless, Gr transcript and GR protein amounts were significantly increased in SCMRKO nerves compared to controls, suggesting a possible compensatory effect. Besides, an increase in myelin sheath thickness was noted for axons with perimeters larger than 15 µm in SCMRKO illustrated by a significant 4.5 % reduction in g-ratio (axon perimeter/myelin sheath perimeter). Thus, we defined MR as a new player in peripheral system myelination and in SC homeostasis.

Open access

Vicki Chen, Gia V Shelp, Jacob L Schwartz, Niklas D J Aardema, Madison L Bunnell, and Clara E Cho

Micronutrients consumed in excess or imbalanced amounts during pregnancy may increase the risk of metabolic diseases in offspring, but the mechanisms underlying these effects are unknown. Serotonin (5-hydroxytryptamine, 5-HT), a multifunctional indoleamine in the brain and the gut, may have key roles in regulating metabolism. We investigated the effects of gestational micronutrient intakes on the central and peripheral serotonergic systems as modulators of the offspring's metabolic phenotypes. Pregnant Wistar rats were fed an AIN-93G diet with 1-fold recommended vitamins (RV), high 10-fold multivitamins (HV), high 10-fold folic acid with recommended choline (HFolRC), or high 10-fold folic acid with no choline (HFolNC). Male and female offspring were weaned to a high-fat RV diet for 12 weeks. We assessed the central function using the 5-HT2C receptor agonist, 1-(3-chlorophenyl)piperazine (mCPP), and found that male offspring from the HV- or HFolRC-fed dams were less responsive (P < 0.05) whereas female HFolRC offspring were more responsive to mCPP (P < 0.01) at 6 weeks post-weaning. Male and female offspring from the HV and HFolNC groups, and male HFolRC offspring had greater food intake (males P < 0.001; females P < 0.001) and weight gain (males P < 0.0001; females P < 0.0001), elevated colon 5-HT (males P < 0.01; females P < 0.001) and fasting glucose concentrations (males P < 0.01; females P < 0.01), as well as body composition toward obesity (males P < 0.01; females P < 0.01) at 12 weeks post-weaning. Colon 5-HT was correlated with fasting glucose concentrations (males R2=0.78, P < 0.0001; females R2=0.71, P < 0.0001). Overall, the serotonergic systems are sensitive to the composition of gestational micronutrients, with alterations consistent with metabolic disturbances in offspring.

Free access

Sy-Ying Leu, Yi-Ling Tsang, Li-Chun Ho, Ching-Chun Yang, Ai-Ning Shao, Chia-Yu Chang, Hui-Kuan Lin, Pei-Jane Tsai, Junne-Ming Sung, and Yau-Sheng Tsai

The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an oligomeric complex that assembles in response to exogenous signals of pathogen infection and endogenous danger signals of non-microbial origin. When NLRP3 inflammasome assembly activates caspase-1, it promotes the maturation and release of the inflammatory cytokines interleukin-1B and IL-18. Aberrant activation of the NLRP3 inflammasome has been implicated in various diseases, including chronic inflammatory, metabolic, and cardiovascular diseases. The NLRP3 inflammasome can be activated through several principal mechanisms, including K+ efflux, lysosomal damage, and the production of mitochondrial reactive oxygen species. Interestingly, metabolic danger signals activate the NLRP3 inflammasome to induce metabolic diseases. NLRP3 contains three crucial domains: an N-terminal pyrin domain, a central nucleotide-binding domain, and a C-terminal leucine-rich repeat domain. Protein–protein interactions act as a ‘pedal or brake’ to control the activation of the NLRP3 inflammasome. In this review, we present the mechanisms underlying NLRP3 inflammasome activation after induction by metabolic danger signals or via protein–protein interactions with NLRP3 that likely occur in metabolic diseases. Understanding these mechanisms will enable the development of specific inhibitors to treat NLRP3-related metabolic diseases.