You are looking at 41 - 50 of 14,249 items for

  • Refine by Access: All content x
Clear All
Open access

Carmen Corciulo, Julia M Scheffler, Piotr Humeniuk, Alicia Del Carpio Pons, Alexandra Stubelius, Ula Von Mentzer, Christina Drevinge, Aidan Barrett, Sofia Wüstenhagen, Matti Poutanen, Claes Ohlsson, Marie K Lagerquist, and Ulrika Islander

Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.

Open access

Ryan A Lafferty, Laura M McShane, Zara J Franklin, Peter R Flatt, Finbarr P M O’Harte, and Nigel Irwin

Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis1Pro4Glu9-glucagon and the acylated form desHis1Pro4Glu9(Lys12PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis1Pro4Glu9-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05–P < 0.001) circulating and pancreatic glucagon, whilst desHis1Pro4Glu9(Lys12PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05–P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis1Pro4Glu9-glucagon increased (P < 0.01–P < 0.001) O2 consumption and CO2 production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency.

Restricted access

Jocemara Patrícia Silva de Souza Parrela, Ingridys Regina Borkenhagen, Sarah Ramany Faria Salmeron, Thalyne Aparecida Leite Lima, Ginislene Dias Souza Miranda, Hercules de Oliveira Costermani, Camila Luiza Rodrigues dos Santos Ricken, Ester Vieira Alves, Rodrigo Mello Gomes, and Júlio Cezar de Oliveira

Herein, we assessed milk hormones, the biochemical composition of milk, and its association with neonatal body weight gain and metabolic homeostasis in weaned rats whose mothers were undernourished in the last third of pregnancy. From the 14th day of pregnancy until delivery, undernourished mothers had their food restricted by 50% (FR50), whereas control mothers were fed ad libitum. The litter size was adjusted to eight pups, and rats were weaned at 22 days old. Milk and blood from mothers, as well as blood and tissues from pups, were collected for further analyses. At birth, FR50 pups were smaller than control pups, and they exhibited hyperphagia and rapid catch-up growth during the suckling period. On day 12, the milk from FR50 mothers had higher energy content, glucose, total cholesterol, triglycerides, and acylated ghrelin but lower leptin and corticosterone levels. Interestingly, FR50 mothers were hypoglycemic and hyperleptinemic at the end of the nursing period. Weaned FR50 pups had an obese phenotype and exhibited insulin resistance, which was associated with hyperglycemia and hypertriglyceridemia; they also had high blood levels of total cholesterol, leptin, and acylated ghrelin. In addition, the protein expression of growth hormone secretagogue receptor (GHSR) in the hypothalamus was increased by almost 4-fold in FR50 pups. In summary, maternal calorie restriction during the last third of pregnancy disrupts energy and metabolic hormones in milk, induces pup hyperleptinemia and hyperghrelinemia, and upregulates their hypothalamic GHSR, thus suggesting that the hypothalamic neuroendocrine circuitry may be working to address the early onset of obesity.

Free access

Kirsty A Walters, Alba Moreno-Asso, Nigel K Stepto, Michael W Pankhurst, Valentina Rodriguez Paris, and Raymond J Rodgers

Polycystic ovary syndrome (PCOS) is a common endocrine condition characterised by a range of reproductive, endocrine, metabolic and psychological abnormalities. Reports estimate that around 10% of women of reproductive age are affected by PCOS, representing a significant prevalence worldwide, which poses a high economic health burden. As the origin of PCOS remains largely unknown, there is neither a cure nor mechanism-based treatments leaving patient management suboptimal and focused solely on symptomatic treatment. However, if the underlying mechanisms underpinning the development of PCOS were uncovered then this would pave the way for the development of new interventions for PCOS. Recently, there have been significant advances in our understanding of the underlying pathways likely involved in PCOS pathogenesis. Key insights include the potential involvement of androgens, insulin, anti-Müllerian hormone and transforming growth factor beta in the development of PCOS. This review will summarise the significant scientific discoveries on these factors that have enhanced our knowledge of the mechanisms involved in the development of PCOS and discuss the impact these insights may have in shaping the future development of effective strategies for women with PCOS.

Restricted access

Natalie K Y Wee, Thaísa F C de Lima, Narelle E McGregor, Emma C Walker, Ingrid J Poulton, Martha Blank, and Natalie A Sims

Bone strength is partially determined during cortical bone consolidation, a process comprising coalescence of peripheral trabecular bone and its progressive mineralisation. Mice with genetic deletion of suppressor of cytokine signalling 3 (Socs3), an inhibitor of STAT3 signalling, exhibit delayed cortical bone consolidation, indicated by high cortical porosity, low mineral content, and low bone strength. Since leptin receptor (LepR) is expressed in the osteoblast lineage and is suppressed by SOCS3, we evaluated whether LepR deletion in osteocytes would rectify the Dmp1cre.Socs3fl/fl bone defect. First, we tested LepR deletion in osteocytes by generating Dmp1cre.LepRfl/fl mice and detected no significant bone phenotype. We then generated Dmp1cre.Socs3fl/fl.LepRfl/fl mice and compared them to Dmp1cre.Socs3fl/fl controls. Between 6 and 12 weeks of age, both Dmp1cre.Socs3fl/fl.LepRfl/fl and control (Dmp1cre.Socs3fl/fl ) mice showed an increasing proportion of more heavily mineralised bone, indicating some cortical consolidation with time. However, at 12 weeks of age, rather than resolving the phenotype, delayed consolidation was extended in female Dmp1cre.Socs3fl/fl.LepRfl/fl mice. This was indicated in both metaphysis and diaphysis by greater proportions of low-density bone, lower proportions of high-density bone, and greater cortical porosity than Dmp1cre.Socs3fl/fl controls. There was also no change in the proportion of osteocytes staining positive for phospho-STAT3, suggesting the effect of LepR deletion in Dmp1cre.Socs3fl/fl mice is STAT3-independent. This identifies a new role for leptin signalling in bone which opposes our original hypothesis. Although LepR in osteocytes has no irreplaceable physiological role in normal bone maturation, when STAT3 is hyperactive, LepR in Dmp1Cre-expressing cells supports cortical consolidation.

Restricted access

Yanqiu Wang, Zhou Jin, Jiajun Sun, Xinxin Chen, Pu Xie, Yulin Zhou, and Shu Wang

Graves’ disease (GD) is characterized by dysregulation of the immune system with aberrant immune cell function. However, there have been few previous studies on the role of monocytes in the pathology of GD. The object of this study was to investigate whether and how monocytes participate in GD pathology. CD14+ monocytes were isolated from untreated initial GD patients and healthy controls. Then, RNA-seq was performed to investigate changes in global mRNA expression in monocytes and found that type I interferon (IFN) signalling was among the top upregulated signalling pathways in GD monocytes. Type I IFN-induced sialic acid-binding immunoglobulin-like lectin1 (SIGLEC1) expression was significantly upregulated in untreated GD patients and correlated with thyroid parameters. Patient serum SIGLEC1 concentrations were reduced after anti-thyroid drug treatment. Inhibiting SIGLEC1 expression could inhibit proinflammatory cytokine (IL-1β, IL-6, IL-8, IL-10 and M-CSF) expression in monocytes. In conclusion, our study suggested that type I IFN-mediated monocyte activation could have a deleterious effect on the pathogenesis of GD. These observations indicated that the inhibition of type I IFN-activated monocytes/macrophages could have a therapeutic effect on GD remission.

Restricted access

Prasanthi P Koganti, Amy H Zhao, and Vimal Selvaraj

MA-10 cells, established 4 decades ago from a murine Leydig cell tumor, has served as a key model system for studying steroidogenesis. Despite a precipitous loss in their innate ability to respond to luteinizing hormone (LH), the use of a cell-permeable cAMP analog for induction ensured their continued use. In parallel, a paradigm that serum-free conditions are essential for trophic steroidogenic stimulation was rationalized. Through the selection of LH-responsive single-cell MA-10 Slip clones, we uncovered that Leydig cells remain responsive in the presence of serum in vitro and that exogenous cholesterol delivery by lipoproteins provided a significantly elevated steroid biosynthetic response (>2-fold). In scrutinizing the underlying regulation, systems biology of the MA-10 cell proteome identified multiple Rho-GTPase signaling pathways as highly enriched. Testing Rho function in steroidogenesis revealed that its modulation can negate the specific elevation in steroid biosynthesis observed in the presence of lipoproteins/serum. This signaling modality primarily linked to the regulation of endocytic traffic is evident only in the presence of exogenous cholesterol. Inhibiting Rho function in vivo also decreased hCG-induced testosterone production in mice. Collectively, our findings dispel a long-held view that the use of serum could confound or interfere with trophic stimulation and underscore the need for exogenous lipoproteins when dissecting physiological signaling and cholesterol trafficking for steroid biosynthesis in vitro. The LH-responsive MA-10 Slip clones derived in this study present a reformed platform enabling biomimicry to study the cellular and molecular basis of mammalian steroidogenesis.

Restricted access

Wanying Qin, Ting Zhang, Mingxia Ge, Huimin Zhou, Yuhui Xu, Rongfang Mu, Chaoguang Huang, Daowei Liu, Bangrui Huang, Qian Wang, Qinghua Kong, Qingpeng Kong, Fei Li, and Wenyong Xiong

Receptor for activated C kinase 1 (RACK1) is a versatile protein involved in multiple biological processes. In a previous study by Zhao et al., hepatic RACK1 deletion in mice led to an inhibition of autophagy, blocked autophagy-dependent lipolysis, and caused steatosis. Using the same mouse model (RACK1hep−/−), we revealed new roles of RACK1 in maintaining bile acid homeostasis and hepatic glucose uptake, which further affected circulatory lipid and glucose levels. To be specific, even under hepatic steatosis, the plasma lipids were generally reduced in RACK1hep−/− mouse, which was due to the suppression of intestinal lipid absorption. Accordingly, a decrease in total bile acid level was found in RACK1hep−/− livers, gallbladders, and small intestine tissues, and specific decrease of 12-hydroxylated bile acids was detected by liquid chromatography–mass spectrometry. Consistently, reduced expression of CYP8B1 was found. A decrease in hepatic glycogen storage was also observed, which might be due to the inhibited glucose uptake by GLUT2 insufficiency. Interestingly, RACK1-KO-inducing hepatic steatosis did not raise insulin resistance (IR) nor IR-inducing factors like endoplasmic reticulum stress and inflammation. In summary, this study uncovers that hepatic RACK1 might be required in maintaining bile acid homeostasis and glucose uptake in hepatocytes. This study also provides an additional case of hepatic steatosis disassociation with insulin resistance.

Restricted access

Farrah L Saleh, Aditi A Joshi, Aya Tal, Patricia Xu, Julie R Hens, Serena L Wong, and Clare A Flannery

Girls with obesity are at increased risk of early puberty. Obesity is associated with insulin resistance and hyperinsulinemia. We hypothesized that insulin plays a physiological role in pubertal transition, and super-imposed hyperinsulinemia due to childhood obesity promotes early initiation of puberty in girls. To isolate the effect of hyperinsulinemia from adiposity, we compared pre-pubertal and pubertal states in hyperinsulinemic, lean muscle (M)-insulin-like growth factor 1 receptor (IGF-1R)-lysine (K)-arginine (R) (MKR) mice to normoinsulinemic WT, with puberty onset defined by vaginal opening (VO). Our results show MKR had greater insulin resistance and higher insulin levels (P <  0.05) than WT despite lower body weight (P < 0.0001) and similar IGF-1 levels (P = NS). Serum luteinizing hormone (LH) levels were higher in hyperinsulinemic MKR (P = 0.005), and insulin stimulation induced an increase in LH levels in WT. VO was earlier in hyperinsulinemic MKR vs WT (P < 0.0001). When compared on the day of VO, kisspeptin expression was higher in hyperinsulinemic MKR vs WT (P < 0.05), and gonadotropin-releasing hormone and insulin receptor isoform expression was similar (P = NS). Despite accelerated VO, MKR had delayed, disordered ovarian follicle and mammary gland development. In conclusion, we found that hyperinsulinemia alone without adiposity triggers earlier puberty. In our study, hyperinsulinemia also promoted dyssynchrony between pubertal initiation and progression, urging future studies in girls with obesity to assess alterations in transition to adulthood.

Open access

Shun-Neng Hsu, Louise A Stephen, Scott Dillon, Elspeth Milne, Behzad Javaheri, Andrew A Pitsillides, Amanda Novak, Jose Luis Millán, Vicky E MacRae, Katherine A Staines, and Colin Farquharson

Patients with advanced chronic kidney disease (CKD) often present with skeletal abnormalities, a condition known as renal osteodystrophy (ROD). While tissue non-specific alkaline phosphatase (TNAP) and PHOSPHO1 are critical for bone mineralization, their role in the etiology of ROD is unclear. To address this, ROD was induced in both WT and Phospho1 knockout (P1KO) mice through dietary adenine supplementation. The mice presented with hyperphosphatemia, hyperparathyroidism, and elevated levels of FGF23 and bone turnover markers. In particular, we noted that in CKD mice, bone mineral density (BMD) was increased in cortical bone (P  < 0.05) but decreased in trabecular bone (P  < 0.05). These changes were accompanied by decreased TNAP (P  < 0.01) and increased PHOSPHO1 (P  < 0.001) expression in WT CKD bones. In P1KO CKD mice, the cortical BMD phenotype was rescued, suggesting that the increased cortical BMD of CKD mice was driven by increased PHOSPHO1 expression. Other structural parameters were also improved in P1KO CKD mice. We further investigated the driver of the mineralization defects, by studying the effects of FGF23, PTH, and phosphate administration on PHOSPHO1 and TNAP expression by primary murine osteoblasts. We found both PHOSPHO1 and TNAP expressions to be downregulated in response to phosphate and PTH. The in vitro data suggest that the TNAP reduction in CKD-MBD is driven by the hyperphosphatemia and/or hyperparathyroidism noted in these mice, while the higher PHOSPHO1 expression may be a compensatory mechanism. Increased PHOSPHO1 expression in ROD may contribute to the disordered skeletal mineralization characteristic of this progressive disorder.