Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
Search for other papers by Russell T Turner in
Google Scholar
PubMed
Search for other papers by Kenneth A Philbrick in
Google Scholar
PubMed
Search for other papers by Carmen P Wong in
Google Scholar
PubMed
Search for other papers by Adam J Branscum in
Google Scholar
PubMed
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
Search for other papers by Urszula T Iwaniec in
Google Scholar
PubMed
Absence of leptin confers metabolic dysfunction resulting in morbid obesity. Bone growth and maturation are also impaired. Partial leptin resistance is more common than leptin deficiency and, when induced by feeding mice a high fat diet, often has a negative effect on bone. Here, we used a genetic model to investigate the skeletal effects of partial and total leptin resistance in mice. This was accomplished by comparing the skeletal phenotypes of 17-week-old female C57Bl6/J wild-type (WT) mice, partial leptin receptor-deficient (db/+) mice and leptin receptor-deficient (db/db) mice (n = 7–8/group), all fed a standard diet. Compared to WT mice, db/db mice were dramatically heavier and hyperleptinemic. These mice were also hypogonadal, hyperglycemic, osteopenic and had lower serum levels of bone turnover markers, osteocalcin and C-terminal telopeptide of type I collagen (CTX). Compared to WT mice, db/+ mice were 14% heavier, had 149% more abdominal white adipose tissue, and were mildly hyperglycemic. db/+ mice did not differ from WT mice in uterine weight or serum levels of markers of bone turnover, although there was a trend for lower osteocalcin. At the bone microarchitectural level, db/+ mice differed from WT mice in having more massive femurs and a trend (P = 0.072) for larger vertebrae. These findings suggest that db/+ mice fed a normal mouse diet compensate for partial leptin resistance by increasing white adipose tissue mass which results in higher leptin levels. Our findings suggest that db/+ mice are a useful diet-independent model for studying the effects of partial leptin resistance on the skeleton.
Search for other papers by Seokwon Jo in
Google Scholar
PubMed
Search for other papers by Emilyn U Alejandro in
Google Scholar
PubMed
The metabolic health trajectory of an individual is shaped as early as prepregnancy, during pregnancy, and lactation period. Both maternal nutrition and metabolic health status are critical factors in the programming of offspring toward an increased propensity to developing type 2 diabetes in adulthood. Pancreatic beta-cells, part of the endocrine islets, which are nutrient-sensitive tissues important for glucose metabolism, are primed early in life (the first 1000 days in humans) with limited plasticity later in life. This suggests the high importance of the developmental window of programming in utero and early in life. This review will focus on how changes to the maternal milieu increase offspring’s susceptibility to diabetes through changes in pancreatic beta-cell mass and function and discuss potential mechanisms by which placental-driven nutrient availability, hormones, exosomes, and immune alterations that may impact beta-cell development in utero, thereby affecting susceptibility to type 2 diabetes in adulthood.
Research Fellow of Japan Society for Promotion Science, Chiyoda-ku, Tokyo, Japan
Department of Human Sciences, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, Japan
Search for other papers by Takanaga Shirai in
Google Scholar
PubMed
Search for other papers by Tomohiro Iwata in
Google Scholar
PubMed
Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
Search for other papers by Kazuki Uemichi in
Google Scholar
PubMed
Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
Search for other papers by Riku Tanimura in
Google Scholar
PubMed
Search for other papers by Ryoto Iwai in
Google Scholar
PubMed
Search for other papers by Tohru Takemasa in
Google Scholar
PubMed
Graphical abstract
Abstract
Calorie restriction (CR) is a widely recognized dietary approach with beneficial impacts on the entire body, including enhancements in oxidative metabolism and life span extension, while maintaining nutritional balance and calorie intake. However, CR leads to reductions in skeletal muscle and fat mass due to decreased food intake. Consequently, CR significantly modifies the metabolic profile of the entire body and its tissues. The observed benefits in skeletal muscle during CR may be attributed to CR-induced signaling mediators or significant changes in blood profiles associated with CR that regulate homeostasis maintenance. This study aimed to examine the mammalian target of rapamycin signaling and mitochondrial function of skeletal muscle from mice that undergone 8 weeks of CR and cells cultured in their serum to determine whether changes in blood secreted factors during CR affect skeletal muscle cells. C57BL6/J male mice were used. For 8 weeks, these were subjected to ad libitum (AL) or 40% CR. C2C12 myotubes were subsequently treated with media containing 10% mouse serum from AL or CR for 24 h. The results indicated that 8 weeks of CR decreased muscle mass and protein synthesis response compared with the AL group. Interestingly, myotubes conditioned with CR serum exhibited an elevation in the protein synthesis response compared with those treated with AL serum. Furthermore, mitochondrial function was enhanced in both CR mice and cells treated with CR serum. These findings suggest that while CR decreases the protein synthesis response, secretory factors present in the blood during CR can activate protein synthesis and promote mitochondrial function.
Central Clinical School, Monash University, Melbourne, Victoria, Australia
Search for other papers by Emily J King in
Google Scholar
PubMed
Central Clinical School, Monash University, Melbourne, Victoria, Australia
Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia
Search for other papers by Simon T Bond in
Google Scholar
PubMed
Search for other papers by Christine Yang in
Google Scholar
PubMed
Search for other papers by Yingying Liu in
Google Scholar
PubMed
Central Clinical School, Monash University, Melbourne, Victoria, Australia
Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia
Search for other papers by Anna C Calkin in
Google Scholar
PubMed
School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
Search for other papers by Darren C Henstridge in
Google Scholar
PubMed
Central Clinical School, Monash University, Melbourne, Victoria, Australia
Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Australia
Search for other papers by Brian G Drew in
Google Scholar
PubMed
Type 2 diabetes mellitus (T2DM), a condition characterised by insulin resistance (IR) and skeletal muscle mitochondrial abnormalities, is a leading cause of death in developed societies. Much work has postulated that improving pathways linked to mitochondrial health, including autophagy, may be a potential avenue to prevent or treat T2DM. Given the recent data indicating a role for tripartite motif-containing 28 (TRIM28) in autophagy and mitochondrial pathways, we investigated whether muscle-specific deletion of TRIM28 might impact on obesity, glucose tolerance, and IR in mice. We studied two different muscle-specific (MCK-cre and ACTA1-cre-ERT2) TRIM28 knockout models, which were phenotyped during and after being fed a chow or high-fat diet (HFD). Whilst muscle-specific deletion of TRIM28 in both models demonstrated alterations in markers of mitochondrial activity and autophagy in skeletal muscle, we did not observe major impacts on the majority of metabolic measures in these mice. Specifically, we demonstrate that deletion of TRIM28 in skeletal muscle of mice during (MCK-cre) or post-development (ACTA1-cre-ERT2) does not prevent HFD-induced obesity or glucose intolerance. These findings are consistent with those reported previously in relation to autophagy and mitochondria in other cell types, and thus warrant further study into the biological role TRIM28 has in relation to mitochondrial function.
Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich, Germany
Search for other papers by Leonardo Matta in
Google Scholar
PubMed
Search for other papers by Cinthia Breves in
Google Scholar
PubMed
Search for other papers by Luiz Fonte Boa in
Google Scholar
PubMed
Search for other papers by Aina Eiras Domingos in
Google Scholar
PubMed
UMR9019 CNRS, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
Search for other papers by Caroline C Faria in
Google Scholar
PubMed
Search for other papers by Itanna Souza in
Google Scholar
PubMed
Search for other papers by Niedson Correia Lima-Junior in
Google Scholar
PubMed
Search for other papers by Anna Paola Trindade Rocha in
Google Scholar
PubMed
Search for other papers by Bianca M Gregório in
Google Scholar
PubMed
Search for other papers by Denise Pires Carvalho in
Google Scholar
PubMed
Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
Search for other papers by Andrea C F Ferreira in
Google Scholar
PubMed
Search for other papers by José Hamilton Matheus Nascimento in
Google Scholar
PubMed
Search for other papers by Leonardo Maciel in
Google Scholar
PubMed
Search for other papers by Rodrigo S Fortunato in
Google Scholar
PubMed
Estrogen deficiency is a well-known hallmark of menopause and is associated with oxidative stress and metabolic dysfunction. Quercetin (Q), a flavonoid found in fruits and vegetables, has demonstrated anti-inflammatory effects in experimental models of metabolic disorders. In this study, we aimed to investigate the effects of quercetin on retroperitoneal white adipose tissue (rWAT) redox homeostasis and systemic metabolic parameters in ovariectomized (OVX) rats. Female Wistar rats at 3 months old were divided into the following experimental groups: sham-operated treated with vehicle (DMSO 10% + PBS – 1 mL/kg); OVX (vehicle treated) and OVX-Q (25 mg/kg) – via oral gavage, daily for 5 weeks. Q did not prevent weight gain but improved glucose tolerance and blood cholesterol profile, and attenuated uterine atrophy in OVX rats. Furthermore, Q had a protective effect on rWAT, once the OVX-Q group presented lower oxidative stress levels, and reduced levels of the pro-inflammatory cytokine tumor necrosis factor alpha, compared to the OVX group. Q improved antioxidant enzyme activities such as superoxide dismutase and catalase and decreased reactive oxygen species production, in OVX-Q rats. It was followed by increased levels of total thiol content and lower lipid peroxidation. Moreover, Q reduced senescent-related genes p16INK4a and p19ARF expression which were higher in the OVX group. In conclusion, quercetin supplementation improved redox homeostasis and reduced senescence-related markers, and inflammation in rWAT, which was reflected in preserved systemic metabolic health parameters in OVX rats. These findings suggest that quercetin may have therapeutic potential for the management of metabolic disorders associated with menopause-induced estrogen deficiency.
Search for other papers by Neil Tanday in
Google Scholar
PubMed
Search for other papers by Aimee Coulter-Parkhill in
Google Scholar
PubMed
Search for other papers by R Charlotte Moffett in
Google Scholar
PubMed
Search for other papers by Karthick Suruli in
Google Scholar
PubMed
Search for other papers by Vaibhav Dubey in
Google Scholar
PubMed
Search for other papers by Peter R Flatt in
Google Scholar
PubMed
Search for other papers by Nigel Irwin in
Google Scholar
PubMed
The present study examines differences in metabolic and pancreatic islet adaptative responses following streptozotocin (STZ) and hydrocortisone (HC) administration in male and female transgenic GluCreERT2/Rosa26-eYFP mice. Mice received five daily doses of STZ (50 mg/kg, i.p.) or 10 daily doses of HC (70 mg/kg, i.p.), with parameters assessed on day 11. STZ-induced hyperglycaemia was evident in both sexes, alongside impaired glucose tolerance and reduced insulin concentrations. HC also had similar metabolic effects in male and female mice resulting in classical increases of circulating insulin indicative of insulin resistance. Control male mice had larger pancreatic islets than females and displayed a greater reduction of islet and beta-cell area in response to STZ insult. In addition, female STZ mice had lower levels of beta-cell apoptosis than male counterparts. Following HC administration, female mouse islets contained a greater proportion of alpha cells when compared to males. All HC mice presented with relatively comparable increases in beta- and alpha-cell turnover rates, with female mice being slightly more susceptible to HC-induced beta-cell apoptosis. Interestingly, healthy control female mice had inherently increased alpha-to-beta-cell transdifferentiation rates, which was decreased by HC treatment. The number of glucagon-positive alpha cells altering their lineage to insulin-positive beta cells was increased in male, but not female, STZ mice. Taken together, although there was no obvious sex-specific alteration of metabolic profile in STZ or HC mice, subtle differences in pancreatic islet morphology emphasises the impact of sex hormones on islets and importance of taking care when interpreting observations between males and females.
Search for other papers by James Cantley in
Google Scholar
PubMed
Department of Medicine, Université de Montréal, Montréal, QC, Canada
Search for other papers by Vincent Poitout in
Google Scholar
PubMed
Department of Medicine, University of Washington, Seattle, Washington, USA
Search for other papers by Rebecca L Hull-Meichle in
Google Scholar
PubMed
The year 2023 marks 100 years since publication of the first report of a hyperglycemic factor in pancreatic extracts which C P Kimball and John R Murlin named glucagon (from GLUCose AGONist). Glucagon has a range of profound effects on metabolism including, but not limited to, stimulation of hepatic glucose production. Dysregulation of glucagon secretion is a key feature of both major forms of diabetes, leading to the concept that diabetes is a bihormonal disorder. Still, the work to fully understand the production and biological effects of glucagon has proceeded at a slower pace compared to that of insulin. A recent resurgence of interest in the islet alpha (α) cell, the predominant site of glucagon production, has been facilitated in part by technological innovations. This work has led to significant developments in the field, from defining how alpha cells develop and how glucagon secretion from pancreatic alpha cells is regulated to determining the role of glucagon in metabolic homeostasis and the progression of both major forms of diabetes. In addition, glucagon is considered to be a promising target for diabetes therapy, with many new potential applications arising from research in this field. This collection of reviews, led by Guest Editors James Cantley, Vincent Poitout and Rebecca Hull-Meichle, is intended to capture the field’s current understanding of glucagon and alpha cell biology, as well stimulate additional interest and research on this important hormone.
Search for other papers by Marilyn B Renfree in
Google Scholar
PubMed
Search for other papers by Geoff Shaw in
Google Scholar
PubMed
Since the discovery in 1968 that dihydrotestosterone (DHT) is a major mediator of androgen action, a convincing body of evidence has accumulated to indicate that the major pathway of DHT formation is the 5α-reduction of circulating testosterone in androgen target tissues. However, we now know that DHT can also be formed in peripheral tissues by the oxidation of 5α-androstane-3α,17β-diol (adiol). This pathway is responsible for the formation of the male phenotype. We discuss the serendipitous discovery in the tammar wallaby of an alternate pathway by which adiol is formed in the testes, secreted into plasma and converted in peripheral tissues to DHT. This alternate pathway is responsible for virilisation of the urogenital system in this species and is present in the testes at the onset of male puberty of all mammals studied so far. This is the first clear-cut function for steroid 5α-reductase 1 in males. Unexpectedly, the discovery of this pathway in this Australian marsupial has had a major impact in understanding the pathophysiology of aberrant virilisation in female newborns. Overactivity of the alternate pathway appears to explain virilisation in congenital adrenal hyperplasia CAH, in X-linked 46,XY disorders of sex development. It also appears to be important in polycystic ovarian syndrome (PCOS) since PCOS ovaries have enhanced the expression of genes and proteins of the alternate pathway. It is now clear that normal male development in marsupials, rodents and humans requires the action of both the classic and the alternate (backdoor) pathways.
Division of Pediatrics, University of Oviedo, Oviedo, Spain
Department of Pediatrics, Hospital Universitario Central, Oviedo, Spain
Search for other papers by Rocío Fuente in
Google Scholar
PubMed
Search for other papers by Eva-Maria Pastor-Arroyo in
Google Scholar
PubMed
Search for other papers by Nicole Gehring in
Google Scholar
PubMed
Search for other papers by Patricia Oro Carbajosa in
Google Scholar
PubMed
Search for other papers by Laura Alonso-Durán in
Google Scholar
PubMed
Search for other papers by Ivan Zderic in
Google Scholar
PubMed
Search for other papers by James Tapia-Dean in
Google Scholar
PubMed
Search for other papers by Ahmad Kamal Hamid in
Google Scholar
PubMed
Search for other papers by Carla Bettoni in
Google Scholar
PubMed
Department of Pediatrics, Hospital Universitario Central, Oviedo, Spain
Search for other papers by Fernando Santos in
Google Scholar
PubMed
Search for other papers by Carsten A Wagner in
Google Scholar
PubMed
Search for other papers by Isabel Rubio-Aliaga in
Google Scholar
PubMed
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.
Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
Search for other papers by Yoo Kim in
Google Scholar
PubMed
Search for other papers by Junsik M Lee in
Google Scholar
PubMed
Search for other papers by Youngah Han in
Google Scholar
PubMed
Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
Search for other papers by Rongya Tao in
Google Scholar
PubMed
Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
Search for other papers by Morris F White in
Google Scholar
PubMed
Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
Search for other papers by Renyan Liu in
Google Scholar
PubMed
Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
Search for other papers by Sang Won Park in
Google Scholar
PubMed
Bromodomain-containing protein 7 (BRD7) has emerged as a player in the regulation of glucose homeostasis. Hepatic BRD7 levels are decreased in obese mice, and the reinstatement of hepatic BRD7 in obese mice has been shown to establish euglycemia and improve glucose homeostasis. Of note, the upregulation of hepatic BRD7 levels activates the AKT cascade in response to insulin without enhancing the sensitivity of the insulin receptor (InsR)–insulin receptor substrate (IRS) axis. In this report, we provide evidence for the existence of an alternative insulin signaling pathway that operates independently of IRS proteins and demonstrate the involvement of BRD7 in this pathway. To investigate the involvement of BRD7 as a downstream component of InsR, we utilized liver-specific InsR knockout mice. Additionally, we employed liver-specific IRS1/2 knockout mice to examine the requirement of IRS1/2 for the action of BRD7. Our investigation of glucose metabolism parameters and insulin signaling unveiled the significance of InsR activation in mediating BRD7’s effect on glucose homeostasis in the liver. Moreover, we identified an interaction between BRD7 and InsR. Notably, our findings indicate that IRS1/2 is not necessary for BRD7's regulation of glucose metabolism, particularly in the context of obesity. The upregulation of hepatic BRD7 significantly reduces blood glucose levels and restores glucose homeostasis in high-fat diet-challenged liver-specific IRS1/2 knockout mice. These findings highlight the presence of an alternative insulin signaling pathway that operates independently of IRS1/2 and offer novel insights into the mechanisms of a previously unknown insulin signaling in obesity.