Browse

You are looking at 1 - 10 of 130 items for

  • Open access x
Clear All
Open access

Qinglei Yin, Liyun Shen, Yicheng Qi, Dalong Song, Lei Ye, Ying Peng, Yanqiu Wang, Zhou Jin, Guang Ning, Weiqing Wang, Dongping Lin, and Shu Wang

SIRT1, a class III histone/protein deacetylase (HDAC), has been associated with autoimmune diseases. There is a paucity of data about the role of SIRT1 in Graves’ disease. The aim of this study was to investigate the role of SIRT1 in the pathogenesis of GD. Here, we showed that SIRT1 expression and activity were significantly decreased in GD patients compared with healthy controls. The NF-κB pathway was activated in the peripheral blood of GD patients. The reduced SIRT1 levels correlated strongly with clinical parameters. In euthyroid patients, SIRT1 expression was markedly upregulated and NF-κB downstream target gene expression was significantly reduced. SIRT1 inhibited the NF-κB pathway activity by deacetylating P65. These results demonstrate that reduced SIRT1 expression and activity contribute to the activation of the NF-κB pathway and may be involved in the pathogenesis of GD.

Open access

Pauline Campos, Jamie J Walker, and Patrice Mollard

In most species, survival relies on the hypothalamic control of endocrine axes that regulate critical functions such as reproduction, growth, and metabolism. For decades, the complexity and inaccessibility of the hypothalamic–pituitary axis has prevented researchers from elucidating the relationship between the activity of endocrine hypothalamic neurons and pituitary hormone secretion. Indeed, the study of central control of endocrine function has been largely dominated by ‘traditional’ techniques that consist of studying in vitro or ex vivo isolated cell types without taking into account the complexity of regulatory mechanisms at the level of the brain, pituitary and periphery. Nowadays, by exploiting modern neuronal transfection and imaging techniques, it is possible to study hypothalamic neuron activity in situ, in real time, and in conscious animals. Deep-brain imaging of calcium activity can be performed through gradient-index lenses that are chronically implanted and offer a ‘window into the brain’ to image multiple neurons at single-cell resolution. With this review, we aim to highlight deep-brain imaging techniques that enable the study of neuroendocrine neurons in awake animals whilst maintaining the integrity of regulatory loops between the brain, pituitary and peripheral glands. Furthermore, to assist researchers in setting up these techniques, we discuss the equipment required and include a practical step-by-step guide to performing these deep-brain imaging studies.

Open access

Lisa L Koorneef, Jan Kroon, Eva M G Viho, Lucas F Wahl, Kim M L Heckmans, Marloes M A R van Dorst, Menno Hoekstra, René Houtman, Hazel Hunt, and Onno C Meijer

Glucocorticoids mediate numerous essential processes in the human body via binding to the glucocorticoid receptor (GR). Excessive GR signaling can cause disease, and GR antagonists can be used to treat many symptoms of glucocorticoid-induced pathology. The purpose of this study was to characterize the tissue-specific properties of the selective GR antagonist CORT125281. We evaluated the antagonistic effects of CORT125281 upon acute and subchronic corticosterone exposure in mice. In the acute corticosterone setting, hypothalamus-pituitary-adrenal-axis activity was investigated by measurement of basal- and stress-induced corticosterone levels, adrenocorticotropic hormone levels and pituitary proopiomelanocortin expression. GR signaling was evaluated by RT-PCR analysis of GR-responsive transcripts in liver, muscle, brown adipose tissue (BAT), white adipose tissue (WAT) and hippocampus. Pretreatment with a high dose of CORT125281 antagonized GR activity in a tissue-dependent manner. We observed complete inhibition of GR-induced target gene expression in the liver, partial blockade in muscle and BAT and no antagonism in WAT and hippocampus. Tissue distribution only partially explained the lack of effective antagonism. CORT125281 treatment did not disinhibit the hypothalamus-pituitary-adrenal neuroendocrine axis. In the subchronic corticosterone setting, CORT125281 partially prevented corticosterone-induced hyperinsulinemia, but not hyperlipidemia and immune suppression. In conclusion, CORT125281 antagonizes GR transcriptional activity in a tissue-dependent manner and improves corticosterone-induced hyperinsulinemia. Tailored dosing of CORT125281 may allow tissue-specific inhibition of GR transcriptional activity.

Open access

Amanda E Garza, Elijah Trefts, Isis A Katayama Rangel, Danielle Brooks, Rene Baudrand, Burhanuddin Moize, Jose R Romero, Sanjay Ranjit, Thitinan Treesaranuwattana, Tham M Yao, Gail K Adler, Luminita H Pojoga, and Gordon H Williams

Aldosterone modulates the activity of both epithelial (specifically renal) and non-epithelial cells. Binding to the mineralocorticoid receptor (MR), activates two pathways: the classical genomic and the rapidly activated non-genomic that is substantially modulated by the level of striatin. We hypothesized that disruption of MR’s non-genomic pathway would alter aldosterone-induced cardiovascular/renal damage. To test this hypothesis, wild type (WT) and striatin heterozygous knockout (Strn+/ ) littermate male mice were fed a liberal sodium (1.6% Na+) diet and randomized to either protocol one: 3 weeks of treatment with either vehicle or aldosterone plus/minus MR antagonists, eplerenone or esaxerenone or protocol two: 2 weeks of treatment with either vehicle or L-NAME/AngII plus/minus MR antagonists, spironolactone or esaxerenone. Compared to the WT mice, basally, the Strn+/ mice had greater (~26%) estimated renal glomeruli volume and reduced non-genomic second messenger signaling (pAkt/Akt ratio) in kidney tissue. In response to active treatment, the striatin-associated-cardiovascular/renal damage was limited to volume effects induced by aldosterone infusion: significantly increased blood pressure (BP) and albuminuria. In contrast, with aldosterone or L-NAME/AngII treatment, striatin deficiency did not modify aldosterone-mediated damage: in the heart and kidney, macrophage infiltration, and increases in aldosterone-induced biomarkers of injury. All changes were near-normalized following MR blockade with spironolactone or esaxerenone, except increased BP in the L-NAME/AngII model. In conclusion, the loss of striatin amplified aldosterone-induced damage suggesting that aldosterone’s non-genomic pathway is protective but only related to effects likely mediated via epithelial, but not non-epithelial cells.

Open access

Nikolaos Nikolaou, Anastasia Arvaniti, Nathan Appanna, Anna Sharp, Beverly A Hughes, Dena Digweed, Martin J Whitaker, Richard Ross, Wiebke Arlt, Trevor M Penning, Karen Morris, Sherly George, Brian G Keevil, Leanne Hodson, Laura L Gathercole, and Jeremy W Tomlinson

Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.

Open access

Sian J S Simpson, Lorna I F Smith, Peter M Jones, and James E Bowe

The corticotropin-releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic-pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.

Open access

Yoshinori Kanemaru, Norio Harada, Satoko Shimazu-Kuwahara, Shunsuke Yamane, Eri Ikeguchi, Yuki Murata, Sakura Kiyobayashi, Tomonobu Hatoko, and Nobuya Inagaki

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin secreted from enteroendocine K cells after nutrient ingestion. Fat strongly induces GIP secretion, and GIP hypersecretion is involved in high-fat diet-induced obesity and insulin resistance. Aging also induces GIP hypersecretion, but its effect on body weight gain and insulin sensitivity remains unclear. In the present study, we investigated the effect of GIP on age-related body weight gain and insulin resistance using GIP-knockout homozygous (GIP−/) and heterozygous (GIP+/) mice, which have entirely absent and 50% reduced GIP secretion compared to wild-type (WT) mice, respectively. Under 12% fat-containing normal diet feeding condition, body weight was significantly lower in GIP−/ mice compared to that in WT and GIP+/ mice from 38 weeks of age, while there was no significant difference between WT and GIP+/ mice. Visceral and s.c. fat mass were also significantly lower in GIP−/ mice compared to those in WT and GIP+/ mice. During oral glucose tolerance test, blood glucose levels did not differ among the three groups. Insulin levels were significantly lower in GIP−/ mice than those in WT and GIP+/ mice. During insulin tolerance test, GIP−/mice showed higher insulin sensitivity than that of WT and GIP+/ mice. Adiponectin mRNA levels were increased and leptin mRNA levels tended to be decreased in adipose tissue of GIP−/ mice. These results demonstrate that GIP is involved in age-related obesity and insulin resistance and that inhibition of GIP secretion alleviates age-related fat mass gain and insulin resistance under carbohydrate-based diet feeding condition.

Open access

Shisan Xu, Fangjing Xie, Li Tian, Samane Fallah, Fatemeh Babaei, Sinai H C Manno, Francis A M Manno III, Lina Zhu, Kin Fung Wong, Yimin Liang, Rajkumar Ramalingam, Lei Sun, Xin Wang, Robert Plumb, Lee Gethings, Yun Wah Lam, and Shuk Han Cheng

Sexual differences have been observed in the onset and prognosis of human cardiovascular diseases, but the underlying mechanisms are not clear. Here, we found that zebrafish heart regeneration is faster in females, can be accelerated by estrogen and is suppressed by the estrogen-antagonist tamoxifen. Injuries to the zebrafish heart, but not other tissues, increased plasma estrogen levels and the expression of estrogen receptors, especially esr2a. The resulting endocrine disruption induces the expression of the female-specific protein vitellogenin in male zebrafish. Transcriptomic analyses suggested heart injuries triggered pronounced immune and inflammatory responses in females. These responses, previously shown to elicit heart regeneration, could be enhanced by estrogen treatment in males and reduced by tamoxifen in females. Furthermore, a prior exposure to estrogen preconditioned the zebrafish heart for an accelerated regeneration. Altogether, this study reveals that heart regeneration is modulated by an estrogen-inducible inflammatory response to cardiac injury. These findings elucidate a previously unknown layer of control in zebrafish heart regeneration and provide a new model system for the study of sexual differences in human cardiac repair.

Open access

Romain Fontaine, Eirill Ager-Wick, Kjetil Hodne, and Finn-Arne Weltzien

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhβ, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.

Open access

Koichiro Taguchi, Kazuo Kajita, Yoshihiko Kitada, Masayuki Fuwa, Motochika Asano, Takahide Ikeda, Toshiko Kajita, Tatsuo Ishizuka, Itaru Kojima, and Hiroyuki Morita

Despite extensive investigation, the mechanisms underlying adipogenesis are not fully understood. We previously identified proliferative cells in adipose tissue expressing adipocyte-specific genes, which were named small proliferative adipocytes (SPA). In this study, we investigated the characteristics and roles of SPA in adipose tissue. Epididymal and inguinal fat was digested by collagenase, and then SPA were separated by centrifugation from stromal vascular cells (SVC) and mature white adipocytes. To clarify the feature of gene expression in SPA, microarray and real-time PCR were performed. The expression of adipocyte-specific genes and several neuronal genes was increased in the order of SVC < SPA < mature white adipocytes. In addition, proliferin was detected only in SPA. SPA differentiated more effectively into lipid-laden cells than SVC. Moreover, differentiated SPA expressed uncoupling protein 1 and mitochondria-related genes more than differentiated SVC. Treatment of SPA with pioglitazone and CL316243, a specific β3-adrenergic receptor agonist, differentiated SPA into beige-like cells. Therefore, SPA are able to differentiate into beige cells. SPA isolated from epididymal fat (epididymal SPA), but not SPA from inguinal fat (inguinal SPA), expressed a marker of visceral adipocyte precursor, WT1. However, no significant differences were detected in the expression levels of adipocyte-specific genes or neuronal genes between epididymal and inguinal SPA. The ability to differentiate into lipid-laden cells in epididymal SPA was a little superior to that in inguinal SPA, whereas the ability to differentiate into beige-like cells was greater in inguinal SPA than epididymal SPA. In conclusion, SPA may be progenitors of beige cells.