Browse

You are looking at 101 - 110 of 198 items for

  • Refine by access: Open Access content only x
Clear All
Claes Ohlsson Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Close
,
Petra Henning Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Petra Henning in
Google Scholar
PubMed
Close
,
Karin H Nilsson Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Karin H Nilsson in
Google Scholar
PubMed
Close
,
Jianyao Wu Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Jianyao Wu in
Google Scholar
PubMed
Close
,
Karin L Gustafsson Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Karin L Gustafsson in
Google Scholar
PubMed
Close
,
Klara Sjögren Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Klara Sjögren in
Google Scholar
PubMed
Close
,
Anna Törnqvist Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Anna Törnqvist in
Google Scholar
PubMed
Close
,
Antti Koskela Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland

Search for other papers by Antti Koskela in
Google Scholar
PubMed
Close
,
Fu-Ping Zhang Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland

Search for other papers by Fu-Ping Zhang in
Google Scholar
PubMed
Close
,
Marie K Lagerquist Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Marie K Lagerquist in
Google Scholar
PubMed
Close
,
Matti Poutanen Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden
Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland

Search for other papers by Matti Poutanen in
Google Scholar
PubMed
Close
,
Juha Tuukkanen Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland

Search for other papers by Juha Tuukkanen in
Google Scholar
PubMed
Close
,
Ulf H Lerner Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Ulf H Lerner in
Google Scholar
PubMed
Close
, and
Sofia Movérare-Skrtic Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden

Search for other papers by Sofia Movérare-Skrtic in
Google Scholar
PubMed
Close

Substantial progress has been made in the therapeutic reduction of vertebral fracture risk in patients with osteoporosis, but non-vertebral fracture risk has been improved only marginally. Human genetic studies demonstrate that the WNT16 locus is a major determinant of cortical bone thickness and non-vertebral fracture risk and mouse models with life-long Wnt16 inactivation revealed that WNT16 is a key regulator of cortical thickness. These studies, however, could not exclude that the effect of Wnt16 inactivation on cortical thickness might be caused by early developmental and/or growth effects. To determine the effect of WNT16 specifically on adult cortical bone homeostasis, Wnt16 was conditionally ablated in young adult and old mice through tamoxifen-inducible Cre-mediated recombination using CAG-Cre-ER; Wnt16 flox/flox (Cre-Wnt16 flox/flox) mice. First, 10-week-old Cre-Wnt16 flox/flox and Wnt16 flox/flox littermate control mice were treated with tamoxifen. Four weeks later, Wnt16 mRNA levels in cortical bone were reduced and cortical thickness in femur was decreased in Cre-Wnt16 flox/flox mice compared to Wnt16 flox/flox mice. Then, inactivation of Wnt16 in 47-week-old mice (evaluated four weeks later) resulted in a reduction of Wnt16 mRNA levels, cortical thickness and cortical bone strength with no effect on trabecular bone volume fraction. Mechanistic studies demonstrated that the reduced cortical bone thickness was caused by a combination of increased bone resorption and reduced periosteal bone formation. In conclusion, WNT16 is a crucial regulator of cortical bone thickness in young adult and old mice. We propose that new treatment strategies targeting the adult regulation of WNT16 might be useful to reduce fracture risk at cortical bone sites.

Open access
Andrea Mafficini ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy

Search for other papers by Andrea Mafficini in
Google Scholar
PubMed
Close
and
Aldo Scarpa ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy

Search for other papers by Aldo Scarpa in
Google Scholar
PubMed
Close

Neuroendocrine tumours (NETs) may arise throughout the body and are a highly heterogeneous, relatively rare class of neoplasms difficult to study also for the lack of disease models. Despite this, knowledge on their molecular alterations has expanded in the latest years, also building from genetic syndromes causing their onset. Pancreatic NETs (PanNETs) have been among the most studied, and research so far has outlined a series of recurring features, as inactivation of MEN1, VHL, TSC1/2 genes and hyperactivation of the PI3K/mTOR pathway. Next-generation sequencing has added new information by showing the key role of alternative lengthening of telomeres, driven in a fraction of PanNETs by inactivation of ATRX/DAXX. Despite this accumulation of knowledge, single studies often relied on few cases or were limited to the DNA, RNA, protein or epigenetic level with lack of integrative analysis. The International Cancer Genome Consortium aimed at removing these barriers through a strict process of data and samples collection, to produce whole-genome integrated analyses for many tumour types. The results of this effort on PanNETs have been recently published and, while confirming previous observations provide a first snapshot of how heterogeneous is the combination of genetic alterations that drive this tumour type, yet converging into four pathways whose alteration has been enriched by newly discovered mechanisms. While calling for further integration of genetic and epigenetic analyses, these data allow to reconcile previous findings in a defined frame and may provide clinical research with markers for patients stratification and to guide targeted therapy decisions.

Open access
Gulizar Issa Ameen Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK

Search for other papers by Gulizar Issa Ameen in
Google Scholar
PubMed
Close
and
Silvia Mora Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK

Search for other papers by Silvia Mora in
Google Scholar
PubMed
Close

Obesity leads to adipose tissue dysfunction, insulin resistance and diabetes. Adipose tissue produces adipokines that contribute to regulate insulin sensitivity. In turn, insulin stimulates the production and release of some adipokines. Casitas-b-lymphoma proteins (c-Cbl, Cbl-b and Cbl3) are intracellular adaptor signalling proteins that are rapidly phosphorylated by activation of tyrosine kinase receptors. c-Cbl is rapidly phosphorylated by insulin in adipocytes. Here, we tested the hypothesis that Cbl signalling regulates adipokine expression in adipose tissue. We determined the adipokine profile of WAT of Cbl−/− and Cbl+/+ mice in the C57BL6 background. Female Cbl−/− mice exhibited altered expression of adiponectin, leptin and RBP4 in visceral adipose tissue, while no significant changes were seen in male mice. TNFα and IL6 levels were unaffected by Cbl depletion. RBP4 expression was unchanged in liver. Adipose tissue of Cbl−/− animals showed increased basal activation of extracellular regulated kinases (ERK1/2) compared to Cbl+/+. c-Cbl knockdown in 3T3L1 adipocytes also increased basal ERK phosphorylation and RBP4 expression. Inhibition of ERK1/2 phosphorylation in Cbl-depleted 3T3L1 adipocytes or in adipose tissue explants of Cbl−/− mice reduced RBP4 mRNA. 17β-Estradiol increased RBP4 mRNA in adipocytes. Cbl depletion did not change ER expression but increased phosphorylation of ERα at S118, a target site for ERK1/2. ERK1/2 inhibition reduced phosphoER and RBP4 levels. These findings suggest that Cbl contributes to regulate RBP4 expression in adipose of female mice through ERK1/2-mediated activation of ERα. Since Cbl signalling is compromised in diabetes, these data highlight a novel mechanism that upregulates RBP4 locally.

Open access
E Meimaridou Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, London, UK

Search for other papers by E Meimaridou in
Google Scholar
PubMed
Close
,
M Goldsworthy MRC Harwell Institute, Genetics of Type 2 Diabetes, Mammalian Genetics Unit, Oxfordshire, UK

Search for other papers by M Goldsworthy in
Google Scholar
PubMed
Close
,
V Chortis Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by V Chortis in
Google Scholar
PubMed
Close
,
E Fragouli Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, London, UK

Search for other papers by E Fragouli in
Google Scholar
PubMed
Close
,
P A Foster Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by P A Foster in
Google Scholar
PubMed
Close
,
W Arlt Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by W Arlt in
Google Scholar
PubMed
Close
,
R Cox MRC Harwell Institute, Genetics of Type 2 Diabetes, Mammalian Genetics Unit, Oxfordshire, UK

Search for other papers by R Cox in
Google Scholar
PubMed
Close
, and
L A Metherell Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, London, UK

Search for other papers by L A Metherell in
Google Scholar
PubMed
Close

Nicotinamide nucleotide transhydrogenase, NNT, is a ubiquitous protein of the inner mitochondrial membrane with a key role in mitochondrial redox balance. NNT produces high concentrations of NADPH for detoxification of reactive oxygen species by glutathione and thioredoxin pathways. In humans, NNT dysfunction leads to an adrenal-specific disorder, glucocorticoid deficiency. Certain substrains of C57BL/6 mice contain a spontaneously occurring inactivating Nnt mutation and display glucocorticoid deficiency along with glucose intolerance and reduced insulin secretion. To understand the underlying mechanism(s) behind the glucocorticoid deficiency, we performed comprehensive RNA-seq on adrenals from wild-type (C57BL/6N), mutant (C57BL/6J) and BAC transgenic mice overexpressing Nnt (C57BL/6JBAC). The following results were obtained. Our data suggest that Nnt deletion (or overexpression) reduces adrenal steroidogenic output by decreasing the expression of crucial, mitochondrial antioxidant (Prdx3 and Txnrd2) and steroidogenic (Cyp11a1) enzymes. Pathway analysis also revealed upregulation of heat shock protein machinery and haemoglobins possibly in response to the oxidative stress initiated by NNT ablation. In conclusion, using transcriptomic profiling in adrenals from three mouse models, we showed that disturbances in adrenal redox homeostasis are mediated not only by under expression of NNT but also by its overexpression. Further, we demonstrated that both under expression or overexpression of NNT reduced corticosterone output implying a central role for it in the control of steroidogenesis. This is likely due to a reduction in the expression of a key steroidogenic enzyme, Cyp11a1, which mirrored the reduction in corticosterone output.

Open access
Scott Haston Developmental Biology and Cancer Research Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK

Search for other papers by Scott Haston in
Google Scholar
PubMed
Close
,
Saba Manshaei Developmental Biology and Cancer Research Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK

Search for other papers by Saba Manshaei in
Google Scholar
PubMed
Close
, and
Juan Pedro Martinez-Barbera Developmental Biology and Cancer Research Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK

Search for other papers by Juan Pedro Martinez-Barbera in
Google Scholar
PubMed
Close

Evidence for the presence of pituitary gland stem cells has been provided over the last decade using a combination of approaches including in vitro clonogenicity assays, flow cytometric side population analysis, immunohistochemical analysis and genetic approaches. These cells have been demonstrated to be able to self-renew and undergo multipotent differentiation to give rise to all hormonal lineages of the anterior pituitary. Furthermore, evidence exists for their contribution to regeneration of the organ and plastic responses to changing physiological demand. Recently, stem-like cells have been isolated from pituitary neoplasms raising the possibility that a cytological hierarchy exists, in keeping with the cancer stem cell paradigm. In this manuscript, we review the evidence for the existence of pituitary stem cells, their role in maintaining organ homeostasis and the regulation of their differentiation. Furthermore, we explore the emerging concept of stem cells in pituitary tumours and their potential roles in these diseases.

Open access
Zhenguang Zhang University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK

Search for other papers by Zhenguang Zhang in
Google Scholar
PubMed
Close
,
Agnes E Coutinho University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK

Search for other papers by Agnes E Coutinho in
Google Scholar
PubMed
Close
,
Tak Yung Man University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK

Search for other papers by Tak Yung Man in
Google Scholar
PubMed
Close
,
Tiina M J Kipari Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, UK

Search for other papers by Tiina M J Kipari in
Google Scholar
PubMed
Close
,
Patrick W F Hadoke University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK

Search for other papers by Patrick W F Hadoke in
Google Scholar
PubMed
Close
,
Donald M Salter Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, UK

Search for other papers by Donald M Salter in
Google Scholar
PubMed
Close
,
Jonathan R Seckl University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK

Search for other papers by Jonathan R Seckl in
Google Scholar
PubMed
Close
, and
Karen E Chapman University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK

Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Close

11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) predominantly converts inert glucocorticoids into active forms, thereby contributing to intracellular glucocorticoid levels. 11β-HSD1 is dynamically regulated during inflammation, including in macrophages where it regulates phagocytic capacity. The resolution of inflammation in some disease models including inflammatory arthritis is impaired by 11β-HSD1 deficiency or inhibition. However, 11β-HSD1 deficiency/inhibition also promotes angiogenesis, which is beneficial in mouse models of surgical wound healing, myocardial infarction or obesity. The cell types responsible for the anti-inflammatory and anti-angiogenic roles of 11β-HSD1 have not been characterised. Here, we generated Hsd11b1 MKO mice with LysM-Cre mediated deletion of Hsd11b1 to investigate whether 11β-HSD1 deficiency in myeloid phagocytes is pro-angiogenic and/or affects the resolution of inflammation. Resolution of inflammatory K/BxN-induced arthritis was impaired in Hsd11b1 MKO mice to a similar extent as in mice globally deficient in 11β-HSD1. This was associated with >2-fold elevation in levels of the endothelial marker Cdh5 mRNA, suggesting increased angiogenesis in joints of Hsd11b1 MKO mice following arthritis. A pro-angiogenic phenotype was confirmed by measuring angiogenesis in subcutaneously implanted polyurethane sponges, in which Hsd11b1 MKO mice showed 20% greater vessel density than their littermate controls, associated with higher expression of Cdh5. Thus, 11β-HSD1 deficiency in myeloid phagocytes promotes angiogenesis. Targeting 11β-HSD1 in macrophages may be beneficial in tissue repair.

Open access
Joachim M Weitzel Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

Search for other papers by Joachim M Weitzel in
Google Scholar
PubMed
Close
,
Torsten Viergutz Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

Search for other papers by Torsten Viergutz in
Google Scholar
PubMed
Close
,
Dirk Albrecht Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany

Search for other papers by Dirk Albrecht in
Google Scholar
PubMed
Close
,
Rupert Bruckmaier Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Search for other papers by Rupert Bruckmaier in
Google Scholar
PubMed
Close
,
Marion Schmicke Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Hannover, Germany

Search for other papers by Marion Schmicke in
Google Scholar
PubMed
Close
,
Armin Tuchscherer Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

Search for other papers by Armin Tuchscherer in
Google Scholar
PubMed
Close
,
Franziska Koch Institute of Nutritional Physiology ‘Oskar Kellner’, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

Search for other papers by Franziska Koch in
Google Scholar
PubMed
Close
, and
Björn Kuhla Institute of Nutritional Physiology ‘Oskar Kellner’, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

Search for other papers by Björn Kuhla in
Google Scholar
PubMed
Close

During the transition between late gestation and early lactation, dairy cows experience severe metabolic stress due to the high energy and nutrient requirements of the fetus and the mammary gland. Additional thermal stress that occurs with rising temperatures during the ongoing climate change has further adverse implications on energy intake, metabolism and welfare. The thyroid hormone (TH)-mediated cellular signaling has a pivotal role in regulation of body temperature, energy intake and metabolic adaptation to heat. To distinguish between energy intake and heat stress-related effects, Holstein cows were first kept at thermoneutrality at 15°C followed by exposure to heat stress (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days, in late pregnancy and again in early lactation. Herein, we focused on hepatic metabolic changes associated with alterations in the hypothalamic–pituitary–thyroid axis in HS and PF animals. T3 and T4 levels dropped with HS or PF; however, in HS animals, this decline was more pronounced. Thyroid-stimulating hormone (TSH) levels remain unaffected, while plasma cholesterol concentrations were lower in HS than PF animals. Hepatic marker genes for TH action (THRA, DIO1 and PPARGC1) decreased after HS and were lower compared to PF cows but only post-partum. Proteomics data revealed reduced hepatic amino acid catabolism ante-partum and a shift toward activated beta-oxidation and gluconeogenesis but declined oxidative stress defense post-partum. Thus, liver metabolism of HS and PF cows adapts differently to diminished energy intake both ante-partum and post-partum, and a different TH sensitivity is involved in the regulation of catabolic processes.

Open access
Colin P Sibley Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK

Search for other papers by Colin P Sibley in
Google Scholar
PubMed
Close

Placental dysfunction underlies major obstetric diseases such as pre-eclampsia and fetal growth restriction (FGR). Whilst there has been a little progress in prophylaxis, there are still no treatments for placental dysfunction in normal obstetric practice. However, a combination of increasingly well-described in vitro systems for studying the human placenta, together with the availability of more appropriate animal models of pre-eclampsia and FGR, has facilitated a recent surge in work aimed at repurposing drugs and therapies, developed for other conditions, as treatments for placental dysfunction. This review: (1) highlights potential candidate drug targets in the placenta – effectors of improved uteroplacental blood flow, anti-oxidants, heme oxygenase induction, inhibition of HIF, induction of cholesterol synthesis pathways, increasing insulin-like growth factor II availability; (2) proposes an experimental pathway for taking a potential drug or treatment for placental dysfunction from concept through to early phase clinical trials, utilizing techniques for studying the human placenta in vitro and small animal models, particularly the mouse, for in vivo studies; (3) describes the data underpinning sildenafil citrate and adenovirus expressing vascular endothelial growth as potential treatments for placental dysfunction and summarizes recent research on other potential treatments. The importance of sharing information from such studies even when no effect is found, or there is an adverse outcome, is highlighted. Finally, the use of adenoviral vectors or nanoparticle carriers coated with homing peptides to selectively target drugs to the placenta is highlighted: such delivery systems could improve efficacy and reduce the side effects of treating the dysfunctional placenta.

Open access
Peter Kolkhof Drug Discovery, Cardiology Research, Bayer AG, Wuppertal, Germany

Search for other papers by Peter Kolkhof in
Google Scholar
PubMed
Close
and
Lars Bärfacker Drug Discovery, Medicinal Chemistry, Bayer AG, Wuppertal, Germany

Search for other papers by Lars Bärfacker in
Google Scholar
PubMed
Close

The cDNA of the mineralocorticoid receptor (MR) was cloned 30 years ago, in 1987. At that time, spirolactone, the first generation of synthetic steroid-based MR antagonists (MRAs), which was identified in preclinical in vivo models, had already been in clinical use for 30 years. Subsequent decades of research and development by Searle & Co., Ciba-Geigy, Roussel Uclaf and Schering AG toward identifying a second generation of much more specific steroidal MRAs were all based on the initial 17-spirolactone construct. The salient example is eplerenone, first described in 1987, coincidentally with the cloning of MR cDNA. Its launch on the market in 2003 paralleled intensive drug discovery programs for a new generation of non-steroidal MRAs. Now, 30 years after the cDNA cloning of MR and 60 years of clinical use of steroidal MRAs, novel non-steroidal MRAs such as apararenone, esaxerenone and finerenone are in late-stage clinical trials in patients with heart failure, chronic kidney disease (CKD), hypertension and liver disease. Finerenone has already been studied in over 2000 patients with heart failure plus chronic kidney disease and/or diabetes, and in patients with diabetic kidney disease, in five phase II clinical trials. Here, we reflect on the history of the various generations of MRAs and review characteristics of the most important steroidal and non-steroidal MRAs.

Open access
Esther Nuñez-Durán Department of Molecular and Clinical Medicine, Lundberg Laboratory for Diabetes Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Esther Nuñez-Durán in
Google Scholar
PubMed
Close
,
Belén Chanclón Department of Molecular and Clinical Medicine, Lundberg Laboratory for Diabetes Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
Department of Metabolic Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Belén Chanclón in
Google Scholar
PubMed
Close
,
Silva Sütt Department of Molecular and Clinical Medicine, Lundberg Laboratory for Diabetes Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Silva Sütt in
Google Scholar
PubMed
Close
,
Joana Real Department of Metabolic Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Joana Real in
Google Scholar
PubMed
Close
,
Hanns-Ulrich Marschall Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Hanns-Ulrich Marschall in
Google Scholar
PubMed
Close
,
Ingrid Wernstedt Asterholm Department of Metabolic Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Ingrid Wernstedt Asterholm in
Google Scholar
PubMed
Close
,
Emmelie Cansby Department of Molecular and Clinical Medicine, Lundberg Laboratory for Diabetes Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Emmelie Cansby in
Google Scholar
PubMed
Close
, and
Margit Mahlapuu Department of Molecular and Clinical Medicine, Lundberg Laboratory for Diabetes Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Margit Mahlapuu in
Google Scholar
PubMed
Close

Characterising the molecular networks that negatively regulate pancreatic β-cell function is essential for understanding the underlying pathogenesis and developing new treatment strategies for type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic fat storage, meta-inflammation, and fibrosis in liver and skeletal muscle. Here, we assessed the role of STK25 in control of progression of non-alcoholic fatty pancreas disease in the context of chronic exposure to dietary lipids in mice. We found that overexpression of STK25 in high-fat-fed transgenic mice aggravated diet-induced lipid storage in the pancreas compared with that of wild-type controls, which was accompanied by exacerbated pancreatic inflammatory cell infiltration, stellate cell activation, fibrosis and apoptosis. Pancreas of Stk25 transgenic mice also displayed a marked decrease in islet β/α-cell ratio and alteration in the islet architecture with an increased presence of α-cells within the islet core, whereas islet size remained similar between genotypes. After a continued challenge with a high-fat diet, lower levels of fasting plasma insulin and C-peptide, and higher levels of plasma leptin, were detected in Stk25 transgenic vs wild-type mice. Furthermore, the glucose-stimulated insulin secretion was impaired in high-fat-fed Stk25 transgenic mice during glucose tolerance test, in spite of higher net change in blood glucose concentrations compared with wild-type controls, suggesting islet β-cell dysfunction. In summary, this study unravels a role for STK25 in determining the susceptibility to diet-induced non-alcoholic fatty pancreas disease in mice in connection to obesity. Our findings highlight STK25 as a potential drug target for metabolic disease.

Open access