Browse

You are looking at 111 - 120 of 130 items for

  • Open access x
Clear All
Open access

Emma M Roberts, Michael J F Newson, George R Pope, Rainer Landgraf, Stephen J Lolait, and Anne-Marie O'Carroll

The apelinergic system, comprised of apelin and its G protein-coupled receptor (APJ; APLNR as given in MGI Database), is expressed within key regions of the central nervous system associated with arginine vasopressin (AVP) synthesis and release as well as in structures involved in the control of drinking behaviour, including the magnocellular neurones of the hypothalamus, circumventricular organs, and the pituitary gland. This localisation is indicative of a possible functional role in fluid homeostasis. We investigated a role for APJ in the regulation of fluid balance using mice deficient for the receptor. Male APJ wild-type and knockout (APJ−/−) mice were housed in metabolic cages to allow determination of water intake and urine volume and osmolality. When provided with free access to water, APJ−/− mice drank significantly less than wild-types, while their urine volume and osmolality did not differ. Water deprivation for 24 h significantly reduced urine volume and increased osmolality in wild-type but not in APJ−/− mice. Baseline plasma AVP concentration increased comparably in both wild-type and APJ−/− mice following dehydration; however, APJ−/− mice were unable to concentrate their urine to the same extent as wild-type mice in response to the V2 agonist desmopressin. Analysis of c-fos (Fos as given in MGI Database) mRNA expression in response to dehydration showed attenuation of expression within the subfornical organ, accentuated expression in the paraventricular nucleus, but no differences in expression in the supraoptic nucleus nor median pre-optic nucleus in APJ−/− mice compared with wild-type. These findings demonstrate a physiological role for APJ in mechanisms of water intake and fluid retention and suggest an anti-diuretic effect of apelin in vivo.

Open access

Lei Zhang, Carol Paddon, Mark D Lewis, Fiona Grennan-Jones, and Marian Ludgate

Since TSH receptor (TSHR) expression increases during adipogenesis and signals via cAMP/phospho-cAMP-response element binding protein (CREB), reported to be necessary and sufficient for adipogenesis, we hypothesised that TSHR activation would induce preadipocyte differentiation. Retroviral vectors introduced constitutively active TSHR (TSHR*) into 3T3L1 preadipocytes; despite increased cAMP (RIA) and phospho-CREB (western blot) there was no spontaneous adipogenesis (assessed morphologically, using oil red O and QPCR measurement of adipogenesis markers). We speculated that Gβγ signalling may be inhibitory but failed to induce adipogenesis using activated Gsα (gsp*). Inhibition of phosphodiesterases did not promote adipogenesis in TSHR* or gsp* populations. Furthermore, differentiation induced by adipogenic medium with pioglitazone was reduced in TSHR* and abolished in gsp* expressing 3T3L1 cells. TSHR* and gsp* did not inactivate PPARγ (PPARG as listed in the HUGO database) by phosphorylation but expression of PPARγ1 was reduced and PPARγ2 undetectable in gsp*. FOXO1 phosphorylation (required to inactivate this repressor of adipogenesis) was lowest in gsp* despite the activation of AKT by phosphorylation. PROF is a mediator that facilitates FOXO1 phosphorylation by phospho-Akt. Its transcript levels remained constantly low in the gsp* population. In most measurements, the TSHR* cells were between the gsp* and control 3T3L1 preadipocytes. The enhanced down-regulation of PREF1 (adipogenesis inhibitor) permits retention of some adipogenic potential in the TSHR* population. We conclude that Gsα signalling impedes FOXO1 phosphorylation and thus inhibits PPARγ transcription and the alternative promoter usage required to generate PPARγ2, the fat-specific transcription factor necessary for adipogenesis.

Open access

Toyoshi Endo and Tetsuro Kobayashi

We immunized AKR/N mice with bovine thyroglobulin (Tg) once every 2 weeks and monitored their time-dependent changes in 125I uptake activity in the thyroid glands. After 3 months, anti-Tg antibody was positive in all sera from the immunized mice. Serum free tri-iodothyronine (T3) and free thyroxine (T4) levels in the immunized mice (n=6) were significantly higher than those in the saline injected (control) mice (n=6). Neck counts as well as scintigraphy of the thyroid glands revealed that iodide uptake activity of the immunized mice was not suppressed, but was instead higher than that of the control mice. Two of the six immunized mice showed extremely high iodide uptake activity. The thyroid glands of these two mice were diffusely enlarged and the height of the epithelial cells was also increased. In addition, two mice with high iodide uptake activity produced a high titer of thyroid-stimulating antibody. Additional experiments showed that 4 out of 11 AKR/N mice and 3 out of 10 C57BL6 mice immunized with Tg had high serum free T3/free T4 levels, high 125I uptake activity of the thyroid, and positive thyroid-stimulating antibody activity. Diffuse goiter, thyrotoxicosis, high iodide uptake activity, and positive thyroid-stimulating antibody are the characteristics of Graves' disease. Thus, these mice exhibit the symptoms of Graves' disease. These results suggest that immunization with Tg induces Graves'-like disease in mice and that our methods will provide a new animal model of Graves' disease.

Open access

Georgina G J Hazell, Song T Yao, James A Roper, Eric R Prossnitz, Anne-Marie O'Carroll, and Stephen J Lolait

Recently, the G protein-coupled receptor GPR30 has been identified as a novel oestrogen receptor (ER). The distribution of the receptor has been thus far mapped only in the rat central nervous system. This study was undertaken to map the distribution of GPR30 in the mouse brain and rodent peripheral tissues. Immunohistochemistry using an antibody against GPR30 revealed high levels of GPR30 immunoreactivity (ir) in the forebrain (e.g. cortex, hypothalamus and hippocampus), specific nuclei of the midbrain (e.g. the pontine nuclei and locus coeruleus) and the trigeminal nuclei and cerebellum Purkinje layer of the hindbrain in the adult mouse brain. In the rat and mouse periphery, GPR30-ir was detected in the anterior, intermediate and neural lobe of the pituitary, adrenal medulla, renal pelvis and ovary. In situ hybridisation histochemistry using GPR30 riboprobes, revealed intense hybridisation signal for GPR30 in the paraventricular nucleus and supraoptic nucleus (SON) of the hypothalamus, anterior and intermediate lobe of the pituitary, adrenal medulla, renal pelvis and ovary of both rat and mouse. Double immunofluorescence revealed GPR30 was present in both oxytocin and vasopressin neurones of the paraventricular nucleus and SON of the rat and mouse brain. The distribution of GPR30 is distinct from the other traditional ERs and offers an additional way in which oestrogen may mediate its effects in numerous brain regions and endocrine systems in the rodent.

Open access

Miroslav Adzic, Jelena Djordjevic, Ana Djordjevic, Ana Niciforovic, Constantinos Demonacos, Marija Radojcic, and Marija Krstic-Demonacos

Chronic stress and impaired glucocorticoid receptor (GR) feedback are important factors for the compromised hypothalamic–pituitary–adrenal (HPA) axis activity. We investigated the effects of chronic 21 day isolation of Wistar rats on the extrinsic negative feedback part of HPA axis: hippocampus (HIPPO) and prefrontal cortex (PFC). In addition to serum corticosterone (CORT), we followed GR subcellular localization, GR phosphorylation at serine 232 and serine 246, expression of GR regulated genes: GR, CRF and brain-derived neurotropic factor (BDNF), and activity of c-Jun N-terminal kinase (JNK) and Cdk5 kinases that phosphorylate GR. These parameters were also determined in animals subjected to acute 30 min immobilization, which was taken as ‘normal’ adaptive response to stress. In isolated animals, we found decreased CORT, whereas in animals exposed to acute immobilization, CORT was markedly increased. Even though the GR was predominantly localized in the nucleus of HIPPO and PFC in acute, but not in chronic stress, the expression of GR, CRF, and BDNF genes was similarly regulated under both acute and chronic stresses. Thus, the transcriptional activity of GR under chronic isolation did not seem to be exclusively dependent on high serum CORT levels nor on the subcellular location of the GR protein. Rather, it resulted from the increased Cdk5 activation and phosphorylation of the nuclear GR at serine 232 and the decreased JNK activity reflected in decreased phosphorylation of the nuclear GR at serine 246. Our study suggests that this nuclear isoform of hippocampal and cortical GR may be related to hypocorticism i.e. HPA axis hypoactivity under chronic isolation stress.

Open access

Nerine T Joseph, Kevin Morgan, Robin Sellar, Derek McBride, Robert P Millar, and Ian C Dunn

Two GnRH isoforms (cGnRH-I and GnRH-II) and two GnRH receptor subtypes (cGnRH-R-I and cGnRH-R-III) occur in chickens. Differential roles for these molecules in regulating gonadotrophin secretion or other functions are unclear. To investigate this we cloned cGnRH-R-III from a broiler chicken and compared its structure, expression and pharmacological properties with cGnRH-R-I. The broiler cGnRH-R-III cDNA was 100% identical to the sequence reported in the red jungle fowl and white leghorn breed. Pituitary cGnRH-R-III mRNA was ∼1400-fold more abundant than cGnRH-R-I mRNA. Northern analysis indicated a single cGnRH-R-III transcript. A pronounced sex and age difference existed, with higher pituitary transcript levels in sexually mature females versus juvenile females. In contrast, higher expression levels occurred in juvenile males versus sexually mature males. Functional studies in COS-7 cells indicated that cGnRH-R-III has a higher binding affinity for GnRH-II than cGnRH-I (K d: 0.57 vs 19.8 nM) with more potent stimulation of inositol phosphate production (ED50: 0.8 vs 4.38 nM). Similar results were found for cGnRH-R-I, (K d: 0.51 vs 10.8 nM) and (ED50: 0.7 vs 2.8 nM). The initial rate of internalisation was faster for cGnRH-R-III than cGnRH-R-I (26 vs 15.8%/min). Effects of GnRH antagonists were compared at the two receptors. Antagonist #27 distinguished between cGnRH-R-I and cGnRH-R-III (IC50: 2.3 vs 351 nM). These results suggest that cGnRH-R-III is probably the major mediator of pituitary gonadotroph function, that antagonist #27 may allow delineation of receptor subtype function in vitro and in vivo and that tissue-specific recruitment of cGnRH-R isoforms has occurred during evolution.

Open access

Michael J F Newson, Emma M Roberts, George R Pope, Stephen J Lolait, and Anne-Marie O'Carroll

The apelinergic system has a widespread expression in the central nervous system (CNS) including the paraventricular nucleus, supraoptic nucleus and median eminence, and isolated cells of the anterior lobe of the pituitary. This pattern of expression in hypothalamic nuclei known to contain corticotrophin-releasing factor (CRF) and vasopressin (AVP) and to co-ordinate endocrine responses to stress has generated interest in a role for apelin in the modulation of stress, perhaps via the regulation of hormone release from the pituitary. In this study, to determine whether apelin has a central role in the regulation of CRF and AVP neurones, we investigated the effect of i.c.v. administration of pGlu-apelin-13 on neuroendocrine function in male mice pre-treated with the CRF receptor antagonist, α-helical CRF9–41, and in mice-lacking functional AVP V1b receptors (V1bR KO). Administration of pGlu-apelin-13 (1 mg/kg i.c.v.) resulted in significant increases in plasma ACTH and corticosterone (CORT), which were significantly reduced by pre-treatment with α-helical CRF9–41, indicating the involvement of a CRF-dependent mechanism. Additionally, pGlu-apelin-13-mediated increases in both plasma ACTH and CORT were significantly attenuated in V1bR KO animals when compared with wild-type controls, indicating a role for the vasopressinergic system in the regulation of the effects of apelin on neuroendocrine function. Together, these data confirm that the in vivo effects of apelin on hypothalamic–pituitary–adrenal neuroendocrine function appear to be mediated through both CRF- and AVP-dependent mechanisms.

Open access

Dawn E W Livingstone, Sarah L Grassick, Gillian L Currie, Brian R Walker, and Ruth Andrew

In obese humans, metabolism of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and A-ring reduction (by 5α- and 5β-reductases) is dysregulated in a tissue specific manner. These changes have been recapitulated in leptin resistant obese Zucker rats but were not observed in high-fat fed Wistar rats. Recent data from mouse models suggest that such discrepancies may reflect differences in leptin signalling. We therefore compared glucocorticoid metabolism in murine models of leptin deficiency and resistance. Male ob/ob and db/db mice and their respective littermate controls (n=10–12/group) were studied at the age of 12 weeks. Enzyme activities and mRNA expression were quantified in snap-frozen tissues. The patterns of altered pathways of steroid metabolism in obesity were similar in ob/ob and db/db mice. In liver, 5β-reductase activity and mRNA were increased and 11β-HSD1 decreased in obese mice, whereas 5α-reductase 1 (5αR1) mRNA was not altered. In visceral adipose depots, 5β-reductase was not expressed, 11β-HSD1 activity was increased and 5αR1 mRNA was not altered in obesity. By contrast, in subcutaneous adipose tissue 11β-HSD1 and 5αR1 mRNA were decreased. Systematic differences were not found between ob/ob and db/db murine models of obesity, suggesting that variations in leptin signalling through the short splice variant of the Ob receptor do not contribute to dysregulation of glucocorticoid metabolism.

Open access

L A Nolan and A Levy

Oestrogen is a powerful mitogen that is believed to exert a continuous, dose-dependent trophic stimulus at the anterior pituitary. This persistent mitotic effect contrasts with corticosterone and testosterone, changes in the levels of which induce only transient, self-limiting fluctuations in pituitary mitotic activity. To further define the putative long-term trophic effects of oestrogen, we have accurately analysed the effects of 7 and 28 days oestrogen treatment on anterior pituitary mitotic activity in ovariectomized 10-week-old Wistar rats using both bromodeoxyuridine (BrdU) and timed colchicine-induced mitotic arrest. An oestrogen dose-dependent increase in mitotic index was seen 7 days after the start of treatment as expected, representing an acceleration in gross mitotic activity from 1.7%/day in ovariectomized animals in the absence of any oestrogen replacement to 3.7%/day in the presence of a pharmacological dose of oestrogen (50 mcg/rat per day: ∼230 mcg/kg per day). Despite continued exposure to high-dose oestrogen and persistence of the increase in pituitary wet weight, the increase in mitotic index was unexpectedly not sustained. After 28 days of high-dose oestrogen treatment, anterior pituitary mitotic index and BrdU-labelling index were not significantly different from baseline. Although a powerful pituitary mitogen in the short term, responsible, presumably, for increased trophic variability in oestrus cycling females, these data indicate that in keeping with other trophic stimuli to the pituitary and in contrast to a much established dogma, the mitotic response to longer-term high-dose oestrogen exposure is transient and is not the driver of persistent pituitary growth, at least in female Wistar rats.

Open access

S Schmidt, A Hommel, V Gawlik, R Augustin, N Junicke, S Florian, M Richter, D J Walther, D Montag, H-G Joost, and A Schürmann

Deletion of glucose transporter gene Slc2a3 (GLUT3) has previously been reported to result in embryonic lethality. Here, we define the exact time point of growth arrest and subsequent death of the embryo. Slc2a3 −/− morulae and blastocysts developed normally, implanted in vivo, and formed egg-cylinder-stage embryos that appeared normal until day 6.0. At day 6.5, apoptosis was detected in the ectodermal cells of Slc2a3 −/− embryos resulting in severe disorganization and growth retardation at day 7.5 and complete loss of embryos at day 12.5. GLUT3 was detected in placental cone, in the visceral ectoderm and in the mesoderm of 7.5-day-old wild-type embryos. Our data indicate that GLUT3 is essential for the development of early post-implanted embryos.