Browse

You are looking at 131 - 140 of 198 items for

  • Refine by access: Open Access content only x
Clear All
Virginia Rider Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Virginia Rider in
Google Scholar
PubMed
Close
,
Alex Talbott Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Alex Talbott in
Google Scholar
PubMed
Close
,
Anuradha Bhusri Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Anuradha Bhusri in
Google Scholar
PubMed
Close
,
Zach Krumsick Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Zach Krumsick in
Google Scholar
PubMed
Close
,
Sierra Foster Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Sierra Foster in
Google Scholar
PubMed
Close
,
Joshua Wormington Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Joshua Wormington in
Google Scholar
PubMed
Close
, and
Bruce F Kimler Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, Kansas, USA

Search for other papers by Bruce F Kimler in
Google Scholar
PubMed
Close

Preparation of mammalian uterus for embryo implantation requires a precise sequence of cell proliferation. In rodent uterus, estradiol stimulates proliferation of epithelial cells. Progesterone operates as a molecular switch and redirects proliferation to the stroma by down-regulating glycogen synthase kinase-3β (GSK-3β) and stimulating β-catenin accumulation in the periluminal stromal cells. In this study, the WNT signal involved in the progesterone-dependent proliferative switch was investigated. Transcripts of four candidate Wnt genes were measured in the uteri from ovariectomized (OVX) rats, progesterone-pretreated (3 days of progesterone, 2mg/daily) rats, and progesterone-pretreated rats given a single dose (0.2µg) of estradiol. The spatial distribution of the WNT proteins was determined in the uteri after the same treatments. Wnt5a increased in response to progesterone and the protein emerged in the periluminal stromal cells of progesterone-pretreated rat uteri. To investigate whether WNT5A was required for proliferation, uterine stromal cell lines were stimulated with progesterone (1µM) and fibroblast growth factor (FGF, 50ng/mL). Proliferating stromal cells expressed a two-fold increase in WNT5A protein at 12h post stimulation. Stimulated stromal cells were cultured with actinomycin D (25µg/mL) to inhibit new RNA synthesis. Relative Wnt5a expression increased at 4 and 6 h of culture, suggesting that progesterone plus FGF preferentially increased Wnt5a mRNA stability. Knockdown of Wnt5a in uterine stromal cell lines inhibited stromal cell proliferation and decreased Wnt5a mRNA. The results indicate that progesterone initiates and synchronizes uterine stromal cell proliferation by increasing WNT5A expression and signaling.

Open access
Nami Kim Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea
Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Nami Kim in
Google Scholar
PubMed
Close
,
Jung Ok Lee Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Jung Ok Lee in
Google Scholar
PubMed
Close
,
Hye Jeong Lee Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Hye Jeong Lee in
Google Scholar
PubMed
Close
,
Yong Woo Lee Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Yong Woo Lee in
Google Scholar
PubMed
Close
,
Hyung Ip Kim Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Hyung Ip Kim in
Google Scholar
PubMed
Close
,
Su Jin Kim Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Su Jin Kim in
Google Scholar
PubMed
Close
,
Sun Hwa Park Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Sun Hwa Park in
Google Scholar
PubMed
Close
,
Chul Su Lee Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Chul Su Lee in
Google Scholar
PubMed
Close
,
Sun Woo Ryoo Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Sun Woo Ryoo in
Google Scholar
PubMed
Close
,
Geum-Sook Hwang Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea
Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Geum-Sook Hwang in
Google Scholar
PubMed
Close
, and
Hyeon Soo Kim Department of Anatomy, Department of Medicine, Integrated Metabolomics Research Group, Department of Life Science, Korea University College of Medicine, Seoul 136-701, South Korea

Search for other papers by Hyeon Soo Kim in
Google Scholar
PubMed
Close

Isoeugenol exerts various beneficial effects on human health. However, the mechanisms underlying these effects are poorly understood. In this study, we observed that isoeugenol activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. Isoeugenol-induced increase in intracellular calcium concentration and glucose uptake was inhibited by STO-609, an inhibitor of calcium/calmodulin-dependent protein kinase kinase (CaMKK). Isoeugenol also increased the phosphorylation of protein kinase C-α (PKCα). Chelation of calcium with BAPTA-AM blocked isoeugenol-induced AMPK phosphorylation and glucose uptake. Isoeugenol stimulated p38MAPK phosphorylation that was inhibited after pretreatment with compound C, an AMPK inhibitor. Isoeugenol also increased glucose transporter type 4 (GLUT4) expression and its translocation to the plasma membrane. GLUT4 translocation was not observed after the inhibition of AMPK and CaMKK. In addition, isoeugenol activated the Akt substrate 160 (AS160) pathway, which is downstream of the p38MAPK pathway. Knockdown of the gene encoding AS160 inhibited isoeugenol-induced glucose uptake. Together, these results indicate that isoeugenol exerts beneficial health effects by activating the AMPK/p38MAPK/AS160 pathways in skeletal muscle.

Open access
Saeed Alshahrani Department of Pharmacology and Toxicology, Pacific Northwest Diabetes Research Institute, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 216 HSB, Dayton, Ohio 45435, USA

Search for other papers by Saeed Alshahrani in
Google Scholar
PubMed
Close
,
Mohammed Mashari Almutairi Department of Pharmacology and Toxicology, Pacific Northwest Diabetes Research Institute, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 216 HSB, Dayton, Ohio 45435, USA

Search for other papers by Mohammed Mashari Almutairi in
Google Scholar
PubMed
Close
,
Shams Kursan Department of Pharmacology and Toxicology, Pacific Northwest Diabetes Research Institute, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 216 HSB, Dayton, Ohio 45435, USA

Search for other papers by Shams Kursan in
Google Scholar
PubMed
Close
,
Eduardo Dias-Junior Department of Pharmacology and Toxicology, Pacific Northwest Diabetes Research Institute, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 216 HSB, Dayton, Ohio 45435, USA

Search for other papers by Eduardo Dias-Junior in
Google Scholar
PubMed
Close
,
Mohamed Mahmoud Almiahuob Department of Pharmacology and Toxicology, Pacific Northwest Diabetes Research Institute, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 216 HSB, Dayton, Ohio 45435, USA

Search for other papers by Mohamed Mahmoud Almiahuob in
Google Scholar
PubMed
Close
,
Lydia Aguilar-Bryan Department of Pharmacology and Toxicology, Pacific Northwest Diabetes Research Institute, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 216 HSB, Dayton, Ohio 45435, USA

Search for other papers by Lydia Aguilar-Bryan in
Google Scholar
PubMed
Close
, and
Mauricio Di Fulvio Department of Pharmacology and Toxicology, Pacific Northwest Diabetes Research Institute, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 216 HSB, Dayton, Ohio 45435, USA

Search for other papers by Mauricio Di Fulvio in
Google Scholar
PubMed
Close

The products of the Slc12a1 and Slc12a2 genes, commonly known as Na+-dependent K+2Cl co-transporters NKCC2 and NKCC1, respectively, are the targets for the diuretic bumetanide. NKCCs are implicated in the regulation of intracellular chloride concentration ([Cl]i) in pancreatic β-cells, and as such, they may play a role in glucose-stimulated plasma membrane depolarization and insulin secretion. Unexpectedly, permanent elimination of NKCC1 does not preclude insulin secretion, an event potentially linked to the homeostatic regulation of additional Cl transporters expressed in β-cells. In this report we provide evidence for such a mechanism. Mice lacking a single allele of Slc12a2 exhibit lower fasting glycemia, increased acute insulin response (AIR) and lower blood glucose levels 15–30 min after a glucose load when compared to mice harboring both alleles of the gene. Furthermore, heterozygous expression or complete absence of Slc12a2 associates with increased NKCC2 protein expression in rodent pancreatic β-cells. This has been confirmed by using chronic pharmacological down-regulation of NKCC1 with bumetanide in the mouse MIN6 β-cell line or permanent molecular silencing of NKCC1 in COS7 cells, which results in increased NKCC2 expression. Furthermore, MIN6 cells chronically pretreated with bumetanide exhibit increased initial rates of Cl uptake while preserving glucose-stimulated insulin secretion. Together, our results suggest that NKCCs are involved in insulin secretion and that a single Slc12a2 allele may protect β-cells from failure due to increased homeostatic expression of Slc12a1.

Open access
Nadia Schoenmakers University of Cambridge Metabolic Research Laboratories, Developmental Endocrinology Research Group, Wellcome Trust‐Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UK

Search for other papers by Nadia Schoenmakers in
Google Scholar
PubMed
Close
,
Kyriaki S Alatzoglou University of Cambridge Metabolic Research Laboratories, Developmental Endocrinology Research Group, Wellcome Trust‐Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UK

Search for other papers by Kyriaki S Alatzoglou in
Google Scholar
PubMed
Close
,
V Krishna Chatterjee University of Cambridge Metabolic Research Laboratories, Developmental Endocrinology Research Group, Wellcome Trust‐Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UK

Search for other papers by V Krishna Chatterjee in
Google Scholar
PubMed
Close
, and
Mehul T Dattani University of Cambridge Metabolic Research Laboratories, Developmental Endocrinology Research Group, Wellcome Trust‐Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UK

Search for other papers by Mehul T Dattani in
Google Scholar
PubMed
Close

Central congenital hypothyroidism (CCH) may occur in isolation, or more frequently in combination with additional pituitary hormone deficits with or without associated extrapituitary abnormalities. Although uncommon, it may be more prevalent than previously thought, affecting up to 1:16 000 neonates in the Netherlands. Since TSH is not elevated, CCH will evade diagnosis in primary, TSH-based, CH screening programs and delayed detection may result in neurodevelopmental delay due to untreated neonatal hypothyroidism. Alternatively, coexisting growth hormones or ACTH deficiency may pose additional risks, such as life threatening hypoglycaemia. Genetic ascertainment is possible in a minority of cases and reveals mutations in genes controlling the TSH biosynthetic pathway (TSHB, TRHR, IGSF1) in isolated TSH deficiency, or early (HESX1, LHX3, LHX4, SOX3, OTX2) or late (PROP1, POU1F1) pituitary transcription factors in combined hormone deficits. Since TSH cannot be used as an indicator of euthyroidism, adequacy of treatment can be difficult to monitor due to a paucity of alternative biomarkers. This review will summarize the normal physiology of pituitary development and the hypothalamic–pituitary–thyroid axis, then describe known genetic causes of isolated central hypothyroidism and combined pituitary hormone deficits associated with TSH deficiency. Difficulties in diagnosis and management of these conditions will then be discussed.

Open access
David R Grattan Centre for Neuroendocrinology and Department of Anatomy, Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 913, Dunedin 9054, New Zealand
Centre for Neuroendocrinology and Department of Anatomy, Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 913, Dunedin 9054, New Zealand

Search for other papers by David R Grattan in
Google Scholar
PubMed
Close

The hypothalamic control of prolactin secretion is different from other anterior pituitary hormones, in that it is predominantly inhibitory, by means of dopamine from the tuberoinfundibular dopamine neurons. In addition, prolactin does not have an endocrine target tissue, and therefore lacks the classical feedback pathway to regulate its secretion. Instead, it is regulated by short loop feedback, whereby prolactin itself acts in the brain to stimulate production of dopamine and thereby inhibit its own secretion. Finally, despite its relatively simple name, prolactin has a broad range of functions in the body, in addition to its defining role in promoting lactation. As such, the hypothalamo-prolactin axis has many characteristics that are quite distinct from other hypothalamo-pituitary systems. This review will provide a brief overview of our current understanding of the neuroendocrine control of prolactin secretion, in particular focusing on the plasticity evident in this system, which keeps prolactin secretion at low levels most of the time, but enables extended periods of hyperprolactinemia when necessary for lactation. Key prolactin functions beyond milk production will be discussed, particularly focusing on the role of prolactin in inducing adaptive responses in multiple different systems to facilitate lactation, and the consequences if prolactin action is impaired. A feature of this pleiotropic activity is that functions that may be adaptive in the lactating state might be maladaptive if prolactin levels are elevated inappropriately. Overall, my goal is to give a flavour of both the history and current state of the field of prolactin neuroendocrinology, and identify some exciting new areas of research development.

Open access
Farhana Naznin Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Search for other papers by Farhana Naznin in
Google Scholar
PubMed
Close
,
Koji Toshinai Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Search for other papers by Koji Toshinai in
Google Scholar
PubMed
Close
,
T M Zaved Waise Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Search for other papers by T M Zaved Waise in
Google Scholar
PubMed
Close
,
Cherl NamKoong Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Search for other papers by Cherl NamKoong in
Google Scholar
PubMed
Close
,
Abu Saleh Md Moin Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Search for other papers by Abu Saleh Md Moin in
Google Scholar
PubMed
Close
,
Hideyuki Sakoda Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Search for other papers by Hideyuki Sakoda in
Google Scholar
PubMed
Close
, and
Masamitsu Nakazato Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
Division of Neurology, Department of Sports and Fitness, AMED-CREST, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan

Search for other papers by Masamitsu Nakazato in
Google Scholar
PubMed
Close

Ghrelin, a stomach-derived orexigenic peptide, transmits starvation signals to the hypothalamus via the vagus afferent nerve. Peripheral administration of ghrelin does not induce food intake in high fat diet (HFD)-induced obese mice. We investigated whether this ghrelin resistance was caused by dysfunction of the vagus afferent pathway. Administration (s.c.) of ghrelin did not induce food intake, suppression of oxygen consumption, electrical activity of the vagal afferent nerve, phosphorylation of ERK2 and AMP-activated protein kinase alpha in the nodose ganglion, or Fos expression in hypothalamic arcuate nucleus of mice fed a HFD for 12 weeks. Administration of anti-ghrelin IgG did not induce suppression of food intake in HFD-fed mice. Expression levels of ghrelin receptor mRNA in the nodose ganglion and hypothalamus of HFD-fed mice were reduced. Inflammatory responses, including upregulation of macrophage/microglia markers and inflammatory cytokines, occurred in the nodose ganglion and hypothalamus of HFD-fed mice. A HFD blunted ghrelin signaling in the nodose ganglion via a mechanism involving in situ activation of inflammation. These results indicate that ghrelin resistance in the obese state may be caused by dysregulation of ghrelin signaling via the vagal afferent.

Open access
Kunihisa Hamano Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan
Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Kunihisa Hamano in
Google Scholar
PubMed
Close
,
Yuko Nakagawa Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Yuko Nakagawa in
Google Scholar
PubMed
Close
,
Yoshiaki Ohtsu Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Yoshiaki Ohtsu in
Google Scholar
PubMed
Close
,
Longfei Li Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Longfei Li in
Google Scholar
PubMed
Close
,
Johan Medina Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Johan Medina in
Google Scholar
PubMed
Close
,
Yuji Tanaka Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Yuji Tanaka in
Google Scholar
PubMed
Close
,
Katsuyoshi Masuda Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Katsuyoshi Masuda in
Google Scholar
PubMed
Close
,
Mitsuhisa Komatsu Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Mitsuhisa Komatsu in
Google Scholar
PubMed
Close
, and
Itaru Kojima Institute for Molecular and Cellular Regulation, Department of General Medicine, Suntory Institute for Bioorganic Research, Department of Internal Medicine, Gunma University, Maebashi 371-8512, Japan

Search for other papers by Itaru Kojima in
Google Scholar
PubMed
Close

Glucose activates the glucose-sensing receptor T1R3 and facilitates its own metabolism in pancreatic β-cells. An inhibitor of this receptor would be helpful in elucidating the physiological function of the glucose-sensing receptor. The present study was conducted to examine whether or not lactisole can be used as an inhibitor of the glucose-sensing receptor. In MIN6 cells, in a dose-dependent manner, lactisole inhibited insulin secretion induced by sweeteners, acesulfame-K, sucralose and glycyrrhizin. The IC50 was ∼4 mmol/l. Lactisole attenuated the elevation of cytoplasmic Ca2 + concentration ([Ca2 +]c) evoked by sucralose and acesulfame-K but did not affect the elevation of intracellular cAMP concentration ([cAMP]c) induced by these sweeteners. Lactisole also inhibited the action of glucose in MIN6 cells. Thus, lactisole significantly reduced elevations of intracellular [NADH] and intracellular [ATP] induced by glucose, and also inhibited glucose-induced insulin secretion. To further examine the effect of lactisole on T1R3, we prepared HEK293 cells stably expressing mouse T1R3. In these cells, sucralose elevated both [Ca2 +]c and [cAMP]c. Lactisole attenuated the sucralose-induced increase in [Ca2 +]c but did not affect the elevation of [cAMP]c. Finally, lactisole inhibited insulin secretion induced by a high concentration of glucose in mouse islets. These results indicate that the mouse glucose-sensing receptor was inhibited by lactisole. Lactisole may be useful in assessing the role of the glucose-sensing receptor in mouse pancreatic β-cells.

Open access
Corinne Caillaud Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Corinne Caillaud in
Google Scholar
PubMed
Close
,
Mie Mechta Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Mie Mechta in
Google Scholar
PubMed
Close
,
Heidi Ainge Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Heidi Ainge in
Google Scholar
PubMed
Close
,
Andreas N Madsen Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Andreas N Madsen in
Google Scholar
PubMed
Close
,
Patricia Ruell Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Patricia Ruell in
Google Scholar
PubMed
Close
,
Emilie Mas Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Emilie Mas in
Google Scholar
PubMed
Close
,
Catherine Bisbal Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Catherine Bisbal in
Google Scholar
PubMed
Close
,
Jacques Mercier Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Jacques Mercier in
Google Scholar
PubMed
Close
,
Stephen Twigg Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Stephen Twigg in
Google Scholar
PubMed
Close
,
Trevor A Mori Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Trevor A Mori in
Google Scholar
PubMed
Close
,
David Simar Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by David Simar in
Google Scholar
PubMed
Close
, and
Romain Barrès Exercise Health and Performance, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, School of Medicine and Pharmacology, UMR CNRS 9214, Physiology Department, Department of Endocrinology, Inflammation and Infection Research, Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Romain Barrès in
Google Scholar
PubMed
Close

Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle cell cultures with EPO failed to induce AKT phosphorylation and had no effect on glucose uptake or glycogen synthesis. We found that the EPO receptor gene was expressed in myotubes, but was undetectable in soleus. Together, our results indicate that EPO treatment improves glucose tolerance but does not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism.

Open access
F Wahab Stem Cell Biology Unit, Laboratory of Reproductive Neuroendocrinology, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany

Search for other papers by F Wahab in
Google Scholar
PubMed
Close
,
M Shahab Stem Cell Biology Unit, Laboratory of Reproductive Neuroendocrinology, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany

Search for other papers by M Shahab in
Google Scholar
PubMed
Close
, and
R Behr Stem Cell Biology Unit, Laboratory of Reproductive Neuroendocrinology, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany

Search for other papers by R Behr in
Google Scholar
PubMed
Close

Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction.

Open access
Young Hoon Son Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by Young Hoon Son in
Google Scholar
PubMed
Close
,
Seok-Jin Lee Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by Seok-Jin Lee in
Google Scholar
PubMed
Close
,
Ki-Baek Lee Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by Ki-Baek Lee in
Google Scholar
PubMed
Close
,
Jin-Haeng Lee Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by Jin-Haeng Lee in
Google Scholar
PubMed
Close
,
Eui Man Jeong Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea
Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by Eui Man Jeong in
Google Scholar
PubMed
Close
,
Sun Gun Chung Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by Sun Gun Chung in
Google Scholar
PubMed
Close
,
Sang-Chul Park Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by Sang-Chul Park in
Google Scholar
PubMed
Close
, and
In-Gyu Kim Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea
Department of Biochemistry and Molecular Biology, Institute of Human–Environment Interface Biology, Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak‐ro, Jongno‐Gu, Seoul 110‐799, Korea

Search for other papers by In-Gyu Kim in
Google Scholar
PubMed
Close

Glucocorticoids play a major role in the development of muscle atrophy in various medical conditions, such as cancer, burn injury, and sepsis, by inhibiting insulin signaling. In this study, we report a new pathway in which glucocorticoids reduce the levels of upstream insulin signaling components by downregulating the transcription of the gene encoding caveolin-1 (CAV1), a scaffolding protein present in the caveolar membrane. Treatment with the glucocorticoid dexamethasone (DEX) decreased CAV1 protein and Cav1 mRNA expression, with a concomitant reduction in insulin receptor alpha (IRα) and IR substrate 1 (IRS1) levels in C2C12 myotubes. On the basis of the results of promoter analysis using deletion mutants and site-directed mutagenesis a negative glucocorticoid-response element in the regulatory region of the Cav1 gene was identified, confirming that Cav1 is a glucocorticoid-target gene. Cav1 knockdown using siRNA decreased the protein levels of IRα and IRS1, and overexpression of Cav1 prevented the DEX-induced decrease in IRα and IRS1 proteins, demonstrating a causal role of Cav1 in the inhibition of insulin signaling. Moreover, injection of adenovirus expressing Cav1 into the gastrocnemius muscle of mice prevented DEX-induced atrophy. These results indicate that CAV1 is a critical regulator of muscle homeostasis, linking glucocorticoid signaling to the insulin signaling pathway, thereby providing a novel target for the prevention of glucocorticoid-induced muscle atrophy.

Open access