Browse

You are looking at 61 - 70 of 197 items for

  • Refine by access: Open Access content only x
Clear All
K L Davies Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by K L Davies in
Google Scholar
PubMed
Close
,
E J Camm Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by E J Camm in
Google Scholar
PubMed
Close
,
D J Smith Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by D J Smith in
Google Scholar
PubMed
Close
,
O R Vaughan Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
Institute for Women’s Health, University College London, London, UK

Search for other papers by O R Vaughan in
Google Scholar
PubMed
Close
,
A J Forhead Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK

Search for other papers by A J Forhead in
Google Scholar
PubMed
Close
,
A J Murray Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by A J Murray in
Google Scholar
PubMed
Close
, and
A L Fowden Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Search for other papers by A L Fowden in
Google Scholar
PubMed
Close

In adults, glucocorticoids act to match the supply and demand for energy during physiological challenges, partly through actions on tissue mitochondrial oxidative phosphorylation (OXPHOS) capacity. However, little is known about the role of the natural prepartum rise in fetal glucocorticoid concentrations in preparing tissues for the increased postnatal energy demands. This study examined the effect of manipulating cortisol concentrations in fetal sheep during late gestation on mitochondrial OXPHOS capacity of two skeletal muscles with different postnatal locomotive functions. Mitochondrial content, biogenesis markers, respiratory rates and expression of proteins and genes involved in the electron transfer system (ETS) and OXPHOS efficiency were measured in the biceps femoris (BF) and superficial digital flexor (SDF) of fetuses either infused with cortisol before the prepartum rise or adrenalectomised to prevent this increment. Cortisol infusion increased mitochondrial content, biogenesis markers, substrate-specific respiration rates and abundance of ETS complex I and adenine nucleotide translocator (ANT1) in a muscle-specific manner that was more pronounced in the SDF than BF. Adrenalectomy reduced mitochondrial content and expression of PGC1α and ANT1 in both muscles, and ETS complex IV abundance in the SDF near term. Uncoupling protein gene expression was unaffected by cortisol manipulations in both muscles. Gene expression of the myosin heavy chain isoform, MHCIIx, was increased by cortisol infusion and reduced by adrenalectomy in the BF alone. These findings show that cortisol has a muscle-specific role in prepartum maturation of mitochondrial OXPHOS capacity with important implications for the health of neonates born pre-term or after intrauterine glucocorticoid overexposure.

Open access
David M Cartwright Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by David M Cartwright in
Google Scholar
PubMed
Close
,
Lucy A Oakey Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Lucy A Oakey in
Google Scholar
PubMed
Close
,
Rachel S Fletcher Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Rachel S Fletcher in
Google Scholar
PubMed
Close
,
Craig L Doig Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
School of Science and Technology, Nottingham Trent University, Nottingham, UK

Search for other papers by Craig L Doig in
Google Scholar
PubMed
Close
,
Silke Heising Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Silke Heising in
Google Scholar
PubMed
Close
,
Dean P Larner Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Dean P Larner in
Google Scholar
PubMed
Close
,
Daniela Nasteska Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Daniela Nasteska in
Google Scholar
PubMed
Close
,
Caitlin E Berry Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Caitlin E Berry in
Google Scholar
PubMed
Close
,
Sam R Heaselgrave Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Sam R Heaselgrave in
Google Scholar
PubMed
Close
,
Christian Ludwig Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Christian Ludwig in
Google Scholar
PubMed
Close
,
David J Hodson Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by David J Hodson in
Google Scholar
PubMed
Close
,
Gareth G Lavery Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
Close
, and
Antje Garten Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Pediatric Research Center, Hospital for Child and Adolescent Medicine, Leipzig University, Leipzig, Germany

Search for other papers by Antje Garten in
Google Scholar
PubMed
Close

Supplementation with precursors of NAD has been shown to prevent and reverse insulin resistance, mitochondrial dysfunction, and liver damage in mouse models of diet-induced obesity. We asked whether the beneficial effects of supplementation with the NAD precursor nicotinamide riboside (NR) are dependent on mouse strain. We compared the effects of NR supplementation on whole-body energy metabolism and mitochondrial function in mildly obese C57BL/6N and C57BL/6J mice, two commonly used strains to investigate metabolism. Male C57BL/6N and C57BL/6J mice were fed a high-fat diet (HFD) or standard chow with or without NR supplementation for 8 weeks. Body and organ weights, glucose tolerance, and metabolic parameters as well as mitochondrial O2 flux in liver and muscle fibers were assessed. We found that NR supplementation had no influence on body or organ weight, glucose metabolism or hepatic lipid accumulation, energy expenditure, or metabolic flexibility but increased mitochondrial respiration in soleus muscle in both mouse strains. Strain-dependent differences were detected for body and fat depot weight, fasting blood glucose, hepatic lipid accumulation, and energy expenditure. We conclude that, in mild obesity, NR supplementation does not alter metabolic phenotype in two commonly used laboratory mouse strains.

Open access
Tina Seidu Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA

Search for other papers by Tina Seidu in
Google Scholar
PubMed
Close
,
Patrick McWhorter Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA

Search for other papers by Patrick McWhorter in
Google Scholar
PubMed
Close
,
Jessie Myer Department of Biology, University of Missouri, Columbia, Missouri, USA

Search for other papers by Jessie Myer in
Google Scholar
PubMed
Close
,
Rabita Alamgir Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA

Search for other papers by Rabita Alamgir in
Google Scholar
PubMed
Close
,
Nicole Eregha Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA

Search for other papers by Nicole Eregha in
Google Scholar
PubMed
Close
,
Dilip Bogle Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA

Search for other papers by Dilip Bogle in
Google Scholar
PubMed
Close
,
Taylor Lofton Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA

Search for other papers by Taylor Lofton in
Google Scholar
PubMed
Close
,
Carolyn Ecelbarger Department of Medicine, Georgetown University Medical Center, Washington, DC, USA

Search for other papers by Carolyn Ecelbarger in
Google Scholar
PubMed
Close
, and
Stanley Andrisse Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA

Search for other papers by Stanley Andrisse in
Google Scholar
PubMed
Close

Hyperandrogenemia (HA) is a hallmark of polycystic ovary syndrome (PCOS) and is an integral element of non-alcoholic fatty liver disease (NALFD) in females. Administering low-dose dihydrotestosterone (DHT) induced a normal weight PCOS-like female mouse model displaying NAFLD. The molecular mechanism of HA-induced NAFLD has not been fully determined. We hypothesized that DHT would regulate hepatic lipid metabolism via increased SREBP1 expression leading to NAFLD. We extracted liver from control and low-dose DHT female mice; and performed histological and biochemical lipid profiles, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver compared to controls. However, DHT did not alter the levels of SREBP2 in the liver. DHT mice displayed increased SCAP protein expression and SCAP-SREBP1 binding compared to controls. DHT mice exhibited increased AR binding to intron-8 of SCAP leading to increased SCAP mRNA compared to controls. FAS mRNA and protein expression was increased in the liver of DHT mice compared to controls. p-ACC levels were unaltered in the liver. Other lipid metabolism pathways were examined in the liver, but no changes were observed. Our findings support evidence that DHT increased de novo lipogenic proteins resulting in increased hepatic lipid content via regulation of SREBP1 in the liver. We show that in the presence of DHT, the SCAP-SREBP1 interaction was elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. We propose that the mechanism of action may be increased AR binding to an ARE in SCAP intron-8.

Open access
Yanli Miao Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Yanli Miao in
Google Scholar
PubMed
Close
,
Haojie Qin Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Haojie Qin in
Google Scholar
PubMed
Close
,
Yi Zhong Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Yi Zhong in
Google Scholar
PubMed
Close
,
Kai Huang Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Kai Huang in
Google Scholar
PubMed
Close
, and
Caijun Rao Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Caijun Rao in
Google Scholar
PubMed
Close

Obesity is an increasingly serious epidemic worldwide characterized by an increase in the number and size of adipocytes. Adipose tissue maintains the balance between lipid storage and energy utilization. Therefore, adipose metabolism is of great significance for the prevention, treatment and intervention of obesity. Asprosin, a novel adipokine, is a circulating hormone mainly secreted by white adipose tissue. Previous studies have shown that asprosin plays a role in fasting-induced homeostasis, insulin resistance, and glucose tolerance. However, whether it can regulate the metabolism of adipose tissue itself has not been studied. This study intended to examine the roles and potential mechanisms of asprosin in adipose regulation. We first demonstrated that the expression level of asprosin was significantly downregulated in subcutaneous white adipose tissue (scWAT) of high-fat diet (HFD)-fed or cold-stimulated mice. Overexpression of asprosin in scWAT reduced heat production, decreased expression of the browning marker uncoupling protein 1 (UCP1) and other browning-related genes, along with upregulation of adipogenic gene expression. Mechanistically, we found that Nrf2 was activated upon cold exposure, but this activation was suppressed after asprosin overexpression. In primary cultured adipocytes, adenovirusmediated asprosin overexpression inhibited adipose browning and aggravated lipid deposition, while Nrf2 agonist oltipraz could reverse these changes. Our findings suggest that novel adipokine asprosin negatively regulated browning and elevate lipid deposition in adipose tissue via a Nrf2-mediated mechanism. Asprosin may be a promising target for the prevention and treatment of obesity and other metabolic diseases.

Open access
Jane J Reavey MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Jane J Reavey in
Google Scholar
PubMed
Close
,
Catherine Walker MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Catherine Walker in
Google Scholar
PubMed
Close
,
Alison A Murray MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Alison A Murray in
Google Scholar
PubMed
Close
,
Savita Brito-Mutunayagam MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Savita Brito-Mutunayagam in
Google Scholar
PubMed
Close
,
Sheona Sweeney MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Sheona Sweeney in
Google Scholar
PubMed
Close
,
Moira Nicol MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Moira Nicol in
Google Scholar
PubMed
Close
,
Ana Cambursano MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Ana Cambursano in
Google Scholar
PubMed
Close
,
Hilary O D Critchley MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Hilary O D Critchley in
Google Scholar
PubMed
Close
, and
Jacqueline A Maybin MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Jacqueline A Maybin in
Google Scholar
PubMed
Close

Heavy menstrual bleeding is common and debilitating but the causes remain ill defined. Rates of obesity in women are increasing and its impact on menstrual blood loss (MBL) is unknown. Therefore, we quantified BMI and MBL in women not taking hormones and with regular menstrual cycles and revealed a positive correlation. In a mouse model of simulated menstruation, diet-induced obesity also resulted in delayed endometrial repair, a surrogate marker for MBL. BrdU staining of mouse uterine tissue revealed decreased proliferation during menstruation in the luminal epithelium of mice on a high-fat diet. Menstruation is known to initiate local endometrial inflammation and endometrial hypoxia; hence, the impact of body weight on these processes was investigated. A panel of hypoxia-regulated genes (VEGF, ADM, LDHA, SLC2A1) showed consistently higher mean values in the endometrium of women with obesity and in uteri of mice with increased weight vs normal controls, although statistical significance was not reached. The inflammatory mediators, Tnf and Il6 were significantly increased in the uterus of mice on a high-fat diet, consistent with a pro-inflammatory local endometrial environment in these mice. In conclusion, obesity was associated with increased MBL in women. Mice given a high-fat diet had delayed endometrial repair at menstruation and provided a model in which to study the influence of obesity on menstrual physiology. Our results indicate that obesity results in a more pro-inflammatory local endometrial environment at menstruation, which may delay endometrial repair and increase menstrual blood loss.

Open access
Bin Li School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Bin Li in
Google Scholar
PubMed
Close
,
Jiming Yin Beijing You An Hospital, Capital Medical University, Beijing, China
Beijing Institute of Hepatology, Beijing, China

Search for other papers by Jiming Yin in
Google Scholar
PubMed
Close
,
Jing Chang Beijing You An Hospital, Capital Medical University, Beijing, China

Search for other papers by Jing Chang in
Google Scholar
PubMed
Close
,
Jia Zhang School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Jia Zhang in
Google Scholar
PubMed
Close
,
Yangjia Wang School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Yangjia Wang in
Google Scholar
PubMed
Close
,
Haixia Huang School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Haixia Huang in
Google Scholar
PubMed
Close
,
Wei Wang School of Basic Medical Sciences, Capital Medical University, Beijing, China
Beijing Lab for Cardiovascular Precision Medicine, Beijing, China

Search for other papers by Wei Wang in
Google Scholar
PubMed
Close
, and
Xiangjun Zeng School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Xiangjun Zeng in
Google Scholar
PubMed
Close

Microcirculatory injuries had been reported to be involved in diabetic cardiomyopathy, which was mainly related to endothelial cell dysfunction. Apelin, an adipokine that is upregulated in diabetes mellitus, was reported to improve endothelial cell dysfunction and attenuate cardiac insufficiency induced by ischemia and reperfusion. Therefore, it is hypothesized that apelin might be involved in alleviating endothelial cell dysfunction and followed cardiomyopathy in diabetes mellitus. The results showed that apelin improved endothelial cell dysfunction via decreasing apoptosis and expression of adhesion molecules and increasing proliferation, angiogenesis, and expression of E-cadherin, VEGFR 2 and Tie-2 in endothelial cells, which resulted in the attenuation of the capillary permeability in cardiac tissues and following diabetic cardiomyopathy. Meanwhile, the results from endothelial cell-specific APJ knockout mice and cultured endothelial cells confirmed that the effects of apelin on endothelial cells were dependent on APJ and the downstream NFκB pathways. In conclusion, apelin might reduce microvascular dysfunction induced by diabetes mellitus via improving endothelial dysfunction dependent on APJ activated NFκB pathways.

Open access
Dominik Simon Botermann Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Dominik Simon Botermann in
Google Scholar
PubMed
Close
,
Nadine Brandes Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Nadine Brandes in
Google Scholar
PubMed
Close
,
Anke Frommhold Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Anke Frommhold in
Google Scholar
PubMed
Close
,
Ina Heß Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Ina Heß in
Google Scholar
PubMed
Close
,
Alexander Wolff Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Alexander Wolff in
Google Scholar
PubMed
Close
,
Arne Zibat Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Arne Zibat in
Google Scholar
PubMed
Close
,
Heidi Hahn Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Heidi Hahn in
Google Scholar
PubMed
Close
,
Rolf Buslei Institute of Pathology, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Germany

Search for other papers by Rolf Buslei in
Google Scholar
PubMed
Close
, and
Anja Uhmann Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Anja Uhmann in
Google Scholar
PubMed
Close

Ubiquitous overactivation of Hedgehog signaling in adult pituitaries results in increased expression of proopiomelanocortin (Pomc), growth hormone (Gh) and prolactin (Prl), elevated adrenocorticotropic hormone (Acth) production and proliferation of Sox2+ cells. Moreover, ACTH, GH and PRL-expressing human pituitary adenomas strongly express the Hedgehog target GLI1. Accordingly, Hedgehog signaling seems to play an important role in pathology and probably also in homeostasis of the adult hypophysis. However, the specific Hedgehog-responsive pituitary cell type has not yet been identified. We here investigated the Hedgehog pathway activation status and the effects of deregulated Hedgehog signaling cell-specifically in endocrine and non-endocrine pituitary cells. We demonstrate that Hedgehog signaling is unimportant for the homeostasis of corticotrophs, whereas it is active in subpopulations of somatotrophs and folliculo-stellate cells in vivo. Reinforcement of Hedgehog signaling activity in folliculo-stellate cells stimulates growth hormone production/release from somatotrophs in a paracrine manner, which most likely is mediated by the neuropeptide vasoactive intestinal peptide. Overall, our data show that Hedgehog signaling affects the homeostasis of pituitary hormone production via folliculo-stellate cell-mediated regulation of growth hormone production/secretion.

Open access
Qinglei Yin Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Qinglei Yin in
Google Scholar
PubMed
Close
,
Liyun Shen Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Liyun Shen in
Google Scholar
PubMed
Close
,
Yicheng Qi Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Pudong, Shanghai, China

Search for other papers by Yicheng Qi in
Google Scholar
PubMed
Close
,
Dalong Song Reproductive Medicine Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China

Search for other papers by Dalong Song in
Google Scholar
PubMed
Close
,
Lei Ye Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Lei Ye in
Google Scholar
PubMed
Close
,
Ying Peng Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Ying Peng in
Google Scholar
PubMed
Close
,
Yanqiu Wang Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Yanqiu Wang in
Google Scholar
PubMed
Close
,
Zhou Jin Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Zhou Jin in
Google Scholar
PubMed
Close
,
Guang Ning Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Guang Ning in
Google Scholar
PubMed
Close
,
Weiqing Wang Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Weiqing Wang in
Google Scholar
PubMed
Close
,
Dongping Lin Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Affiliated Shanghai Jiao-Tong University School of Medicine, Shanghai, China

Search for other papers by Dongping Lin in
Google Scholar
PubMed
Close
, and
Shu Wang Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of EndocrineRuijin Hospital, Shanghai Jiao-Tong University School of Medicine, China

Search for other papers by Shu Wang in
Google Scholar
PubMed
Close

SIRT1, a class III histone/protein deacetylase (HDAC), has been associated with autoimmune diseases. There is a paucity of data about the role of SIRT1 in Graves’ disease. The aim of this study was to investigate the role of SIRT1 in the pathogenesis of GD. Here, we showed that SIRT1 expression and activity were significantly decreased in GD patients compared with healthy controls. The NF-κB pathway was activated in the peripheral blood of GD patients. The reduced SIRT1 levels correlated strongly with clinical parameters. In euthyroid patients, SIRT1 expression was markedly upregulated and NF-κB downstream target gene expression was significantly reduced. SIRT1 inhibited the NF-κB pathway activity by deacetylating P65. These results demonstrate that reduced SIRT1 expression and activity contribute to the activation of the NF-κB pathway and may be involved in the pathogenesis of GD.

Open access
Pauline Campos College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

Search for other papers by Pauline Campos in
Google Scholar
PubMed
Close
,
Jamie J Walker College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK

Search for other papers by Jamie J Walker in
Google Scholar
PubMed
Close
, and
Patrice Mollard IGF, University of Montpellier, CNRS, INSERM, Montpellier, France

Search for other papers by Patrice Mollard in
Google Scholar
PubMed
Close

In most species, survival relies on the hypothalamic control of endocrine axes that regulate critical functions such as reproduction, growth, and metabolism. For decades, the complexity and inaccessibility of the hypothalamic–pituitary axis has prevented researchers from elucidating the relationship between the activity of endocrine hypothalamic neurons and pituitary hormone secretion. Indeed, the study of central control of endocrine function has been largely dominated by ‘traditional’ techniques that consist of studying in vitro or ex vivo isolated cell types without taking into account the complexity of regulatory mechanisms at the level of the brain, pituitary and periphery. Nowadays, by exploiting modern neuronal transfection and imaging techniques, it is possible to study hypothalamic neuron activity in situ, in real time, and in conscious animals. Deep-brain imaging of calcium activity can be performed through gradient-index lenses that are chronically implanted and offer a ‘window into the brain’ to image multiple neurons at single-cell resolution. With this review, we aim to highlight deep-brain imaging techniques that enable the study of neuroendocrine neurons in awake animals whilst maintaining the integrity of regulatory loops between the brain, pituitary and peripheral glands. Furthermore, to assist researchers in setting up these techniques, we discuss the equipment required and include a practical step-by-step guide to performing these deep-brain imaging studies.

Open access
Lisa L Koorneef Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Lisa L Koorneef in
Google Scholar
PubMed
Close
,
Jan Kroon Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Jan Kroon in
Google Scholar
PubMed
Close
,
Eva M G Viho Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Eva M G Viho in
Google Scholar
PubMed
Close
,
Lucas F Wahl Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Lucas F Wahl in
Google Scholar
PubMed
Close
,
Kim M L Heckmans Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Kim M L Heckmans in
Google Scholar
PubMed
Close
,
Marloes M A R van Dorst Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Marloes M A R van Dorst in
Google Scholar
PubMed
Close
,
Menno Hoekstra Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands

Search for other papers by Menno Hoekstra in
Google Scholar
PubMed
Close
,
René Houtman Pamgene International, Den Bosch, The Netherlands

Search for other papers by René Houtman in
Google Scholar
PubMed
Close
,
Hazel Hunt Corcept Therapeutics, Menlo Park, California, USA

Search for other papers by Hazel Hunt in
Google Scholar
PubMed
Close
, and
Onno C Meijer Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Onno C Meijer in
Google Scholar
PubMed
Close

Glucocorticoids mediate numerous essential processes in the human body via binding to the glucocorticoid receptor (GR). Excessive GR signaling can cause disease, and GR antagonists can be used to treat many symptoms of glucocorticoid-induced pathology. The purpose of this study was to characterize the tissue-specific properties of the selective GR antagonist CORT125281. We evaluated the antagonistic effects of CORT125281 upon acute and subchronic corticosterone exposure in mice. In the acute corticosterone setting, hypothalamus-pituitary-adrenal-axis activity was investigated by measurement of basal- and stress-induced corticosterone levels, adrenocorticotropic hormone levels and pituitary proopiomelanocortin expression. GR signaling was evaluated by RT-PCR analysis of GR-responsive transcripts in liver, muscle, brown adipose tissue (BAT), white adipose tissue (WAT) and hippocampus. Pretreatment with a high dose of CORT125281 antagonized GR activity in a tissue-dependent manner. We observed complete inhibition of GR-induced target gene expression in the liver, partial blockade in muscle and BAT and no antagonism in WAT and hippocampus. Tissue distribution only partially explained the lack of effective antagonism. CORT125281 treatment did not disinhibit the hypothalamus-pituitary-adrenal neuroendocrine axis. In the subchronic corticosterone setting, CORT125281 partially prevented corticosterone-induced hyperinsulinemia, but not hyperlipidemia and immune suppression. In conclusion, CORT125281 antagonizes GR transcriptional activity in a tissue-dependent manner and improves corticosterone-induced hyperinsulinemia. Tailored dosing of CORT125281 may allow tissue-specific inhibition of GR transcriptional activity.

Open access