Browse

You are looking at 1 - 10 of 126 items for

  • Open access x
Clear All
Open access

Yoshinori Kanemaru, Norio Harada, Satoko Shimazu-Kuwahara, Shunsuke Yamane, Eri Ikeguchi, Yuki Murata, Sakura Kiyobayashi, Tomonobu Hatoko and Nobuya Inagaki

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin secreted from enteroendocine K cells after nutrient ingestion. Fat strongly induces GIP secretion, and GIP hypersecretion is involved in high-fat diet-induced obesity and insulin resistance. Aging also induces GIP hypersecretion, but its effect on body weight gain and insulin sensitivity remains unclear. In the present study, we investigated the effect of GIP on age-related body weight gain and insulin resistance using GIP-knockout homozygous (GIP−/ ) and heterozygous (GIP+/ ) mice, which have entirely absent and 50% reduced GIP secretion compared to wild-type (WT) mice, respectively. Under 12% fat-containing normal diet feeding condition, body weight was significantly lower in GIP−/ mice compared to that in WT and GIP+/ mice from 38 weeks of age, while there was no significant difference between WT and GIP+/ mice. Visceral and s.c. fat mass were also significantly lower in GIP−/ mice compared to those in WT and GIP+/ mice. During oral glucose tolerance test, blood glucose levels did not differ among the three groups. Insulin levels were significantly lower in GIP−/ mice than those in WT and GIP+/ mice. During insulin tolerance test, GIP−/ mice showed higher insulin sensitivity than that of WT and GIP+/ mice. Adiponectin mRNA levels were increased and leptin mRNA levels tended to be decreased in adipose tissue of GIP−/ mice. These results demonstrate that GIP is involved in age-related obesity and insulin resistance and that inhibition of GIP secretion alleviates age-related fat mass gain and insulin resistance under carbohydrate-based diet feeding condition.

Open access

Shisan Xu, Fangjing Xie, Li Tian, Samane Fallah, Fatemeh Babaei, Sinai H C Manno, Francis A M Manno III, Lina Zhu, Kin Fung Wong, Yimin Liang, Rajkumar Ramalingam, Lei Sun, Xin Wang, Robert Plumb, Lee Gethings, Yun Wah Lam and Shuk Han Cheng

Sexual differences have been observed in the onset and prognosis of human cardiovascular diseases, but the underlying mechanisms are not clear. Here, we found that zebrafish heart regeneration is faster in females, can be accelerated by estrogen and is suppressed by the estrogen-antagonist tamoxifen. Injuries to the zebrafish heart, but not other tissues, increased plasma estrogen levels and the expression of estrogen receptors, especially esr2a. The resulting endocrine disruption induces the expression of the female-specific protein vitellogenin in male zebrafish. Transcriptomic analyses suggested heart injuries triggered pronounced immune and inflammatory responses in females. These responses, previously shown to elicit heart regeneration, could be enhanced by estrogen treatment in males and reduced by tamoxifen in females. Furthermore, a prior exposure to estrogen preconditioned the zebrafish heart for an accelerated regeneration. Altogether, this study reveals that heart regeneration is modulated by an estrogen-inducible inflammatory response to cardiac injury. These findings elucidate a previously unknown layer of control in zebrafish heart regeneration and provide a new model system for the study of sexual differences in human cardiac repair.

Open access

Romain Fontaine, Eirill Ager-Wick, Kjetil Hodne and Finn-Arne Weltzien

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhβ, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.

Open access

Koichiro Taguchi, Kazuo Kajita, Yoshihiko Kitada, Masayuki Fuwa, Motochika Asano, Takahide Ikeda, Toshiko Kajita, Tatsuo Ishizaka, Itaru Kojima and Hiroyuki Morita

Despite extensive investigation, the mechanisms underlying adipogenesis are not fully understood. We previously identified proliferative cells in adipose tissue expressing adipocyte-specific genes, which were named small proliferative adipocytes (SPA). In this study, we investigated the characteristics and roles of SPA in adipose tissue. Epididymal and inguinal fat was digested by collagenase, and then SPA were separated by centrifugation from stromal vascular cells (SVC) and mature white adipocytes. To clarify the feature of gene expression in SPA, microarray and real-time PCR were performed. The expression of adipocyte-specific genes and several neuronal genes was increased in the order of SVC < SPA < mature white adipocytes. In addition, proliferin was detected only in SPA. SPA differentiated more effectively into lipid-laden cells than SVC. Moreover, differentiated SPA expressed uncoupling protein 1 and mitochondria-related genes more than differentiated SVC. Treatment of SPA with pioglitazone and CL316243, a specific β3-adrenergic receptor agonist, differentiated SPA into beige-like cells. Therefore, SPA are able to differentiate into beige cells. SPA isolated from epididymal fat (epididymal SPA), but not SPA from inguinal fat (inguinal SPA), expressed a marker of visceral adipocyte precursor, WT1. However, no significant differences were detected in the expression levels of adipocyte-specific genes or neuronal genes between epididymal and inguinal SPA. The ability to differentiate into lipid-laden cells in epididymal SPA was a little superior to that in inguinal SPA, whereas the ability to differentiate into beige-like cells was greater in inguinal SPA than epididymal SPA. In conclusion, SPA may be progenitors of beige cells.

Open access

Bernadette M Trojanowski, Heba H Salem, Heike Neubauer, Eric Simon, Martin Wagner, Rajkumar Dorajoo, Bernhard O Boehm, Leticia Labriola, Thomas Wirth and Bernd Baumann

Maturity-onset diabetes of the young (MODY) is a group of monogenetic forms of diabetes mellitus caused by mutations in genes regulating β-cell development and function. MODY represents a heterogeneous group of non-insulin-dependent diabetes arising in childhood or adult life. Interestingly, clinical heterogeneity in MODY patients like variable disease onset and severity is observed even among individual family members sharing the same mutation, an issue that is not well understood. As high blood glucose levels are a well-known factor promoting β-cell stress and ultimately leading to cell death, we asked whether additional β-cell stress might account for the occurrence of disease heterogeneity in mice carrying a MODY4 mutation. In order to challenge β-cells, we established a MODY4 animal model based on Pdx1 (pancreatic and duodenal homeobox 1) haploinsufficiency, which allows conditional modulation of cell stress by genetic inhibition of the stress-responsive IKK/NF-κB signalling pathway. While Pdx1+/− mice were found glucose intolerant without progressing to diabetes, additional challenge of β-cell function by IKK/NF-κB inhibition promoted rapid diabetes development showing hyperglycaemia, hypoinsulinemia and loss of β-cell mass. Disease pathogenesis was characterized by deregulation of genes controlling β-cell homeostasis and function. Importantly, restoration of normal IKK/NF-κB signalling reverted the diabetic phenotype including normalization of glycaemia and β-cell mass. Our findings implicate that the avoidance of additional β-cell stress can delay a detrimental disease progression in MODY4 diabetes. Remarkably, an already present diabetic phenotype can be reversed when β-cell stress is normalized.

Open access

Nikolaos Nikolaou, Anastasia Arvaniti, Nathan Appanna, Anna Sharp, Beverly Hughes, Dena Digweed, Martin Whitaker, Richard J Ross, Wiebke Arlt, Trevor Penning, Karen Morris, Sherly George, Brian Keevil, Leanne Hodson, Laura Gathercole and Jeremy W Tomlinson

Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.

Open access

Sian Simpson, Lorna Smith, Peter Jones and James Bowe

The corticotropin releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic- pituitary-adrenal axis (HPA). More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.

Open access

Tingting Yang, Min He, Hailiang Zhang, Paula Q Barrett and Changlong Hu

Aldosterone, which plays a key role in the regulation of blood pressure, is produced by zona glomerulosa (ZG) cells of the adrenal cortex. Exaggerated overproduction of aldosterone from ZG cells causes primary hyperaldosteronism. In ZG cells, calcium entry through voltage-gated calcium channels plays a central role in the regulation of aldosterone secretion. Previous studies in animal adrenals and human adrenal adrenocortical cell lines suggest that the T-type but not the L-type calcium channel activity drives aldosterone production. However, recent clinical studies show that somatic mutations in L-type calcium channels are the second most prevalent cause of aldosterone-producing adenoma. Our objective was to define the roles of T and L-type calcium channels in regulating aldosterone secretion from human adrenals. We find that human adrenal ZG cells mainly express T-type CaV3.2/3.3 and L-type CaV1.2/1.3 calcium channels. TTA-P2, a specific inhibitor of T-type calcium channel subtypes, reduced basal aldosterone secretion from acutely prepared slices of human adrenals. Surprisingly, nifedipine, the prototypic inhibitor of L-type calcium channels, also decreased basal aldosterone secretion, suggesting that L-type calcium channels are active under basal conditions. In addition, TTA-P2 or nifedipine also inhibited aldosterone secretion stimulated by angiotensin II- or elevations in extracellular K+. Remarkably, blockade of either L- or T-type calcium channels inhibits basal and stimulated aldosterone production to a similar extent. Low concentrations of TTA-P2 and nifedipine showed additive inhibitory effect on aldosterone secretion. We conclude that T- and L-type calcium channels play equally important roles in controlling aldosterone production from human adrenals.

Open access

Md Nurul Islam, Yuichiro Mita, Keisuke Maruyama, Ryota Tanida, Weidong Zhang, Hideyuki Sakoda and Masamitsu Nakazato

Ghrelin, a stomach-derived peptide, promotes feeding and growth hormone (GH) secretion. A recent study identified liver-expressed antimicrobial peptide 2 (LEAP2) as an endogenous inhibitor of ghrelin-induced GH secretion, but the effect of LEAP2 in the brain remained unknown. In this study, we showed that intracerebroventricular (i.c.v.) administration of LEAP2 to rats suppressed central ghrelin functions including Fos expression in the hypothalamic nuclei, promotion of food intake, blood glucose elevation, and body temperature reduction. LEAP2 did not inhibit neuropeptide Y (NPY)-induced food intake or des-acyl ghrelin-induced reduction in body temperature, indicating that the inhibitory effects of LEAP2 were specific for GHSR. Plasma LEAP2 levels varied according to feeding status and seemed to be dependent on the hepatic Leap2 expression. Furthermore, ghrelin suppressed the expression of hepatic Leap2 via AMPK activation. Together, these results reveal that LEAP2 inhibits central ghrelin functions and crosstalk between liver and stomach.

Open access

Alyce M Martin, Emily W Sun and Damien J Keating

The homoeostatic regulation of metabolism is highly complex and involves multiple inputs from both the nervous and endocrine systems. The gut is the largest endocrine organ in our body and synthesises and secretes over 20 different hormones from enteroendocrine cells that are dispersed throughout the gut epithelium. These hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of which play pivotal roles in maintaining energy balance and glucose homeostasis. Some are now the basis of several clinically used glucose-lowering and weight loss therapies. The environment in which these enteroendocrine cells exist is also complex, as they are exposed to numerous physiological inputs including ingested nutrients, circulating factors and metabolites produced from neighbouring gut microbiome. In this review, we examine the diverse means by which gut-derived hormones carry out their metabolic functions through their interactions with different metabolically important organs including the liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and microbial metabolites affect gut hormone secretion and the mechanisms underlying these interactions.