Browse

You are looking at 1 - 10 of 4,284 items for

  • User-accessible content x
Clear All
Free access

Fiona Roberts, Greg Markby, Scott Dillon, Colin Farquharson and Vicky E MacRae

The physiological mineralisation of skeletal tissues, as well as the pathological mineralisation of soft tissues involves a fine balance between regulators that either promote or inhibit the process. In recent years, several studies have advocated a non-skeletal role for some of these mineralisation regulators in a range of human diseases, including diabetes, cardiovascular disease, obesity and neurodegenerative disease. This is an emerging area of interest and the functional roles and mechanisms of action of these various endocrine factors, phosphatases and phosphodiesterase’s in important pathologies are the focus of this review. Mechanistic insight of the pathways through which these acknowledged regulators of skeletal mineralisation act beyond the skeleton has the potential to identify druggable targets for commonly experienced morbidities, notably those related to metabolism and metabolic syndrome.

Restricted access

Myat Theingi Swe, Laongdao Thongnak, Krit Jaikumkao, Anchalee Pongchaidecha, Varanuj Chatsudthipong and Anusorn Lungkaphin

The kidneys release glucose into the systemic circulation through glucose reabsorption and renal gluconeogenesis. Currently, the significance of renal glucose release in pathological conditions has become a subject of interest. We examined the effect of sodium-dependent glucose cotransporter 2 inhibitor (SGLT2i) on renal gluconeogenic enzyme expression in obese rats. Male Wistar rats (180–200 g) were fed either a normal diet (ND, n = 6) or a high-fat diet. At 16 weeks, after confirming the degree of glucose intolerance, high-fat diet-fed rats were randomly subdivided into three groups (n = 6/group): untreated group (HF), treated with dapagliflozin 1 mg/kg/day (HFSG) and treated with metformin 30 mg/kg/day (HFM). The treatment was continued for 4 weeks. We observed that dapagliflozin or metformin mitigated the enhanced expression of renal gluconeogenic enzymes, PEPCK, G6Pase and FBPase, as well as improved glucose tolerance and renal function in obese rats. Dapagliflozin downregulated the elevated expression of gluconeogenic transcription factors p-GSK3β, p-CREB and coactivator PGC1α in the renal cortical tissue. Metformin reduced the expression levels of renal cortical FOXO1 and CREB. Furthermore, reduced renal insulin signaling was improved and renal oxidative stress was attenuated by either dapagliflozin or metformin treatment in obese rats. We concluded that glucose tolerance was improved by dapagliflozin in obese prediabetic rats by suppressing renal glucose release from not only glucose reabsorption but also renal gluconeogenesis through improving renal cortical insulin signaling and oxidative stress. The efficacy of dapagliflozin in improving renal insulin signaling, oxidative stress and renal function was greater than that of metformin.

Open access

Nikolaos Nikolaou, Anastasia Arvaniti, Nathan Appanna, Anna Sharp, Beverly A Hughes, Dena Digweed, Martin J Whitaker, Richard Ross, Wiebke Arlt, Trevor M Penning, Karen Morris, Sherly George, Brian G Keevil, Leanne Hodson, Laura L Gathercole and Jeremy W Tomlinson

Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.

Restricted access

Bethania Mongi-Bragato, Ezequiel Grondona, Liliana del Valle Sosa, Natacha Zlocowski, Ana Clara Venier, Alicia Inés Torres, Alexandra Latini, Rodrigo Bainy Leal, Silvina Gutiérrez and Ana Lucía De Paul

The molecular mechanisms underlying the capability of pituitary tumours to avoid unregulated cell proliferation are still not well understood. However, the NF-κB transcription factor, which is able to modulate not only cellular senescence but also tumour progression, has emerged as a targeted candidate. This work was focused on the NF-κB role in cellular senescence during the progression of experimental pituitary tumours. Also, the contribution of the signalling pathways in senescence-associated NF-κB activation and the senescence-associated secretory phenotype (SASP) and pro-survival-NF-κB target genes transcription were analysed. A robust NF-κB activation was seen at E20–E40 of tumour development accompanied by a marked SA-β-Gal co-reactivity in the tumour pituitary parenchyma. The induction of TNFα and IL1-β as specific SASP-related NF-κB target genes as well as Bcl-2 and Bcl-xl pro-survival genes was shown to be accompanied by increases in the p-p38 MAPK protein levels, starting at the E20 stage and strengthening from 40 to 60 days of tumour growth. It is noteworthy that p-JNK displayed a similar pattern of activation during pituitary tumour development, while p-AKT and p-ERK1/2 were downregulated. By employing a pharmacological strategy to abrogate NF-κB activity, we demonstrated a marked reduction in SA-β-Gal activity and a slight decrease in Ki67 immunopositive cells after NF-κB blockade. These results suggest a central role for NF-κB in the regulation of the cellular senescence programme, leading to the strikingly benign intrinsic nature of pituitary adenomas.

Restricted access

Daniel J Tobiansky, George V Kachkovski, Reilly T Enos, Kim L Schmidt, E Angela Murphy and Kiran K Soma

Sucrose consumption is associated with type 2 diabetes, cardiovascular disease, and cognitive deficits. Sucrose intake during pregnancy might have particularly prominent effects on metabolic, endocrine, and neural physiology. It remains unclear how consumption of sucrose affects parous females, especially in brain circuits that mediate food consumption and reward processing. Here, we examine whether a human-relevant level of sucrose before, during, and after pregnancy (17–18 weeks total) influences metabolic and neuroendocrine physiology in female rats. Females were fed either a control diet or a macronutrient-matched, isocaloric sucrose diet (25% of kcal from sucrose). Metabolically, sucrose impairs glucose tolerance, increases liver lipids, and increases a marker of adipose inflammation, but has no effect on body weight or overall visceral adiposity. Sucrose also decreases corticosterone levels in serum but not in the brain. Sucrose increases progesterone levels in serum and in the brain and increases the brain:serum ratio of progesterone in the mesocorticolimbic system and hypothalamus. These data suggest a dysregulation of systemic and local steroid signalling. Moreover, sucrose decreases tyrosine hydroxylase (TH), a catecholamine-synthetic enzyme, in the medial prefrontal cortex. Finally, sucrose consumption alters the expression pattern of FOSB, a marker of phasic dopamine signalling, in the nucleus accumbens. Overall, chronic consumption of sucrose at a human-relevant level alters metabolism, steroid levels, and brain dopamine signalling in a female rat model.

Restricted access

Erica Sarchielli, Paolo Comeglio, Sandra Filippi, Ilaria Cellai, Giulia Guarnieri, Daniele Guasti, Elena Rapizzi, Giulia Rastrelli, Daniele Bani, Gabriella Vannelli, Linda Vignozzi, Annamaria Morelli and Mario Maggi

Lifestyle modifications, including physical exercise (PhyEx), are well-known treatments for metabolic syndrome (MetS), a cluster of metabolic and cardiovascular risk factors often associated to hypogonadism. Given the trophic role of testosterone on skeletal muscle (SkM), this study was aimed at evaluating the effects of testosterone treatment on SkM metabolism and exercise performance in male rabbits with high-fat diet (HFD)-induced MetS. HFD rabbits, treated or not with testosterone (30 mg/kg/week) for 12 weeks, were compared to regular diet animals (RD). A subset of each group was exercise-trained for 12 weeks. HFD increased type-II (fast, glycolytic) and decreased type-I (slow, oxidative) muscle fibers compared to RD as evaluated by RT-PCR and histochemistry. Testosterone reverted these effects, also inducing the expression of mitochondrial respiration enzymes and normalizing HFD-induced mitochondrial cristae reduction. Moreover, testosterone significantly increased the expression of myogenic/differentiation markers and genes related to glucidic/lipid metabolism. At the end of the PhyEx protocol, when compared to RD, HFD rabbits showed a significant reduction of running distance and running time, while testosterone counteracted this effect, also decreasing lactate production. In the trained groups, muscle histology showed a significant reduction of oxidative fibers in HFD compared to RD and the positive effect of testosterone in maintaining oxidative metabolism, as also demonstrated by analyzing mitochondrial ultrastructure, succinate dehydrogenase activity and ATP production. Our results indicate that testosterone could be useful to promote oxidative muscle metabolism altered by MetS, thus improving exercise performance. Conversely, testosterone administration to otherwise eugonadal rabbits (RD) only increased muscle fiber diameter but not endurance performance.

Restricted access

Xinyu Qi, Chuyu Yun, Baoying Liao, Jie Qiao and Yanli Pang

Polycystic ovary syndrome (PCOS) is a complex syndrome involving both endocrine and metabolic disorders. Gut microbiota and the intestinal immune factor IL-22 play an important role in the pathogenesis of PCOS. However, the therapeutic role of IL-22 in high androgen-induced PCOS mice is not clear. We aimed to determine the therapeutic effects of IL-22 on the DHEA-induced PCOS mouse model and to explore the possible mechanism of IL-22 in regulating hyperandrogenism-associated PCOS. Insulin resistance levels and ovarian functions were investigated in DHEA-induced PCOS mice with or without additional IL-22 treatment. We found that IL-22 could reverse insulin resistance, disturbed estrous cycle, abnormal ovary morphology, and decreased embryo number in DHEA mice. Mechanistically, IL-22 upregulated the browning of white adipose tissue in DHEA mice. This study demonstrated that IL-22-associated browning of white adipose tissue regulated insulin sensitivity and ovarian functions in PCOS, suggesting that IL-22 may be of value for the treatment of PCOS with a hyperandrogenism phenotype.

Open access

Sian J S Simpson, Lorna I F Smith, Peter M Jones and James E Bowe

The corticotropin-releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic-pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.

Restricted access

Sarah L Craig, Victor A Gault, Gerd Hamscher and Nigel Irwin

Recent studies have characterised the biological properties and glucose-dependent insulinotropic polypeptide (GIP) potentiating actions of an enzymatically stable, C-terminal hexapeptide fragment of the gut hormone xenin, namely Ψ-xenin-6. Given the primary therapeutic target of clinically approved dipeptidyl peptidase-4 (DPP-4) inhibitor drugs is augmentation of the incretin effect, the present study has assessed the capacity of Ψ-xenin-6 to enhance the antidiabetic efficacy of sitagliptin in high fat fed (HFF) mice. Individual administration of either sitagliptin or Ψ-xenin-6 alone for 18 days resulted in numerous metabolic benefits and positive effects on pancreatic islet architecture. As expected, sitagliptin therapy was associated with elevated circulating GIP and GLP-1 levels, with concurrent Ψ-xenin-6 not elevating these hormones or enhancing DPP-4 inhibitory activity of the drug. However, combined sitagliptin and Ψ-xenin-6 therapy in HFF mice was associated with further notable benefits, beyond that observed with either treatment alone. This included body weight change similar to lean controls, more pronounced and rapid benefits on circulating glucose and insulin as well as additional improvements in attenuating gluconeogenesis. Favourable effects on pancreatic islet architecture and peripheral insulin sensitivity were more apparent with combined therapy. Expression of hepatic genes involved in gluconeogenesis and insulin action were partially, or fully, restored to normal levels by the treatment regimens, with beneficial effects more prominent in the combination treatment group. These data demonstrate that combined treatment with Ψ-xenin-6 and sitagliptin did not alter glucose tolerance but does offer some metabolic advantages, which merit further consideration as a therapeutic option for type 2 diabetes.

Open access

Yoshinori Kanemaru, Norio Harada, Satoko Shimazu-Kuwahara, Shunsuke Yamane, Eri Ikeguchi, Yuki Murata, Sakura Kiyobayashi, Tomonobu Hatoko and Nobuya Inagaki

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin secreted from enteroendocine K cells after nutrient ingestion. Fat strongly induces GIP secretion, and GIP hypersecretion is involved in high-fat diet-induced obesity and insulin resistance. Aging also induces GIP hypersecretion, but its effect on body weight gain and insulin sensitivity remains unclear. In the present study, we investigated the effect of GIP on age-related body weight gain and insulin resistance using GIP-knockout homozygous (GIP−/ ) and heterozygous (GIP+/ ) mice, which have entirely absent and 50% reduced GIP secretion compared to wild-type (WT) mice, respectively. Under 12% fat-containing normal diet feeding condition, body weight was significantly lower in GIP−/ mice compared to that in WT and GIP+/ mice from 38 weeks of age, while there was no significant difference between WT and GIP+/ mice. Visceral and s.c. fat mass were also significantly lower in GIP−/ mice compared to those in WT and GIP+/ mice. During oral glucose tolerance test, blood glucose levels did not differ among the three groups. Insulin levels were significantly lower in GIP−/ mice than those in WT and GIP+/ mice. During insulin tolerance test, GIP−/ mice showed higher insulin sensitivity than that of WT and GIP+/ mice. Adiponectin mRNA levels were increased and leptin mRNA levels tended to be decreased in adipose tissue of GIP−/ mice. These results demonstrate that GIP is involved in age-related obesity and insulin resistance and that inhibition of GIP secretion alleviates age-related fat mass gain and insulin resistance under carbohydrate-based diet feeding condition.