Browse

You are looking at 131 - 140 of 4,404 items for

  • Refine by access: Content accessible to me x
Clear All
Jane J Reavey MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Jane J Reavey in
Google Scholar
PubMed
Close
,
Catherine Walker MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Catherine Walker in
Google Scholar
PubMed
Close
,
Alison A Murray MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Alison A Murray in
Google Scholar
PubMed
Close
,
Savita Brito-Mutunayagam MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Savita Brito-Mutunayagam in
Google Scholar
PubMed
Close
,
Sheona Sweeney MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Sheona Sweeney in
Google Scholar
PubMed
Close
,
Moira Nicol MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Moira Nicol in
Google Scholar
PubMed
Close
,
Ana Cambursano MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Ana Cambursano in
Google Scholar
PubMed
Close
,
Hilary O D Critchley MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Hilary O D Critchley in
Google Scholar
PubMed
Close
, and
Jacqueline A Maybin MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK

Search for other papers by Jacqueline A Maybin in
Google Scholar
PubMed
Close

Heavy menstrual bleeding is common and debilitating but the causes remain ill defined. Rates of obesity in women are increasing and its impact on menstrual blood loss (MBL) is unknown. Therefore, we quantified BMI and MBL in women not taking hormones and with regular menstrual cycles and revealed a positive correlation. In a mouse model of simulated menstruation, diet-induced obesity also resulted in delayed endometrial repair, a surrogate marker for MBL. BrdU staining of mouse uterine tissue revealed decreased proliferation during menstruation in the luminal epithelium of mice on a high-fat diet. Menstruation is known to initiate local endometrial inflammation and endometrial hypoxia; hence, the impact of body weight on these processes was investigated. A panel of hypoxia-regulated genes (VEGF, ADM, LDHA, SLC2A1) showed consistently higher mean values in the endometrium of women with obesity and in uteri of mice with increased weight vs normal controls, although statistical significance was not reached. The inflammatory mediators, Tnf and Il6 were significantly increased in the uterus of mice on a high-fat diet, consistent with a pro-inflammatory local endometrial environment in these mice. In conclusion, obesity was associated with increased MBL in women. Mice given a high-fat diet had delayed endometrial repair at menstruation and provided a model in which to study the influence of obesity on menstrual physiology. Our results indicate that obesity results in a more pro-inflammatory local endometrial environment at menstruation, which may delay endometrial repair and increase menstrual blood loss.

Open access
Bin Li School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Bin Li in
Google Scholar
PubMed
Close
,
Jiming Yin Beijing You An Hospital, Capital Medical University, Beijing, China
Beijing Institute of Hepatology, Beijing, China

Search for other papers by Jiming Yin in
Google Scholar
PubMed
Close
,
Jing Chang Beijing You An Hospital, Capital Medical University, Beijing, China

Search for other papers by Jing Chang in
Google Scholar
PubMed
Close
,
Jia Zhang School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Jia Zhang in
Google Scholar
PubMed
Close
,
Yangjia Wang School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Yangjia Wang in
Google Scholar
PubMed
Close
,
Haixia Huang School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Haixia Huang in
Google Scholar
PubMed
Close
,
Wei Wang School of Basic Medical Sciences, Capital Medical University, Beijing, China
Beijing Lab for Cardiovascular Precision Medicine, Beijing, China

Search for other papers by Wei Wang in
Google Scholar
PubMed
Close
, and
Xiangjun Zeng School of Basic Medical Sciences, Capital Medical University, Beijing, China

Search for other papers by Xiangjun Zeng in
Google Scholar
PubMed
Close

Microcirculatory injuries had been reported to be involved in diabetic cardiomyopathy, which was mainly related to endothelial cell dysfunction. Apelin, an adipokine that is upregulated in diabetes mellitus, was reported to improve endothelial cell dysfunction and attenuate cardiac insufficiency induced by ischemia and reperfusion. Therefore, it is hypothesized that apelin might be involved in alleviating endothelial cell dysfunction and followed cardiomyopathy in diabetes mellitus. The results showed that apelin improved endothelial cell dysfunction via decreasing apoptosis and expression of adhesion molecules and increasing proliferation, angiogenesis, and expression of E-cadherin, VEGFR 2 and Tie-2 in endothelial cells, which resulted in the attenuation of the capillary permeability in cardiac tissues and following diabetic cardiomyopathy. Meanwhile, the results from endothelial cell-specific APJ knockout mice and cultured endothelial cells confirmed that the effects of apelin on endothelial cells were dependent on APJ and the downstream NFκB pathways. In conclusion, apelin might reduce microvascular dysfunction induced by diabetes mellitus via improving endothelial dysfunction dependent on APJ activated NFκB pathways.

Open access
Shelley Gorman Telethon Kids Institute, University of Western Australia, Perth, Australia

Search for other papers by Shelley Gorman in
Google Scholar
PubMed
Close
,
Alexander N Larcombe Telethon Kids Institute, Perth, Australia
School of Population Health, Curtin University, Perth, Australia

Search for other papers by Alexander N Larcombe in
Google Scholar
PubMed
Close
, and
Hayley E Christian Telethon Kids Institute, University of Western Australia, Perth, Australia

Search for other papers by Hayley E Christian in
Google Scholar
PubMed
Close

In this narrative review, we provide an overview of the role of physical activity as part of differing exposomes (our combined non-genetic exposures from conception onwards) and environmental influences on metabolic health. We discuss ‘beneficial’ exposomes (green/natural outdoor spaces, sun exposure, healthy diets and features of built environments) that could synergise with physical activity to prevent metabolic dysfunction, particularly that related to lifestyle diseases of obesity, type 2 diabetes and metabolic syndrome. Physical activity may also reduce the capacity of some adverse exposomes, specifically those with significant levels of air pollution, to contribute towards metabolic dysfunction. Other exposomes, such as those experienced during pandemics (including COVID-19), potentially limit opportunities for physical activity, and there may be unexpected combined effects of physical activity with other infections (e.g. adenovirus-36) on metabolic health. Finally, we discuss how environments could be better optimised to create exposomes that promote the health benefits of physical activity and likely future directions of this research field.

Free access
Julie Rodriguez Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium

Search for other papers by Julie Rodriguez in
Google Scholar
PubMed
Close
and
Nathalie M Delzenne Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium

Search for other papers by Nathalie M Delzenne in
Google Scholar
PubMed
Close

The gut microbiota is now widely recognized as an important factor contributing to the regulation of host metabolic functions. Numerous studies describe an imbalance in the gut microbial ecosystem in response to an energy-dense diet that drives the development of metabolic disorders. In this context, the manipulation of the gut microbiota by food components acting as prebiotics appears as a promising strategy. Several studies have already investigated the beneficial potency of prebiotics, mostly inulin-type fructans, on host metabolism and key intestinal functions including gut hormone release. For the last 20 years, several non-digestible compounds present in food have been shown to modulate the gut microbiota and influence host metabolism in essential organs involved in the control of energy homeostasis. To date, numerous reviews summarize the impact of prebiotics on the liver or the brain. Here we propose to describe the mechanisms by which prebiotics, through modulation of the gut microbiota and endocrine functions, modulates the metabolic cross-talk communication between the gut, the adipose tissue and skeletal muscles.

Free access
Jennifer Chen The Westmead Institute for Medical Research, The University of Sydney Westmead Hospital, New South Wales, Australia

Search for other papers by Jennifer Chen in
Google Scholar
PubMed
Close
and
Jenny E Gunton The Westmead Institute for Medical Research, The University of Sydney Westmead Hospital, New South Wales, Australia
Department of Endocrinology and Diabetes, Westmead Hospital, Sydney, New South Wales, Australia
Garvan Institute of Medical Research, Sydney, New South Wales, Australia
St Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Jenny E Gunton in
Google Scholar
PubMed
Close

Islet transplantation, a therapeutic option to treat type 1 diabetes, is not yet as successful as whole-pancreas transplantation as a treatment for diabetes. Mouse models are commonly used for islet research. However, it is clear disparities exist between islet transplantation outcomes in mice and humans. Given the shortage of transplant-grade islets, it is crucial that we further our understanding of factors that determine long-term islet survival and function post-transplantation. In turn, this may lead to new therapeutic targets and strategies that will improve transplant outcomes. Here, we summarise the current landscape in clinical transplantation, highlight underlying similarities and differences between mouse and human islets, and review interventions that are being considered to create a new pool of β-cells for clinical application.

Free access
Dominik Simon Botermann Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Dominik Simon Botermann in
Google Scholar
PubMed
Close
,
Nadine Brandes Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Nadine Brandes in
Google Scholar
PubMed
Close
,
Anke Frommhold Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Anke Frommhold in
Google Scholar
PubMed
Close
,
Ina Heß Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Ina Heß in
Google Scholar
PubMed
Close
,
Alexander Wolff Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Alexander Wolff in
Google Scholar
PubMed
Close
,
Arne Zibat Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Arne Zibat in
Google Scholar
PubMed
Close
,
Heidi Hahn Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Heidi Hahn in
Google Scholar
PubMed
Close
,
Rolf Buslei Institute of Pathology, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Germany

Search for other papers by Rolf Buslei in
Google Scholar
PubMed
Close
, and
Anja Uhmann Institute of Human Genetics, Molecular Developmental Genetics and Tumor Genetics Group, University Medical Center, Göttingen, Germany

Search for other papers by Anja Uhmann in
Google Scholar
PubMed
Close

Ubiquitous overactivation of Hedgehog signaling in adult pituitaries results in increased expression of proopiomelanocortin (Pomc), growth hormone (Gh) and prolactin (Prl), elevated adrenocorticotropic hormone (Acth) production and proliferation of Sox2+ cells. Moreover, ACTH, GH and PRL-expressing human pituitary adenomas strongly express the Hedgehog target GLI1. Accordingly, Hedgehog signaling seems to play an important role in pathology and probably also in homeostasis of the adult hypophysis. However, the specific Hedgehog-responsive pituitary cell type has not yet been identified. We here investigated the Hedgehog pathway activation status and the effects of deregulated Hedgehog signaling cell-specifically in endocrine and non-endocrine pituitary cells. We demonstrate that Hedgehog signaling is unimportant for the homeostasis of corticotrophs, whereas it is active in subpopulations of somatotrophs and folliculo-stellate cells in vivo. Reinforcement of Hedgehog signaling activity in folliculo-stellate cells stimulates growth hormone production/release from somatotrophs in a paracrine manner, which most likely is mediated by the neuropeptide vasoactive intestinal peptide. Overall, our data show that Hedgehog signaling affects the homeostasis of pituitary hormone production via folliculo-stellate cell-mediated regulation of growth hormone production/secretion.

Open access
Aarti D Rohira Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Aarti D Rohira in
Google Scholar
PubMed
Close
,
David M Lonard Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by David M Lonard in
Google Scholar
PubMed
Close
, and
Bert W O’Malley Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Bert W O’Malley in
Google Scholar
PubMed
Close

Tissue parenchyma is the functional unit of an organ and all of the remaining cells within that organ collectively make up the tissue stroma. The stroma includes fibroblasts, endothelial cells, immune cells, and nerves. Interactions between stromal and epithelial cells are essential for tissue development and healing after injury. These interactions are governed by growth factors, inflammatory cytokines and hormone signaling cascades. The steroid receptor coactivator (SRC) family of proteins includes three transcriptional coactivators that facilitate the assembly of multi-protein complexes to induce gene expression in response to activation of many cellular transcription factor signaling cascades. They are ubiquitously expressed and are especially critical for the developmental function of steroid hormone responsive tissues. The SRCs are overexpressed in multiple cancers including breast, ovarian, prostate and endometrial cancers. In this review, we focus on the role of the SRCs in regulating the functions of stromal cell components responsible for angiogenesis, inflammation and cell differentiation.

Free access
Fabio Arturo Iannotti Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Campania, Italy

Search for other papers by Fabio Arturo Iannotti in
Google Scholar
PubMed
Close
and
Vincenzo Di Marzo Director, Joint International Research Unit for the Chemical and Biomolecular Study of the Microbiome in Metabolic Health and Nutrition (JIRU-MicroMeNu) between the Consiglio Nazionale delle Ricerche (CNR, Institute of Biomolecular Chemistry) and Université Laval, Naples, Campania, Italy
Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Department of Medicine, Faculty of Medicine and School of Nutrition, Faculty of Agricultural and Food Sciences, CRIUCPQ, INAF and Centre NUTRISS, Université Laval, Québec City, Canada

Search for other papers by Vincenzo Di Marzo in
Google Scholar
PubMed
Close

Two complex systems are emerging as being deeply involved in the control of energy metabolism. The intestinal microbiota, with its warehouse of genes, proteins and small molecules, that is, the gut microbiome; and the endocannabinoid system, with its recent extension to a more complex signalling apparatus including more than 100 lipid mediators and 50 proteins, that is, the endocannabinoidome. Both systems can become perturbed following bad dietary habits and during obesity, thus contributing to exacerbating this latter condition and its consequences in both peripheral organs and the brain. Here, we discuss some of the multifaceted aspects of the regulation and dysregulation of the gut microbiome and endocannabinoidome in energy metabolism and metabolic disorders, with special emphasis on the emerging functional interactions between the two systems. The potential exploitation of this new knowledge for the development of new pharmacological and nutritional approaches against obesity and its consequences is also briefly touched upon.

Free access
Marion Régnier UCLouvain, Université Catholique de Louvain, WELBIO – Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium

Search for other papers by Marion Régnier in
Google Scholar
PubMed
Close
,
Matthias Van Hul UCLouvain, Université Catholique de Louvain, WELBIO – Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium

Search for other papers by Matthias Van Hul in
Google Scholar
PubMed
Close
,
Claude Knauf Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Place du Docteur Baylac, Toulouse Cedex 3, France
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium

Search for other papers by Claude Knauf in
Google Scholar
PubMed
Close
, and
Patrice D Cani UCLouvain, Université Catholique de Louvain, WELBIO – Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium

Search for other papers by Patrice D Cani in
Google Scholar
PubMed
Close

Overweight and obesity are associated with several cardiometabolic risk factors, including insulin resistance, type 2 diabetes, low-grade inflammation and liver diseases. The gut microbiota is a potential contributing factor regulating energy balance. However, although the scientific community acknowledges that the gut microbiota composition and its activity (e.g. production of metabolites and immune-related compounds) are different between healthy subjects and subjects with overweight/obesity, the causality remains insufficiently demonstrated. The development of low-grade inflammation and related metabolic disorders has been connected with metabolic endotoxaemia and increased gut permeability. However, the mechanisms acting on the regulation of the gut barrier and eventually cardiometabolic disorders are not fully elucidated. In this review, we debate several characteristics of the gut microbiota, gut barrier function and metabolic outcomes. We examine the role of specific dietary compounds or nutrients (e.g. prebiotics, probiotics, polyphenols, sweeteners, and a fructose-rich diet) as well as different metabolites produced by the microbiota in host metabolism, and we discuss how they control several endocrine functions and eventually have either beneficial or deleterious effects on host health.

Free access
Michela Rossi Bone Physiopathology Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Search for other papers by Michela Rossi in
Google Scholar
PubMed
Close
,
Giulia Battafarano Bone Physiopathology Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Search for other papers by Giulia Battafarano in
Google Scholar
PubMed
Close
,
Viviana De Martino Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy

Search for other papers by Viviana De Martino in
Google Scholar
PubMed
Close
,
Alfredo Scillitani Endocrinology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, Foggia, Italy

Search for other papers by Alfredo Scillitani in
Google Scholar
PubMed
Close
,
Salvatore Minisola Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy

Search for other papers by Salvatore Minisola in
Google Scholar
PubMed
Close
, and
Andrea Del Fattore Bone Physiopathology Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Search for other papers by Andrea Del Fattore in
Google Scholar
PubMed
Close

Bone remodelling is a complex mechanism regulated by osteoclasts and osteoblasts and perturbation of this process leads to the onset of diseases, which may be characterised by altered bone erosion or formation. In this review, we will describe some bone formation-related disorders as sclerosteosis, van Buchem disease, hypophosphatasia and Camurati–Engelmann disease. In the past decades, the research focused on these rare disorders offered the opportunity to understand important pathways regulating bone formation. Thus, the identification of the molecular defects behind the etiopathology of these diseases will open the way for new therapeutic approaches applicable also to the management of more common bone diseases including osteoporosis.

Free access