Browse
University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
Search for other papers by Renata Risi in
Google Scholar
PubMed
Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
Centro de Investigacion Principe Felipe, Valencia, Spain
Search for other papers by Antonio Vidal-Puig in
Google Scholar
PubMed
Search for other papers by Guillaume Bidault in
Google Scholar
PubMed
Obesity and diabetes represent two increasing and invalidating public health issues that often coexist. It is acknowledged that fat mass excess predisposes to insulin resistance and type 2 diabetes mellitus (T2D), with the increasing incidence of the two diseases significantly associated. Moreover, emerging evidence suggests that obesity might also accelerate the appearance of type 1 diabetes (T1D), which is now a relatively frequent comorbidity in patients with obesity. It is a common clinical finding that not all patients with obesity will develop diabetes at the same level of adiposity, with gender, genetic, and ethnic factors playing an important role in defining the timing of diabetes appearance. The adipose tissue (AT) expandability hypothesis explains this paradigm, indicating that the individual capacity to appropriately store energy surplus in the form of fat within the AT determines and prevents the toxic deposition of lipids in other organs, such as the pancreas. Thus, we posit that when the maximal storing capacity of AT is exceeded, individuals will develop T2D. In this review, we provide insight into mechanisms by which the AT controls pancreas lipid content and homeostasis in case of obesity to offer an adipocentric perspective of pancreatic lipotoxicity in the pathogenesis of diabetes. Moreover, we suggest that improving AT function is a valid therapeutic approach to fighting obesity-associated complications including diabetes.
Search for other papers by Xiong Weng in
Google Scholar
PubMed
Search for other papers by Hao Jiang in
Google Scholar
PubMed
Search for other papers by David J Walker in
Google Scholar
PubMed
Search for other papers by Houjiang Zhou in
Google Scholar
PubMed
Search for other papers by De Lin in
Google Scholar
PubMed
Search for other papers by Jing Wang in
Google Scholar
PubMed
Search for other papers by Li Kang in
Google Scholar
PubMed
CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type-specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44-deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARγ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.
Search for other papers by Graham W Aberdeen in
Google Scholar
PubMed
Search for other papers by Jeffery S Babischkin in
Google Scholar
PubMed
Search for other papers by Gerald J Pepe in
Google Scholar
PubMed
Search for other papers by Eugene D Albrecht in
Google Scholar
PubMed
We recently showed that the ratio of capillaries to myofibers in skeletal muscle, which accounts for 80% of insulin-directed glucose uptake and metabolism, was reduced in baboon fetuses in which estrogen was suppressed by maternal letrozole administration. Since vascular endothelial growth factor (VEGF) promotes angiogenesis, the present study determined the impact of estrogen deprivation on fetal skeletal muscle VEGF expression, capillary development, and long-term vascular and metabolic function in 4- to 8-year-old adult offspring. Maternal baboons were untreated or treated with letrozole or letrozole plus estradiol on days 100–164 of gestation (term = 184 days). Skeletal muscle VEGF protein expression was suppressed by 45% (P < 0.05) and correlated (P = 0.01) with a 47% reduction (P < 0.05) in the number of capillaries per myofiber area in fetuses of baboons in which serum estradiol levels were suppressed 95% (P < 0.01) by letrozole administration. The reduction in fetal skeletal muscle microvascularization was associated with a 52% decline (P = 0.02) in acetylcholine-induced brachial artery dilation and a 23% increase (P = 0.01) in mean arterial blood pressure in adult progeny of letrozole-treated baboons, which was restored to normal by letrozole plus estradiol. The present study indicates that estrogen upregulates skeletal muscle VEGF expression and systemic microvessel development within the fetus as an essential programming event critical for ontogenesis of systemic vascular function and insulin sensitivity/glucose homeostasis after birth in primate offspring.
Search for other papers by Emma Rose McGlone in
Google Scholar
PubMed
Search for other papers by Stephen R Bloom in
Google Scholar
PubMed
Search for other papers by Tricia M-M Tan in
Google Scholar
PubMed
Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.
Search for other papers by Samrin Kagdi in
Google Scholar
PubMed
Search for other papers by Sulayman A Lyons in
Google Scholar
PubMed
Search for other papers by Jacqueline L Beaudry in
Google Scholar
PubMed
Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.
Search for other papers by Affiong Ika Oqua in
Google Scholar
PubMed
Search for other papers by Yusman Manchanda in
Google Scholar
PubMed
Search for other papers by Emma Rose McGlone in
Google Scholar
PubMed
Search for other papers by Ben Jones in
Google Scholar
PubMed
Search for other papers by Sarah Rouse in
Google Scholar
PubMed
Search for other papers by Alejandra Tomas in
Google Scholar
PubMed
The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid–receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid–receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.
Search for other papers by Rebecca J Ainslie in
Google Scholar
PubMed
Search for other papers by Ioannis Simitsidellis in
Google Scholar
PubMed
Search for other papers by Phoebe M Kirkwood in
Google Scholar
PubMed
Search for other papers by Douglas A Gibson in
Google Scholar
PubMed
Androgens can modulate immune cell function and may contribute to differences in the prevalence and severity of common inflammatory conditions. Although most immune cells are androgen targets, our understanding of how changes in androgen bioavailability can affect immune responses is incomplete. Androgens alter immune cell composition, phenotype, and activation by modulating the expression and secretion of inflammatory mediators or by altering the development and maturation of immune cell precursors. Androgens are generally associated with having suppressive effects on the immune system, but their impacts are cell and tissue context-dependent and can be highly nuanced even within immune cell subsets. In response to androgens, innate immune cells such as neutrophils, monocytes, and macrophages increase the production of the anti-inflammatory cytokine IL-10 and decrease nitric oxide production. Androgens promote the differentiation of T cell subsets and reduce the production of inflammatory mediators, such as IFNG, IL-4 and IL-5. Additionally, androgens/androgen receptor can promote the maturation of B cells. Thus, androgens can be considered as immunomodulatory agents, but further work is required to understand the precise molecular pathways that are regulated at the intersection between endocrine and inflammatory signals. This narrative review focusses on summarising our current understanding of how androgens can alter immune cell function and how this might affect inflammatory responses in health and disease.
Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
Department of Gynaecology and Obstetrics, Sinopharm Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, PR China
Search for other papers by Yaxiong Huang in
Google Scholar
PubMed
Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
Search for other papers by Zihan Wang in
Google Scholar
PubMed
Search for other papers by Bin Li in
Google Scholar
PubMed
Search for other papers by Lina Ke in
Google Scholar
PubMed
Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
Search for other papers by Yao Xiong in
Google Scholar
PubMed
Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan Hubei Province, PR China
Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan Hubei Province, PR China
Search for other papers by Yuanzhen Zhang in
Google Scholar
PubMed
The impaired endometrial receptivity is a major factor contributing to infertility in patients with endometriosis (EM), but the underlying mechanism remains unclear. Our study aimed to investigate the role of Kruppel-like factor 15 (KLF15) in endometrial receptivity and its regulation in EM. We observed a significant decrease in KLF15 expression in the mid-secretory epithelial endometrial cells of EM patients compared to normal females without EM. To confirm the role of KLF15 in endometrial receptivity, we found a significantly reduced KLF15 expression and a significant decrease in embryo implantation number in the rat model via uterine horn infection with siRNA. This highlights the importance of KLF15 as a regulator receptivity. Furthermore, through ChIP-qPCR, we discovered that the progesterone receptor (PR) directly binds to KLF15 promoter regions, indicating that progesterone resistance may mediate the decrease in KLF15 expression in EM patients. Additionally, we found that the mid-secretory endometrium of EM patients exhibited impaired epithelial–mesenchymal transition (EMT). Knockdown of KLF15 upregulated E-cadherin and downregulated vimentin expression, leading to inhibited invasiveness and migration of Ishikawa cells. Overexpression KLF15 promotes EMT, invasiveness, and migration ability, and increases the attachment rate of JAR cells to Ishikawa cells. Through RNA-seq analysis, we identified TWIST2 as a downstream gene of KLF15. We confirmed that KLF15 directly binds to the promoter region of TWIST2 via ChIP-qPCR, promoting epithelial cell EMT during the establishment of endometrial receptivity. Our study reveals the involvement of KLF15 in the regulation of endometrial receptivity and its downstream effects on EMT. These findings provide valuable insights into potential therapeutic approaches for treating non-receptive endometrium in patients with EM.
Search for other papers by Matthew W S Lim in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, UK
Search for other papers by Angela K Lucas-Herald in
Google Scholar
PubMed
Search for other papers by Avril Mason in
Google Scholar
PubMed
Search for other papers by Christian Delles in
Google Scholar
PubMed
Search for other papers by Paul J Connelly in
Google Scholar
PubMed
The integral role of the hypothalamic–pituitary–gonadal axis in reproductive processes makes it a prime therapeutic target. By inhibiting sex steroid synthesis, gonadotropin-releasing hormone (GnRH) analogues are used in the management of cancers, benign neoplasms, infertility and gender dysphoria. However, the wide application of these therapeutics raises concerns regarding the unintended effects upon the cardiovascular system. In males with prostate cancer, GnRH analogues when used as an androgen deprivation therapy appear to increase the risk of cardiovascular disease, which is the leading cause of death in this population. Therefore, due to the utilisation of GnRH analogues across the lifespan and gender spectrum, this relationship merits discussion. Existing data suggest an association between GnRH analogues and major adverse cardiovascular events in males. Conversely, females receiving GnRH analogues for breast cancer treatment appear to be at an increased risk of developing hypertension. In this narrative review, we describe the uses of GnRH analogues in adults, adolescents and children. We discuss whether sex plays a role in the cardiovascular effects of GnRH analogues and explore the significance of sex hormone receptors in the vasculature. We also consider confounding factors such as malignancy, advanced age and infertility.
Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Search for other papers by Margaret K Hahn in
Google Scholar
PubMed
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Adria Giacca in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
Metabolic tests are vital to determine in vivo insulin sensitivity and glucose metabolism in preclinical models, usually rodents. Such tests include glucose tolerance tests, insulin tolerance tests, and glucose clamps. Although these tests are not standardized, there are general guidelines for their completion and analysis that are constantly being refined. In this review, we describe metabolic tests in rodents as well as factors to consider when designing and performing these tests.