Browse
Search for other papers by Neerav Mullur in
Google Scholar
PubMed
Search for other papers by Arianne Morissette in
Google Scholar
PubMed
Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
Search for other papers by Nadya M Morrow in
Google Scholar
PubMed
Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
Search for other papers by Erin E Mulvihill in
Google Scholar
PubMed
Cardiovascular outcome trials (CVOTs) in people living with type 2 diabetes mellitus and obesity have confirmed the cardiovascular benefits of glucagon-like peptide 1 receptor agonists (GLP-1RAs), including reduced cardiovascular mortality, lower rates of myocardial infarction, and lower rates of stroke. The cardiovascular benefits observed following GLP-1RA treatment could be secondary to improvements in glycemia, blood pressure, postprandial lipidemia, and inflammation. Yet, the GLP-1R is also expressed in the heart and vasculature, suggesting that GLP-1R agonism may impact the cardiovascular system. The emergence of GLP-1RAs combined with glucose-dependent insulinotropic polypeptide and glucagon receptor agonists has shown promising results as new weight loss medications. Dual-agonist and tri-agonist therapies have demonstrated superior outcomes in weight loss, lowered blood sugar and lipid levels, restoration of tissue function, and enhancement of overall substrate metabolism compared to using GLP-1R agonists alone. However, the precise mechanisms underlying their cardiovascular benefits remain to be fully elucidated. This review aims to summarize the findings from CVOTs of GLP-1RAs, explore the latest data on dual and tri-agonist therapies, and delve into potential mechanisms contributing to their cardioprotective effects. It also addresses current gaps in understanding and areas for further research.
Search for other papers by Samuel Richard Heaselgrave in
Google Scholar
PubMed
Search for other papers by Silke Heising in
Google Scholar
PubMed
Search for other papers by Stuart Andrew Morgan in
Google Scholar
PubMed
Search for other papers by David M Cartwright in
Google Scholar
PubMed
Search for other papers by Michael S Sagmeister in
Google Scholar
PubMed
Search for other papers by Rowan Hardy in
Google Scholar
PubMed
Search for other papers by Craig L Doig in
Google Scholar
PubMed
Search for other papers by Nicholas Morton in
Google Scholar
PubMed
Search for other papers by Kostas Tsintzas in
Google Scholar
PubMed
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
Systemic glucocorticoid excess causes several adverse metabolic conditions, most notably Cushing’s syndrome. These effects are amplified by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Here we determined the less well characterised effects of glucocorticoid excess, and the contribution of 11β-HSD1 amplification, on metabolic rate in mice. Male and female C57BL/6J (wild type, WT) and 11β-HSD1 knock out (11β-HSD1KO) mice were treated with high-dose corticosterone or a vehicle control for 3 weeks. Indirect calorimetry was conducted during the final week of treatment, with or without fasting, to determine the impact on metabolic rate. We found that corticosterone treatment elevated metabolic rate and promoted carbohydrate utilisation primarily in female WT mice, with effects more pronounced during the light phase. Corticosterone treatment also resulted in greater fat accumulation in female WT mice. Corticosterone induced hyperphagia was identified as a likely causal factor altering the respiratory exchange ratio (RER) but not energy expenditure (EE). Male and female 11β-HSD1KO mice were protected against these effects. We identify novel metabolic consequences of sustained glucocorticoid excess, identify a key mechanism of hyperphagia and demonstrate that 11β-HSD1 is required to manifest the full metabolic derangement.
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Yu Wang in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Fan Li in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Xiaoqian Gao in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Huahui Yu in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Zhiyong Du in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Linyi Li in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Yunhui Du in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Chaowei Hu in
Google Scholar
PubMed
The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
Search for other papers by Yanwen Qin in
Google Scholar
PubMed
Hypercholesterolemia is an independent risk factor for cardiovascular disease and lowering circulating levels of low-density lipoprotein cholesterol (LDL-C) can prevent and reduce cardiovascular events. MicroRNA-181d (miR-181d) can reduce the levels of triglycerides and cholesterol esters in cells. However, it is not known whether miR-181d-5p can lower levels of circulating LDL-C. Here, we generated two animal models of hypercholesterolemia to analyze the potential relationship between miR-181d-5p and LDL-C. In hypercholesterolemia model mice, adeno-associated virus (AAV)-mediated liver-directed overexpression of miR-181d-5p decreased the serum levels of cholesterol and LDL-C and the levels of cholesterol and triglyceride in the liver compared with control mice. Target Scan 8.0 indicated Proprotein convertase subtilisin/kexin type 9 (PCSK9) to be a possible target gene of miR-181d-5p, which was confirmed by in vitro experiments. miR-181d-5p could directly interact with both the PCSK9 3′-UTR and promoter to inhibit PCSK9 translation and transcription. Furthermore, Dil-LDL uptake assays in PCSK9 knockdown Huh7 cells demonstrated that miR-181d-5p promotion of LDL-C absorption was dependent on PCSK9. Collectively, our findings show that miR-181d-5p targets the PCSK9 3′-UTR to inhibit PCSK9 expression and to reduce serum LDL-C. miR-181d-5p is therefore a new therapeutic target for the development of anti-hypercholesterolemia drugs.
Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
Search for other papers by Gencer Sancar in
Google Scholar
PubMed
Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
Search for other papers by Andreas L Birkenfeld in
Google Scholar
PubMed
The root cause of type 2 diabetes (T2D) is insulin resistance (IR), defined by the failure of cells to respond to circulating insulin to maintain lipid and glucose homeostasis. While the causes of whole-body insulin resistance are multifactorial, a major contributing factor is dysregulation of liver and adipose tissue function. Adipose dysfunction, particularly adipose tissue-IR (adipo-IR), plays a crucial role in the development of hepatic insulin resistance and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) in the context of T2D. In this review, we will focus on molecular mechanisms of hepatic insulin resistance and its association with adipose tissue function. A deeper understanding of the pathophysiological mechanisms of the transition from a healthy state to insulin resistance, impaired glucose tolerance, and T2D may enable us to prevent and intervene in the progression to T2D.
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Search for other papers by Elisa Villalobos in
Google Scholar
PubMed
Search for other papers by Allende Miguelez-Crespo in
Google Scholar
PubMed
Scotland’s Rural College, The Roslin Institute, Easter Bush Campus, United Kingdom
Search for other papers by Ruth A Morgan in
Google Scholar
PubMed
Search for other papers by Lisa Ivatt in
Google Scholar
PubMed
Search for other papers by Mhairi Paul in
Google Scholar
PubMed
Search for other papers by Joanna P Simpson in
Google Scholar
PubMed
Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Search for other papers by Dominic Kurian in
Google Scholar
PubMed
Search for other papers by Judit Aguilar in
Google Scholar
PubMed
Search for other papers by Rachel A Kline in
Google Scholar
PubMed
Search for other papers by Thomas M Wishart in
Google Scholar
PubMed
Centre for Systems Health and Integrated Metabolic Research, Nottingham Trent University, Nottingham, United Kingdom
Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Search for other papers by Roland H Stimson in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Mark Nixon in
Google Scholar
PubMed
Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.
Search for other papers by Andrea Lovdel in
Google Scholar
PubMed
Search for other papers by Karla J Suchacki in
Google Scholar
PubMed
Search for other papers by Fiona Roberts in
Google Scholar
PubMed
Search for other papers by Richard J Sulston in
Google Scholar
PubMed
Search for other papers by Robert J Wallace in
Google Scholar
PubMed
Search for other papers by Benjamin J Thomas in
Google Scholar
PubMed
Search for other papers by Rachel M B Bell in
Google Scholar
PubMed
Search for other papers by Iris Pruñonosa Cervera in
Google Scholar
PubMed
Search for other papers by Gavin J Macpherson in
Google Scholar
PubMed
Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Search for other papers by William P Cawthorn in
Google Scholar
PubMed
Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11β-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11β-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11β-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11β-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11β-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.
Search for other papers by Ryan A Lafferty in
Google Scholar
PubMed
Search for other papers by Peter R Flatt in
Google Scholar
PubMed
Search for other papers by Victor A Gault in
Google Scholar
PubMed
Search for other papers by Nigel Irwin in
Google Scholar
PubMed
Recent approval of the dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, tirzepatide, for the management of type 2 diabetes mellitus (T2DM) has reinvigorated interest in exploitation of GIP receptor (GIPR) pathways as a means of metabolic disease management. However, debate has long surrounded the use of the GIPR as a therapeutic target and whether agonism or antagonism is of most benefit in management of obesity/diabetes. This controversy appears to be partly resolved by the success of tirzepatide. However, emerging studies indicate that prolonged GIPR agonism may desensitise the GIPR to essentially induce receptor antagonism, with this phenomenon suggested to be more pronounced in the human than rodent setting. Thus, deliberation continues to rage in relation to benefits of GIPR agonism vs antagonism. That said, as with GIPR agonism, it is clear that the metabolic advantages of sustained GIPR antagonism in obesity and obesity-driven forms of diabetes can be enhanced by concurrent GLP-1 receptor (GLP-1R) activation. This narrative review discusses various approaches of pharmacological GIPR antagonism including small molecule, peptide, monoclonal antibody and peptide-antibody conjugates, indicating stage of development and significance to the field. Taken together, there is little doubt that interesting times lie ahead for GIPR agonism and antagonism, either alone or when combined with GLP-1R agonists, as a therapeutic intervention for the management of obesity and associated metabolic disease.
Search for other papers by Lorena González in
Google Scholar
PubMed
Search for other papers by Ma Eugenia Díaz in
Google Scholar
PubMed
Search for other papers by Johanna G Miquet in
Google Scholar
PubMed
Search for other papers by Ana I Sotelo in
Google Scholar
PubMed
Search for other papers by Diego Fernández in
Google Scholar
PubMed
Search for other papers by Fernando P Dominici in
Google Scholar
PubMed
Search for other papers by Andrzej Bartke in
Google Scholar
PubMed
Search for other papers by Daniel Turyn in
Google Scholar
PubMed
VCA Colonial Animal Hospital, Ithaca, New York, USA
Search for other papers by Michael Merkhassine in
Google Scholar
PubMed
Weill Cornell College of Medicine, New York, New York, USA
Search for other papers by Reilly W Coch in
Google Scholar
PubMed
Search for other papers by Carol E Frederick in
Google Scholar
PubMed
Search for other papers by Lucinda L Bennett in
Google Scholar
PubMed
Fate Therapeutics, San Diego, California, USA
Search for other papers by Seth A Peng in
Google Scholar
PubMed
Search for other papers by Benjamin Morse in
Google Scholar
PubMed
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
Search for other papers by Bethany P Cummings in
Google Scholar
PubMed
Search for other papers by John P Loftus in
Google Scholar
PubMed
Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon infusions (CRI) – low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, we monitored interstitial glucose and conducted untargeted liquid chromatography–tandem mass spectrometry (LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a transient glucose peak (90–120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. These findings demonstrate glucagon’s glucose-independent modulation of the canine plasma metabolome and highlight the dog’s relevance as a translational model for glucagon biology. Understanding these effects contributes to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.
Search for other papers by Kaitlyn A Colglazier in
Google Scholar
PubMed
Search for other papers by Noyonika Mukherjee in
Google Scholar
PubMed
Search for other papers by Christopher J Contreras in
Google Scholar
PubMed
Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, Indiana, USA
Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
Search for other papers by Andrew T Templin in
Google Scholar
PubMed
β-Cell death contributes to β-cell loss and insulin insufficiency in type 1 diabetes (T1D), and this β-cell demise has been attributed to apoptosis and necrosis. Apoptosis has been viewed as the lone form of programmed β-cell death, and evidence indicates that β-cells also undergo necrosis, regarded as an unregulated or accidental form of cell demise. More recently, studies in non-islet cell types have identified and characterized novel forms of cell death that are biochemically and morphologically distinct from apoptosis and necrosis. Several of these mechanisms of cell death have been categorized as forms of regulated necrosis and linked to inflammation and disease pathogenesis. In this review, we revisit discoveries of β-cell death in humans with diabetes and describe studies characterizing β-cell apoptosis and necrosis. We explore literature on mechanisms of regulated necrosis including necroptosis, ferroptosis and pyroptosis, review emerging literature on the significance of these mechanisms in β-cells, and discuss experimental approaches to differentiate between various mechanisms of β-cell death. Our review of the literature leads us to conclude that more detailed experimental characterization of the mechanisms of β-cell death is warranted, along with studies to better understand the impact of various forms of β-cell demise on islet inflammation and β-cell autoimmunity in pathophysiologically relevant models. Such studies will provide insight into the mechanisms of β-cell loss in T1D and may shed light on new therapeutic approaches to protect β-cells in this disease.