Browse
Search for other papers by Sarah J Richardson in
Google Scholar
PubMed
Search for other papers by Alberto Pugliese in
Google Scholar
PubMed
We review the current knowledge of pancreas pathology in type 1 diabetes. During the last two decades, dedicated efforts toward the recovery of pancreas from deceased patients with type 1 diabetes have promoted significant advances in the characterization of the pathological changes associated with this condition. The implementation of autoantibody screening among organ donors has also allowed examining pancreas pathology in the absence of clinical disease, but in the presence of serological markers of autoimmunity. The assessment of key features of pancreas pathology across various disease stages allows driving parallels with clinical disease stages. The main pathological abnormalities observed in the pancreas with type 1 diabetes are beta-cell loss and insulitis; more recently, hyperexpression of HLA class I and class II molecules have been reproduced and validated. Additionally, there are changes affecting extracellular matrix components, evidence of viral infections, inflammation, and ER stress, which could contribute to beta-cell dysfunction and the stimulation of apoptosis and autoimmunity. The increasing appreciation that beta-cell loss can be less severe at diagnosis than previously estimated, the coexistence of beta-cell dysfunction, and the persistence of key features of pancreas pathology for years after diagnosis impact the perception of the dynamics of this chronic process. The emerging information is helping the identification of novel therapeutic targets and has implications for the design of clinical trials.
Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Christina Antza in
Google Scholar
PubMed
Search for other papers by Georgios Kostopoulos in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Samiul Mostafa in
Google Scholar
PubMed
Centre of Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Krishnarajah Nirantharakumar in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Centre of Endocrinology Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Abd Tahrani in
Google Scholar
PubMed
Global rates of obesity and type 2 diabetes mellitus (T2DM) are increasing globally concomitant with a rising prevalence of sleep deprivation and sleep disorders. Understanding the links between sleep, obesity and T2DM might offer an opportunity to develop better prevention and treatment strategies for these epidemics. Experimental studies have shown that sleep restriction is associated with changes in energy homeostasis, insulin resistance and β-cell function. Epidemiological cohort studies established short sleep duration as a risk factor for developing obesity and T2DM. In addition, small studies suggested that short sleep duration was associated with less weight loss following lifestyle interventions or bariatric surgery. In this article, we review the epidemiological evidence linking sleep duration to obesity and T2DM and plausible mechanisms. In addition, we review the impact of changes in sleep duration on obesity and T2DM.
Search for other papers by Robin Kristófi in
Google Scholar
PubMed
Search for other papers by Jan W Eriksson in
Google Scholar
PubMed
Metformin is a biguanide drug widely used as the initial treatment of type 2 diabetes. Despite its widespread use, its precise mechanisms of action remain incompletely characterised. Its effect in lowering blood glucose is largely related to the suppression of gluconeogenesis in the liver, which is probably accomplished by partial inhibition of the mitochondrial respiratory chain complex 1 with a subsequent increase in intracellular AMP levels and activation of AMP kinase. Several local and systemic anti-inflammatory effects of metformin have been described. Many of these effects seem to be mediated by AMP kinase activation and downstream effects inhibiting mTOR and NF-κB pro-inflammatory signalling cascades. However, there are also studies describing actions independent of AMP kinase action. In this review, we summarise the currently known mechanisms of metformin on inflammatory pathways and the clinical evidence underpinning the use of metformin as a potential anti-inflammatory drug.
Search for other papers by Nicole G Barra in
Google Scholar
PubMed
Search for other papers by Fernando F Anhê in
Google Scholar
PubMed
Search for other papers by Joseph F Cavallari in
Google Scholar
PubMed
Search for other papers by Anita M Singh in
Google Scholar
PubMed
Search for other papers by Darryl Y Chan in
Google Scholar
PubMed
Search for other papers by Jonathan D Schertzer in
Google Scholar
PubMed
Micronutrients influence hormone action and host metabolism. Dietary minerals, trace elements, and vitamins can alter blood glucose and cellular glucose metabolism, and several micronutrients are associated with the risk and progression of type 2 diabetes. Dietary components, microbes, and host immune, endocrine, and metabolic responses all interact in the intestine. There has been a focus on macronutrients modifying the host-microbe relationship in metabolic disease. Micronutrients are positioned to alter host-microbe symbiosis that participates in host endocrine control of glucose metabolism. Minerals and trace elements can alter the composition of the intestinal microbiota, gut barrier function, compartmentalized metabolic inflammation, cellular glucose transport, and endocrine control of glucose metabolism, including insulin and thyroid hormones. Dietary vitamins also influence the composition of the intestinal microbiota and vitamins can be biotransformed by gut microbes. Host-microbe regulation of vitamins can alter immunity, lipid and glucose metabolism, and cell fate and function of pancreatic beta cells. Causal effects of micronutrients in host-microbe metabolism are still emerging, and the mechanisms linking dietary excess or deficiency of specific micronutrients to changes in gut microbes directly linked to metabolic disease risk are not yet clear. Dietary fiber, fat, protein, and carbohydrates are key dietary factors that impact how microbes participate in host glucose metabolism. It is possible that micronutrient and microbiota-derived factors also participate in host-microbe responses that tip the balance in the endocrine control of host glucose metabolism. Dietary micronutrients should be considered, tested, and controlled in pre-clinical and clinical studies investigating host-microbe factors in metabolic diseases.
Search for other papers by Yanli Miao in
Google Scholar
PubMed
Search for other papers by Haojie Qin in
Google Scholar
PubMed
Search for other papers by Yi Zhong in
Google Scholar
PubMed
Search for other papers by Kai Huang in
Google Scholar
PubMed
Search for other papers by Caijun Rao in
Google Scholar
PubMed
Obesity is an increasingly serious epidemic worldwide characterized by an increase in the number and size of adipocytes. Adipose tissue maintains the balance between lipid storage and energy utilization. Therefore, adipose metabolism is of great significance for the prevention, treatment and intervention of obesity. Asprosin, a novel adipokine, is a circulating hormone mainly secreted by white adipose tissue. Previous studies have shown that asprosin plays a role in fasting-induced homeostasis, insulin resistance, and glucose tolerance. However, whether it can regulate the metabolism of adipose tissue itself has not been studied. This study intended to examine the roles and potential mechanisms of asprosin in adipose regulation. We first demonstrated that the expression level of asprosin was significantly downregulated in subcutaneous white adipose tissue (scWAT) of high-fat diet (HFD)-fed or cold-stimulated mice. Overexpression of asprosin in scWAT reduced heat production, decreased expression of the browning marker uncoupling protein 1 (UCP1) and other browning-related genes, along with upregulation of adipogenic gene expression. Mechanistically, we found that Nrf2 was activated upon cold exposure, but this activation was suppressed after asprosin overexpression. In primary cultured adipocytes, adenovirusmediated asprosin overexpression inhibited adipose browning and aggravated lipid deposition, while Nrf2 agonist oltipraz could reverse these changes. Our findings suggest that novel adipokine asprosin negatively regulated browning and elevate lipid deposition in adipose tissue via a Nrf2-mediated mechanism. Asprosin may be a promising target for the prevention and treatment of obesity and other metabolic diseases.
Search for other papers by Marion Régnier in
Google Scholar
PubMed
Search for other papers by Matthias Van Hul in
Google Scholar
PubMed
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium
Search for other papers by Claude Knauf in
Google Scholar
PubMed
European Associated Laboratory (EAL) ‘NeuroMicrobiota’, Brussels/Toulouse, Belgium
Search for other papers by Patrice D Cani in
Google Scholar
PubMed
Overweight and obesity are associated with several cardiometabolic risk factors, including insulin resistance, type 2 diabetes, low-grade inflammation and liver diseases. The gut microbiota is a potential contributing factor regulating energy balance. However, although the scientific community acknowledges that the gut microbiota composition and its activity (e.g. production of metabolites and immune-related compounds) are different between healthy subjects and subjects with overweight/obesity, the causality remains insufficiently demonstrated. The development of low-grade inflammation and related metabolic disorders has been connected with metabolic endotoxaemia and increased gut permeability. However, the mechanisms acting on the regulation of the gut barrier and eventually cardiometabolic disorders are not fully elucidated. In this review, we debate several characteristics of the gut microbiota, gut barrier function and metabolic outcomes. We examine the role of specific dietary compounds or nutrients (e.g. prebiotics, probiotics, polyphenols, sweeteners, and a fructose-rich diet) as well as different metabolites produced by the microbiota in host metabolism, and we discuss how they control several endocrine functions and eventually have either beneficial or deleterious effects on host health.