Browse

You are looking at 21 - 30 of 13,908 items for

  • All content x
Clear All
Full access

Gustavo Canul-Medina, Leticia Riveron-Negrete, Karina Pastén-Hidalgo, Paulina Morales-Castillo, Francisco García-Vázquez, and Cristina Fernandez-Mejia

Pancreatic islets adapt to metabolic requirements and the hormonal milieu by modifying their size and hormone secretions. Maternal glucose demands and hormonal changes occur after weaning, to rapidly re-establish bone mineralization. Minimal information exists about glucose metabolism and pancreatic islets after lactation. This study investigated islet morphology and glucose homeostasis for 14 days after lactation in C57BL/6NHHsd mice. Compared to the day of weaning, rapid increases in the islets’ area and number of beta cells were found from the first day post lactation, attaining maximum values on the third day post weaning. These changes were accompanied by modifications in glucose-induced insulin secretion, glucose tolerance and insulin sensitivity. Islet-cell proliferation was already augmented before lactation ceased. Serum undercarboxylated osteocalcin concentrations increased significantly post lactation; however, it is unlikely that this enhancement participates in earlier cell proliferation augmentation or in decreasing insulin sensitivity. Islet serotonin content was barely expressed, and serum calcium concentrations decreased. By the 14th day post weaning, islets’ area and glucose homeostasis returned to age-matched virgin mice levels. These findings recognize for the first time that increases in islet area and insulin secretion occur during physiological post-weaning conditions. These results open up new opportunities to identify molecules and mechanisms participating in these processes, which will help in developing strategies to combat diabetes.

Full access

Alexia Barroso, Jose Antonio Santos-Marcos, Cecilia Perdices-Lopez, Ana Vega-Rojas, Miguel Angel Sanchez-Garrido, Yelizabeta Krylova, Helena Molina-Abril, Claes Ohlsson, Pablo Perez-Martinez, Matti Poutanen, Jose Lopez-Miranda, Manuel Tena-Sempere, and Antonio Camargo

Gonadal steroids strongly contribute to the metabolic programming that shapes the susceptibility to the manifestation of diseases later in life, and the effect is often sexually dimorphic. Microbiome signatures, together with metabolic traits and sex steroid levels, were analyzed at adulthood in neonatally androgenized female rats, and compared with those of control male and female rats. Exposure of female rats to high doses of androgens on early postnatal life resulted in persistent alterations of the sex steroid profile later on life, namely lower progesterone and higher estradiol and estrone levels, with no effect on endogenous androgens. Neonatally androgenized females were heavier (10% at early adulthood and 26% at adulthood) than controls and had impaired glucose homeostasis observed by higher AUC of glucose in GTT and ITT when subjected to obesogenic manipulations. Androgenized female displayed overt alterations in gut microbiota, indicated especially by higher Bacteroidetes and lower Firmicutes abundance at early adulthood, which disappeared when animals were concurrently overfed at adulthood. Notably, these changes in gut microbiota were related with the intestinal expression of several miRNAs, such as miR-27a-3p, miR-29a-5p, and miR-100-3p. Our results suggest that nutritional and hormonal disruption at early developmental periods not only alters the metabolic programming of the individual later in life but also perturbs the architecture of gut microbiota, which may interact with the host by a cross-talk mediated by intestinal miRNAs; phenomena that may contribute to amplify the metabolic derangement caused by obesity, as seen in neonatally androgenized female rats.

Full access

Marco Colella, Valeria Nittoli, Alfonsina Porciello, Immacolata Porreca, Carla Reale, Filomena Russo, Nicola Antonino Russo, Luca Roberto, Francesco Albano, Mario De Felice, Massimo Mallardo, and Concetta Ambrosino

The intra-tissue levels of thyroid hormones (THs) regulate organ functions. Environmental factors can impair these levels by damaging the thyroid gland and/or peripheral TH metabolism. We investigated the effects of embryonic and/or long-life exposure to low-dose pesticides, ethylene thiourea (ETU), chlorpyrifos (CPF) and both combined on intra-tissue T4/T3 metabolism/signaling in zebrafish at different life stages. Hypothyroidism was evident in exposed larvae that showed reduced number of follicles and induced tshb mRNAs. Despite that, we found an increase in free T4 (fT4) and free T3 (fT3) levels/signaling that was confirmed by transcriptional regulation of TH metabolic enzymes (deiodinases) and T3-regulated mRNAs (cpt1, igfbp1a). Second-generation larvae showed that thyroid and TH signaling was affected even when not directly exposed, suggesting the role of parental exposure. In adult zebrafish, we found that sex-dependent damage of hepatic T3 level/signaling was associated with liver steatosis, which was more pronounced in females, with sex-dependent alteration of transcripts codifying the key enzymes involved in ‘de novo lipogenesis’ and β-oxidation. We found impaired activation of liver T3 and PPARα/Foxo3a pathways whose deregulation was already involved in mammalian liver steatosis. The data emphasizes that the intra-tissue imbalance of the T3 level is due to thyroid endocrine disruptors (THDC) and suggests that the effect of a slight modification in T3 signaling might be amplified by its direct regulation or crosstalk with PPARα/Foxo3a pathways. Because T3 levels define the hypothyroid/hyperthyroid status of each organ, our findings might explain the pleiotropic and site-dependent effects of pesticides.

Full access

Danuzia A Marques, Luis Gustavo A Patrone, Carolina S Scarpellini, Kênia C Bícego, Raphael E Szawka, and Luciane H Gargaglioni

Many diseases of the respiratory system occur differently in males and females, indicating a possible role of gonadal hormones in respiratory control. We hypothesized that testosterone (T) is important for the ventilatory chemosensitivity responses in males. To test this hypothesis, we evaluated ventilation (E), metabolic rate and body temperature (Tb) under normoxia/normocapnia, hypercapnia and hypoxia in orchiectomized (ORX), ORX with testosterone replacement (ORX+T) or flutamide (FL, androgen receptor blocker)-treated rats. We also performed immunohistochemistry to evaluate the presence of androgen receptor (AR) in the carotid body (CB) of intact males. Orchiectomy promoted a reduction V̇E and ventilatory equivalent (E/V̇O 2) under room-air conditions, which was restored with testosterone treatment. Moreover, during hypoxia or hypercapnia, animals that received testosterone replacement had a higher E and E/V̇O 2 than control and ORX, without changes in metabolic and thermal variables. Flutamide decreased the hypoxic ventilatory response without changing the CO2-drive to breathe, suggesting that the testosterone effect on hypercapnic hyperventilation does not appear to involve the AR. We also determined the presence of AR in the CB of intact animals. Our findings demonstrate that testosterone seems to be important for maintaining resting E in males. In addition, the influence of testosterone on E, either during resting conditions or under hypoxia and hypercapnia, seems to be a direct and specific effect, as no changes in metabolic rate or Tb were observed during any treatment. Finally, a putative site of testosterone action during hypoxia is the CB, since we detected the presence of AR in this structure.

Free access

Alan Conley, Ned J Place, Erin L Legacki, Geoff L Hammond, Gerald R Cunha, Christine M Drea, Mary L Weldele, and Steve E Glickman

The spotted hyaena (Crocuta crocuta) is a unique species, even amongst the Hyaenidae. Extreme clitoral development in female spotted hyaenas challenges aspects of the accepted framework of sexual differentiation and reproductive function. They lack a vulva and instead urinate, copulate and give birth through a single, long urogenital canal that traverses a clitoris superficially resembling a penis. Recent and historical evidence is reviewed to describe our changing understanding of the biology of this species. Expanding upon observations from hyaenas in nature, much has been learned from studies utilising the captive colony at the University of California, Berkeley. The steroid environment of pregnancy is shaped by placental androgen and oestrogen secretion and a late gestational increase in sex hormone binding globulin, the regulated expression and steroid-binding characteristics of which are unique within the Hyaenidae. While initial external genital development is largely free of androgenic influence, the increase in testosterone concentrations in late gestation influences foetal development. Specifically, anti-androgen (AA) treatment of pregnant females reduced the developmental influence of androgens on their foetuses, resulting in reduced androstenedione concentrations in young females and easier birth through a ‘feminised’ clitoris, but precluded intromission and mating by ‘feminised’ male offspring, and altered social interactions. Insight into the costs and benefits of androgen exposure on spotted hyaena reproductive development, endocrinology and behaviour emphasises the delicate balance that sustains reproductive success, forces a re-evaluation of how we define masculine vs feminine sexual characteristics, and motivates reflection about the representative value of model species.

Full access

Manesh Chittezhath, Cho M M Wai, Vanessa S Y Tay, Minni Chua, Sarah R Langley, and Yusuf Ali

Toll-like receptors (TLRs), particularly TLR4, may act as immune sensors for metabolic stress signals such as lipids and link tissue metabolic changes to innate immunity. TLR signalling is not only tissue-dependent but also cell-type dependent and recent studies suggest that TLRs are not restricted to innate immune cells alone. Pancreatic islets, a hub of metabolic hormones and cytokines, respond to TLR signalling. However, the source of TLR signalling within the islet remain poorly understood. Uncovering the specific cell source and its role in mediating TLR signalling, especially within type 2 diabetes (T2D) islet will yield new targets to tackle islet inflammation, hormone secretion dysregulation and ultimately diabetes. In the present study, we immuno-characterised TLRs linked to pancreatic islets in both healthy and obese diabetic mice. We found that while TLRs1–4 and TLR9 were expressed in mouse islets, these TLRs did not co-localise with insulin-producing β-cells. β-Cells from obese diabetic mice were also devoid of these TLRs. While TLR immunoreactivity in obese mice islets increased, this was driven mostly by increased islet endothelial cell and islet macrophage presence. Analysis of human islet single-cell RNA-seq databases revealed that macrophages were an important source of islet TLRs. However, only TLR4 and TLR8 showed variation and cell-type specificity in their expression patterns. Cell depletion experiments in isolated mouse islets showed that TLR4 signalled through macrophages to alter islet cytokine secretome. Together, these studies suggest that islet macrophages are a dominant source of TLR4-mediated signalling in both healthy and diabetic islets.

Full access

Xiaoyi Ma, Fei Gao, Qi Chen, Xiuping Xuan, Ying Wang, Hongjun Deng, Fengying Yang, and Li Yuan

The angiotensin-converting enzyme 2 (ACE2)/angiotensin 1–7 (A1–7)/MAS axis and glutamate decarboxylase 67 (GAD67)/gamma-aminobutyric acid (GABA) signal both exist in the islet and play important roles in regulating blood glucose metabolism. It has been reported that the activation of ACE2 in the brain increases GABA expression to improve biological effects; however, it is unclear whether there is functional correlation between the ACE2/A1–7/MAS axis and GAD67/GABA signal in the islet. In this study, we showed that the ACE2/A1–7/MAS and GABA signaling systems decreased in the islet of different metabolic stress models. In ACE2-knockout mice, we found that GAD67 and GABA expression decreased significantly, which was reversed by exogenous administration of A1–7. Furthermore, A1–7 mediated PDX1 and AKT activation was inhibited by allylglycine (a specific GAD67 inhibitor) in MIN6 cells. Moreover, giving A1–7 and GABA could significantly reduce beta-cell dedifferentiation and improved glucose metabolism during metabolic stress in vivo and in vitro. In conclusion, our study reveals that the ACE2/A1–7/MAS axis improves beta-cell function through regulating GAD67/GABA signal in beta cells and that up-regulating the ACE2/A1–7/MAS axis and GABA signals delays the development of obesity-induced diabetes.

Free access

Douglas A Gibson, Ioannis Simitsidellis, Frances Collins, and Philippa T K Saunders

The endometrium is a complex multicellular tissue that is exquisitely sensitive to the actions of sex steroids synthesised in the ovary (endocrine system). Recent studies have highlighted a previously under-appreciated role for local (intracrine) metabolism in fine-tuning tissue function in both health and disease. In this review we have focused on the impact of oestrogens and androgens on endometrial function summarising data from studies on normal endometrial physiology and disorders including infertility, endometriosis and cancer. We consider the evidence that expression of enzymes including aromatase, sulphatase and AKR1C3 by endometrial cells plays an important role in tissue function and malfunction and discuss results from studies using drugs targeting intracrine pathways to treat endometrial disorders. We summarise studies exploring the spatial and temporal expression of oestrogen receptors (ERalpha/ESR1, ERbeta/ESR2 and GPER) and their role in mediating the impact of endogenous and synthetic ligands on cross-talk between vascular, immune, epithelial and stromal cells. There is a single androgen receptor gene and androgens play a key role in stromal-epithelial cross-talk, scar-free healing of endometrium during menstruation and regulation of cell proliferation. The development of new receptor-selective drugs (SERMs, SARMs, SARDs) has reinvigorated interest in targeting receptor subtypes in treatment of disorders including endometriosis and endometrial cancer and some show promise as novel therapies. In summary, understanding the mechanisms regulated by sex steroids provides the platform for improved personalised treatment of endometrial disorders as well as novel insights into the impact of steroids on processes such as tissue repair and regeneration.

Full access

Asghar Ali, Callie M Swanepoel, Quinton A Winger, Paul J Rozance, and Russ V Anthony

Chorionic somatomammotropin (CSH) is a placenta-specific hormone associated with fetal growth, and fetal and maternal metabolism in both humans and sheep. We hypothesized that CSH deficiency could impact sheep fetal liver glucose utilization. To generate CSH-deficient pregnancies, day 9 hatched blastocysts were infected with lentiviral particles expressing CSH-specific shRNA (RNAi) or scramble control shRNA (SC) and transferred to synchronized recipients. CSH RNAi generated two distinct phenotypes at 135 days of gestational age (dGA); pregnancies with IUGR (RNAi-IUGR) or with normal fetal weight (RNAi-NW). Fetal body, fetal liver and placental weights were reduced (P<0.05) only in RNAi-IUGR pregnancies compared to SC. Umbilical artery plasma insulin and insulin-like growth factor 1 (IGF1) concentrations were decreased, whereas insulin receptor beta (IRβ) concentration in fetal liver was increased (P<0.05) in both RNAi phenotypes. The mRNA concentrations of IGF1, IGF2, IGF binding protein 2 (IGFBP2) and IGFBP3 were decreased (P<0.05) in fetal livers from both RNAi phenotypes. Fetal liver glycogen concentration and glycogen synthase 1 (GYS1) concentration was increased (P<0.05), whereas fetal liver phosphorylated-GYS (inactive GYS) concentration was reduced (P<0.05) in both RNAi phenotypes. Lactate dehydrogenase B (LDHB) concentration was increased (P<0.05) and IGF2 concentration was decreased (P<0.05) in RNAi-IUGR fetal livers only. Our findings suggest that fetal liver glucose utilization is impacted by CSH RNAi, independent of IUGR, and is likely tied to enhanced fetal liver insulin sensitivity in both RNAi phenotypes. Determining the physiological ramifications of both phenotypes, may help to differentiate direct effect of CSH deficiency or its indirect effect through IUGR.

Free access

Bernard Khoo and Tricia Mei-Mei Tan

Obesity represents an important public health challenge for the twenty-first century: globalised, highly prevalent and increasingly common with time, this condition is likely to reverse some of the hard-won gains in mortality accomplished in previous centuries. In the search for safe and effective therapies for obesity and its companion, type 2 diabetes mellitus (T2D), the gut hormone glucagon-like peptide-1 (GLP-1) has emerged as a forerunner and analogues thereof are now widely used in treatment of obesity and T2D, bringing proven benefits in improving glycaemia and weight loss and, notably, cardiovascular outcomes. However, GLP-1 alone is subject to limitations in terms of efficacy, and as a result, investigators are evaluating other gut hormones such as glucose-dependent insulinotropic peptide (GIP), glucagon and peptide YY (PYY) as possible partner hormones that may complement and enhance GLP-1’s therapeutic effects. Such combination gut hormone therapies are in pharmaceutical development at present and are likely to make it to market within the next few years. This review examines the physiological basis for combination gut hormone therapy and presents the latest clinical results that underpin the excitement around these treatments. We also pose, however, some hard questions for the field which need to be answered before the full benefit of such treatments can be realised.