You are looking at 31 - 40 of 13,953 items for

  • All content x
Clear All
Restricted access

Prasanthi P Koganti and Vimal Selvaraj

Despite being a highly conserved protein, the precise role of the mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), remains elusive. The void created by studies that overturned a presumptive model that described TSPO/PBR as a mitochondrial cholesterol transporter for steroidogenesis has been filled with evidence that it can affect mitochondrial metabolic functions across different model systems. We previously reported that TSPO/PBR deficient steroidogenic cells upregulate mitochondrial fatty acid oxidation and presented a strong positive correlation between TSPO/PBR expression and tissues active in triglyceride metabolism or lipid storage. Nevertheless, the highlighting of inconsistencies in prior work has provoked reprisals that threaten to stifle progress. One frequent factoid presented as being supportive of a cholesterol import function is that there are no steroid-synthesizing cell types without high TSPO/PBR expression. In this study, we examine the hamster adrenal gland that is devoid of lipid droplets in the cortex and largely relies on de novo cholesterol biosynthesis and uptake for steroidogenesis. We find that Tspo expression in the hamster adrenal is imperceptible compared to the mouse. This observation is consistent with a substantially low expression of Cpt1a in the hamster adrenal, indicating minimal mitochondrial fatty acid oxidation capacity compared to the mouse. These findings provide further reinforcement that the much sought-after mechanism of TSPO/PBR function remains correlated with the extent of cellular triglyceride metabolism. Thus, TSPO/PBR could have a homeostatic function relevant only to steroidogenic systems that manage triglycerides associated with lipid droplets.

Restricted access

Brit H Boehmer, Peter R Baker II, Laura D Brown, Stephanie R Wesolowski, and Paul J Rozance

A 9-day infusion of leucine into fetal sheep potentiates fetal glucose-stimulated insulin secretion (GSIS). However, there were accompanying pancreatic structural changes that included a larger proportion of β-cells and increased vascularity. Whether leucine can acutely potentiate fetal GSIS in vivo before these structural changes develop is unknown. The mechanisms by which leucine acutely potentiates GSIS in adult islets and insulin-secreting cell lines are well known. These mechanisms involve leucine metabolism, including leucine oxidation. However, it is not clear if leucine-stimulated metabolic pathways are active in fetal islets. We hypothesized that leucine would acutely potentiate GSIS in fetal sheep and that isolated fetal islets are capable of oxidizing leucine. We also hypothesized that leucine would stimulate other metabolic pathways associated with insulin secretion. In pregnant sheep we tested in vivo GSIS with and without an acute leucine infusion. In isolated fetal sheep islets, we measured leucine oxidation with a [1-14C] l-leucine tracer. We also measured concentrations of other amino acids, glucose, and analytes associated with cellular metabolism following incubation of fetal islets with leucine. In vivo, a leucine infusion resulted in glucose-stimulated insulin concentrations that were over 50% higher than controls (P < 0.05). Isolated fetal islets oxidized leucine. Leucine supplementation of isolated fetal islets also resulted in significant activation of metabolic pathways involving leucine and other amino acids. In summary, acute leucine supplementation potentiates fetal GSIS in vivo, likely through pathways related to the oxidation of leucine and catabolism of other amino acids.

Restricted access

Julia Nc Toews, Geoffrey L Hammond, and Victor Viau

Normal function of the hypothalamic-pituitary-adrenal (HPA) axis is critical for survival, and its development is choreographed for age-, sex- and context-specific actions. The liver influences HPA ontogeny, integrating diverse endocrine signals that inhibit or activate its development. This review examines how developmental changes in the expression of genes in the liver coordinate postnatal changes in multiple endocrine systems that coordinate the maturation and sexual dimorphism of the rat HPA axis. Specifically, it examines how the ontogeny of testicular androgen production, somatostatin-growth hormone activities, and hypothalamic-pituitary-thyroid axis activity intersect to influence the hepatic gene expression of insulin-like growth factor 1, corticosteroid-binding globulin, thyroxine-binding globulin, 11β-hydroxysteroid dehydrogenase type 1 and 5α-reductase type 1. The timing of such molecular changes vary between mammalian species, but they are evolutionarily conserved and are poised to control homeostasis broadly, especially during adversity. Importantly, with the liver as their nexus, these diverse endocrine systems establish the fundamental organization of the HPA axis throughout postnatal development, and thereby ultimately determine the actions of glucocorticoids during adulthood.

Restricted access

Pierre Hofstee, Janelle James-McAlpine, Daniel R McKeating, Jessica J Vanderlelie, James SM Cuffe, and Anthony V Perkins

Thyroid disorders are the most common endocrine disorders affecting women commencing pregnancy. Thyroid hormone metabolism is strongly influenced by selenium status; however, the relationship between serum selenium concentrations and thyroid hormones in euthyroid pregnant women is unknown. This study investigated the relationship between maternal selenium and thyroid hormone status during pregnancy by utilising data from a retrospective, cross-sectional study with cohorts from two tertiary care hospitals in South East Queensland, Australia. Pregnant women (n = 206) were recruited at 26-30 weeks gestation and serum selenium concentrations were assessed using inductively coupled plasma mass spectrometry. Thyroid function was measured in serum samples from women (n=21) with the lowest serum selenium concentrations (51.2 ± 1.2 µg/L), mean concentrations of the entire cohort (78.8 ± 0.4 µg/L) and the optimal serum selenium concentrations (106.9 ± 2.3 µg/L). Women with low serum selenium concentrations demonstrated reduced fT3 levels (P < 0.05) and increased TPOAb (P < 0.01). Serum selenium was positively correlated with fT3 (P < 0.05) and negatively correlated with TPOAb (P < 0.001). Serum fT4 and thyroid stimulating hormone (TSH) was not different between all groups, though the fT4/TSH ratio was increased in the low selenium cohort (P < 0.05). Incidence of pregnancy disorders, most notably gestational diabetes mellitus, was increased within the low serum selenium cohort (P < 0.01). These results suggest selenium status in pregnant women of South East Queensland may not be adequate, with possible implications for atypical thyroid function and undesirable pregnancy outcomes.

Restricted access

Gustavo Canul-Medina, Leticia Riveron-Negrete, Karina Pastén-Hidalgo, Paulina Morales-Castillo, Francisco García-Vázquez, and Cristina Fernandez-Mejia

Pancreatic islets adapt to metabolic requirements and the hormonal milieu by modifying their size and hormone secretions. Maternal glucose demands and hormonal changes occur after weaning, to rapidly re-establish bone mineralization. Minimal information exists about glucose metabolism and pancreatic islets after lactation. This study investigated islet morphology and glucose homeostasis for 14 days after lactation in C57BL/6NHHsd mice. Compared to the day of weaning, rapid increases in the islets’ area and number of beta cells were found from the first day post lactation, attaining maximum values on the third day post weaning. These changes were accompanied by modifications in glucose-induced insulin secretion, glucose tolerance and insulin sensitivity. Islet-cell proliferation was already augmented before lactation ceased. Serum undercarboxylated osteocalcin concentrations increased significantly post lactation; however, it is unlikely that this enhancement participates in earlier cell proliferation augmentation or in decreasing insulin sensitivity. Islet serotonin content was barely expressed, and serum calcium concentrations decreased. By the 14th day post weaning, islets’ area and glucose homeostasis returned to age-matched virgin mice levels. These findings recognize for the first time that increases in islet area and insulin secretion occur during physiological post-weaning conditions. These results open up new opportunities to identify molecules and mechanisms participating in these processes, which will help in developing strategies to combat diabetes.

Restricted access

Alexia Barroso, Jose Antonio Santos-Marcos, Cecilia Perdices-Lopez, Ana Vega-Rojas, Miguel Angel Sanchez-Garrido, Yelizabeta Krylova, Helena Molina-Abril, Claes Ohlsson, Pablo Perez-Martinez, Matti Poutanen, Jose Lopez-Miranda, Manuel Tena-Sempere, and Antonio Camargo

Gonadal steroids strongly contribute to the metabolic programming that shapes the susceptibility to the manifestation of diseases later in life, and the effect is often sexually dimorphic. Microbiome signatures, together with metabolic traits and sex steroid levels, were analyzed at adulthood in neonatally androgenized female rats, and compared with those of control male and female rats. Exposure of female rats to high doses of androgens on early postnatal life resulted in persistent alterations of the sex steroid profile later on life, namely lower progesterone and higher estradiol and estrone levels, with no effect on endogenous androgens. Neonatally androgenized females were heavier (10% at early adulthood and 26% at adulthood) than controls and had impaired glucose homeostasis observed by higher AUC of glucose in GTT and ITT when subjected to obesogenic manipulations. Androgenized female displayed overt alterations in gut microbiota, indicated especially by higher Bacteroidetes and lower Firmicutes abundance at early adulthood, which disappeared when animals were concurrently overfed at adulthood. Notably, these changes in gut microbiota were related with the intestinal expression of several miRNAs, such as miR-27a-3p, miR-29a-5p, and miR-100-3p. Our results suggest that nutritional and hormonal disruption at early developmental periods not only alters the metabolic programming of the individual later in life but also perturbs the architecture of gut microbiota, which may interact with the host by a cross-talk mediated by intestinal miRNAs; phenomena that may contribute to amplify the metabolic derangement caused by obesity, as seen in neonatally androgenized female rats.

Restricted access

Napatsorn Saiyasit, Titikorn Chunchai, Thidarat Jaiwongkam, Sasiwan Kerdphoo, Nattayaporn Apaijai, Wasana Pratchayasakul, Jirapas Sripetchwandee, Nipon Chattipakorn, and Siriporn C Chattipakorn

Exogenous treatment of a neurotensin receptor 1 (NTR1) agonist exerted the neuroprotection in an obese and Alzheimer’s model. However, the effects of NTR1 modulation on peripheral/hippocampal impairment and cognitive deficit following sustained HFD consumption are poorly understood. Forty rats received a normal diet (ND) or HFD for 16 weeks. At week 13, the ND group received a vehicle (n=8). Thirty-two HFD-fed group were randomized into 4 subgroups (n=8/subgroup) with a vehicle, 1 mg/kg of NTR1 agonist, 1 mg/kg of NTR antagonist, and combined treatment (NTR1 agonist-NTR antagonist) for 2 weeks, subcutaneous injection. Then, the cognitive tests and peripheral/hippocampal parameters were determined. Our findings demonstrated that NTR1 activator reversed obesity and attenuated metabolic impairment in pre-diabetic rats. It also alleviated hippocampal pathologies and synaptic dysplasticity, leading to decelerate or prevent progression of cognitive impairment. Therefore, NTR1 activation would be a possible novel therapy to decelerate or prevent progression of neuropathology and cognitive impairment in the pre-diabetes.

Restricted access

Marco Colella, Valeria Nittoli, Alfonsina Porciello, Immacolata Porreca, Carla Reale, Filomena Russo, Nicola Antonino Russo, Luca Roberto, Francesco Albano, Mario De Felice, Massimo Mallardo, and Concetta Ambrosino

The intra-tissue levels of thyroid hormones (THs) regulate organ functions. Environmental factors can impair these levels by damaging the thyroid gland and/or peripheral TH metabolism. We investigated the effects of embryonic and/or long-life exposure to low-dose pesticides, ethylene thiourea (ETU), chlorpyrifos (CPF) and both combined on intra-tissue T4/T3 metabolism/signaling in zebrafish at different life stages. Hypothyroidism was evident in exposed larvae that showed reduced number of follicles and induced tshb mRNAs. Despite that, we found an increase in free T4 (fT4) and free T3 (fT3) levels/signaling that was confirmed by transcriptional regulation of TH metabolic enzymes (deiodinases) and T3-regulated mRNAs (cpt1, igfbp1a). Second-generation larvae showed that thyroid and TH signaling was affected even when not directly exposed, suggesting the role of parental exposure. In adult zebrafish, we found that sex-dependent damage of hepatic T3 level/signaling was associated with liver steatosis, which was more pronounced in females, with sex-dependent alteration of transcripts codifying the key enzymes involved in ‘de novo lipogenesis’ and β-oxidation. We found impaired activation of liver T3 and PPARα/Foxo3a pathways whose deregulation was already involved in mammalian liver steatosis. The data emphasizes that the intra-tissue imbalance of the T3 level is due to thyroid endocrine disruptors (THDC) and suggests that the effect of a slight modification in T3 signaling might be amplified by its direct regulation or crosstalk with PPARα/Foxo3a pathways. Because T3 levels define the hypothyroid/hyperthyroid status of each organ, our findings might explain the pleiotropic and site-dependent effects of pesticides.

Restricted access

Danuzia A Marques, Luis Gustavo A Patrone, Carolina S Scarpellini, Kênia C Bícego, Raphael E Szawka, and Luciane H Gargaglioni

Many diseases of the respiratory system occur differently in males and females, indicating a possible role of gonadal hormones in respiratory control. We hypothesized that testosterone (T) is important for the ventilatory chemosensitivity responses in males. To test this hypothesis, we evaluated ventilation (E), metabolic rate and body temperature (Tb) under normoxia/normocapnia, hypercapnia and hypoxia in orchiectomized (ORX), ORX with testosterone replacement (ORX+T) or flutamide (FL, androgen receptor blocker)-treated rats. We also performed immunohistochemistry to evaluate the presence of androgen receptor (AR) in the carotid body (CB) of intact males. Orchiectomy promoted a reduction V̇E and ventilatory equivalent (E/V̇O 2) under room-air conditions, which was restored with testosterone treatment. Moreover, during hypoxia or hypercapnia, animals that received testosterone replacement had a higher E and E/V̇O 2 than control and ORX, without changes in metabolic and thermal variables. Flutamide decreased the hypoxic ventilatory response without changing the CO2-drive to breathe, suggesting that the testosterone effect on hypercapnic hyperventilation does not appear to involve the AR. We also determined the presence of AR in the CB of intact animals. Our findings demonstrate that testosterone seems to be important for maintaining resting E in males. In addition, the influence of testosterone on E, either during resting conditions or under hypoxia and hypercapnia, seems to be a direct and specific effect, as no changes in metabolic rate or Tb were observed during any treatment. Finally, a putative site of testosterone action during hypoxia is the CB, since we detected the presence of AR in this structure.

Free access

Alan Conley, Ned J Place, Erin L Legacki, Geoff L Hammond, Gerald R Cunha, Christine M Drea, Mary L Weldele, and Steve E Glickman

The spotted hyaena (Crocuta crocuta) is a unique species, even amongst the Hyaenidae. Extreme clitoral development in female spotted hyaenas challenges aspects of the accepted framework of sexual differentiation and reproductive function. They lack a vulva and instead urinate, copulate and give birth through a single, long urogenital canal that traverses a clitoris superficially resembling a penis. Recent and historical evidence is reviewed to describe our changing understanding of the biology of this species. Expanding upon observations from hyaenas in nature, much has been learned from studies utilising the captive colony at the University of California, Berkeley. The steroid environment of pregnancy is shaped by placental androgen and oestrogen secretion and a late gestational increase in sex hormone binding globulin, the regulated expression and steroid-binding characteristics of which are unique within the Hyaenidae. While initial external genital development is largely free of androgenic influence, the increase in testosterone concentrations in late gestation influences foetal development. Specifically, anti-androgen (AA) treatment of pregnant females reduced the developmental influence of androgens on their foetuses, resulting in reduced androstenedione concentrations in young females and easier birth through a ‘feminised’ clitoris, but precluded intromission and mating by ‘feminised’ male offspring, and altered social interactions. Insight into the costs and benefits of androgen exposure on spotted hyaena reproductive development, endocrinology and behaviour emphasises the delicate balance that sustains reproductive success, forces a re-evaluation of how we define masculine vs feminine sexual characteristics, and motivates reflection about the representative value of model species.