Browse

You are looking at 61 - 70 of 13,983 items for

  • All content x
Clear All
Restricted access

Iyad H Manaserh, Emily Maly, Marziyeh Jahromi, Lakshmikanth Chikkamenahalli, Joshua Park, and Jennifer Hill

The important role of astrocytes in the central control of energy balance and glucose homeostasis has recently been recognized. Changes in thermoregulation can lead to metabolic dysregulation, but the role of astrocytes in this process is not yet clear. Therefore, we generated mice congenitally lacking insulin receptors (Ir) in astrocytes (IrKOGFAP mice) to investigate the involvement of astrocyte insulin signaling. IrKOGFAP mice displayed significantly lower energy expenditure and a strikingly lower basal and fasting body temperature. When exposed to cold, however, they were able to mount a thermogenic response. IrKOGFAP mice displayed sex differences in metabolic function and thermogenesis that may contribute to the development of obesity and type II diabetes as early as 2 months of age. While brown adipose tissue exhibited higher adipocyte size in both sexes, more apoptosis was seen in IrKOGFAP males. Less innervation and lower BAR3 expression levels were also observed in IrKOGFAP brown adipose tissue. These effects have not been reported in models of astrocyte Ir deletion in adulthood. In contrast, body weight and glucose regulatory defects phenocopied such models. These findings identify a novel role for astrocyte insulin signaling in the development of normal body temperature control and sympathetic activation of BAT. Targeting insulin signaling in astrocytes has the potential to serve as a novel target for increasing energy expenditure.

Free access

Henrik Oster

Endogenous circadian clocks adapt an organism’s physiology and behavior to predictable changes in the environment as a consequence of the Earth’s rotation around its axis. In mammals, circadian rhythms are the output of a ubiquitous network of cellular timers coordinated by a hypothalamic master pacemaker. Circadian clock function is closely connected to the stress response system which has evolved to ensure survival under less predictable situations of danger. Disruptions in both of these functions are highly prevalent in modern society and have been linked to pathologic alterations in metabolic setpoints, promoting overeating, obesity, and type-2 diabetes. This paper describes the different levels of interaction between the circadian clock and acute and chronic stress responses. It summarizes studies assessing clock-stress crosstalk in the context of metabolic homeostasis and outlines options to use this interaction for diagnostic and therapeutic measures targeting metabolic health and well-being in the highly chronodisruptive environment of modern 24-h globalized societies.

Restricted access

Prasanthi P Koganti and Vimal Selvaraj

Despite being a highly conserved protein, the precise role of the mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), remains elusive. The void created by studies that overturned a presumptive model that described TSPO/PBR as a mitochondrial cholesterol transporter for steroidogenesis has been filled with evidence that it can affect mitochondrial metabolic functions across different model systems. We previously reported that TSPO/PBR deficient steroidogenic cells upregulate mitochondrial fatty acid oxidation and presented a strong positive correlation between TSPO/PBR expression and tissues active in triglyceride metabolism or lipid storage. Nevertheless, the highlighting of inconsistencies in prior work has provoked reprisals that threaten to stifle progress. One frequent factoid presented as being supportive of a cholesterol import function is that there are no steroid-synthesizing cell types without high TSPO/PBR expression. In this study, we examine the hamster adrenal gland that is devoid of lipid droplets in the cortex and largely relies on de novo cholesterol biosynthesis and uptake for steroidogenesis. We find that Tspo expression in the hamster adrenal is imperceptible compared to the mouse. This observation is consistent with a substantially low expression of Cpt1a in the hamster adrenal, indicating minimal mitochondrial fatty acid oxidation capacity compared to the mouse. These findings provide further reinforcement that the much sought-after mechanism of TSPO/PBR function remains correlated with the extent of cellular triglyceride metabolism. Thus, TSPO/PBR could have a homeostatic function relevant only to steroidogenic systems that manage triglycerides associated with lipid droplets.

Restricted access

Brit H Boehmer, Peter R Baker II, Laura D Brown, Stephanie R Wesolowski, and Paul J Rozance

A 9-day infusion of leucine into fetal sheep potentiates fetal glucose-stimulated insulin secretion (GSIS). However, there were accompanying pancreatic structural changes that included a larger proportion of β-cells and increased vascularity. Whether leucine can acutely potentiate fetal GSIS in vivo before these structural changes develop is unknown. The mechanisms by which leucine acutely potentiates GSIS in adult islets and insulin-secreting cell lines are well known. These mechanisms involve leucine metabolism, including leucine oxidation. However, it is not clear if leucine-stimulated metabolic pathways are active in fetal islets. We hypothesized that leucine would acutely potentiate GSIS in fetal sheep and that isolated fetal islets are capable of oxidizing leucine. We also hypothesized that leucine would stimulate other metabolic pathways associated with insulin secretion. In pregnant sheep we tested in vivo GSIS with and without an acute leucine infusion. In isolated fetal sheep islets, we measured leucine oxidation with a [1-14C] l-leucine tracer. We also measured concentrations of other amino acids, glucose, and analytes associated with cellular metabolism following incubation of fetal islets with leucine. In vivo, a leucine infusion resulted in glucose-stimulated insulin concentrations that were over 50% higher than controls (P < 0.05). Isolated fetal islets oxidized leucine. Leucine supplementation of isolated fetal islets also resulted in significant activation of metabolic pathways involving leucine and other amino acids. In summary, acute leucine supplementation potentiates fetal GSIS in vivo, likely through pathways related to the oxidation of leucine and catabolism of other amino acids.

Restricted access

Alexia Barroso, Jose Antonio Santos-Marcos, Cecilia Perdices-Lopez, Ana Vega-Rojas, Miguel Angel Sanchez-Garrido, Yelizabeta Krylova, Helena Molina-Abril, Claes Ohlsson, Pablo Perez-Martinez, Matti Poutanen, Jose Lopez-Miranda, Manuel Tena-Sempere, and Antonio Camargo

Gonadal steroids strongly contribute to the metabolic programming that shapes the susceptibility to the manifestation of diseases later in life, and the effect is often sexually dimorphic. Microbiome signatures, together with metabolic traits and sex steroid levels, were analyzed at adulthood in neonatally androgenized female rats, and compared with those of control male and female rats. Exposure of female rats to high doses of androgens on early postnatal life resulted in persistent alterations of the sex steroid profile later on life, namely lower progesterone and higher estradiol and estrone levels, with no effect on endogenous androgens. Neonatally androgenized females were heavier (10% at early adulthood and 26% at adulthood) than controls and had impaired glucose homeostasis observed by higher AUC of glucose in GTT and ITT when subjected to obesogenic manipulations. Androgenized female displayed overt alterations in gut microbiota, indicated especially by higher Bacteroidetes and lower Firmicutes abundance at early adulthood, which disappeared when animals were concurrently overfed at adulthood. Notably, these changes in gut microbiota were related with the intestinal expression of several miRNAs, such as miR-27a-3p, miR-29a-5p, and miR-100-3p. Our results suggest that nutritional and hormonal disruption at early developmental periods not only alters the metabolic programming of the individual later in life but also perturbs the architecture of gut microbiota, which may interact with the host by a cross-talk mediated by intestinal miRNAs; phenomena that may contribute to amplify the metabolic derangement caused by obesity, as seen in neonatally androgenized female rats.

Restricted access

Marco Colella, Valeria Nittoli, Alfonsina Porciello, Immacolata Porreca, Carla Reale, Filomena Russo, Nicola Antonino Russo, Luca Roberto, Francesco Albano, Mario De Felice, Massimo Mallardo, and Concetta Ambrosino

The intra-tissue levels of thyroid hormones (THs) regulate organ functions. Environmental factors can impair these levels by damaging the thyroid gland and/or peripheral TH metabolism. We investigated the effects of embryonic and/or long-life exposure to low-dose pesticides, ethylene thiourea (ETU), chlorpyrifos (CPF) and both combined on intra-tissue T4/T3 metabolism/signaling in zebrafish at different life stages. Hypothyroidism was evident in exposed larvae that showed reduced number of follicles and induced tshb mRNAs. Despite that, we found an increase in free T4 (fT4) and free T3 (fT3) levels/signaling that was confirmed by transcriptional regulation of TH metabolic enzymes (deiodinases) and T3-regulated mRNAs (cpt1, igfbp1a). Second-generation larvae showed that thyroid and TH signaling was affected even when not directly exposed, suggesting the role of parental exposure. In adult zebrafish, we found that sex-dependent damage of hepatic T3 level/signaling was associated with liver steatosis, which was more pronounced in females, with sex-dependent alteration of transcripts codifying the key enzymes involved in ‘de novo lipogenesis’ and β-oxidation. We found impaired activation of liver T3 and PPARα/Foxo3a pathways whose deregulation was already involved in mammalian liver steatosis. The data emphasizes that the intra-tissue imbalance of the T3 level is due to thyroid endocrine disruptors (THDC) and suggests that the effect of a slight modification in T3 signaling might be amplified by its direct regulation or crosstalk with PPARα/Foxo3a pathways. Because T3 levels define the hypothyroid/hyperthyroid status of each organ, our findings might explain the pleiotropic and site-dependent effects of pesticides.

Restricted access

Danuzia A Marques, Luis Gustavo A Patrone, Carolina S Scarpellini, Kênia C Bícego, Raphael E Szawka, and Luciane H Gargaglioni

Many diseases of the respiratory system occur differently in males and females, indicating a possible role of gonadal hormones in respiratory control. We hypothesized that testosterone (T) is important for the ventilatory chemosensitivity responses in males. To test this hypothesis, we evaluated ventilation (E), metabolic rate and body temperature (Tb) under normoxia/normocapnia, hypercapnia and hypoxia in orchiectomized (ORX), ORX with testosterone replacement (ORX+T) or flutamide (FL, androgen receptor blocker)-treated rats. We also performed immunohistochemistry to evaluate the presence of androgen receptor (AR) in the carotid body (CB) of intact males. Orchiectomy promoted a reduction V̇E and ventilatory equivalent (E/V̇O 2) under room-air conditions, which was restored with testosterone treatment. Moreover, during hypoxia or hypercapnia, animals that received testosterone replacement had a higher E and E/V̇O 2 than control and ORX, without changes in metabolic and thermal variables. Flutamide decreased the hypoxic ventilatory response without changing the CO2-drive to breathe, suggesting that the testosterone effect on hypercapnic hyperventilation does not appear to involve the AR. We also determined the presence of AR in the CB of intact animals. Our findings demonstrate that testosterone seems to be important for maintaining resting E in males. In addition, the influence of testosterone on E, either during resting conditions or under hypoxia and hypercapnia, seems to be a direct and specific effect, as no changes in metabolic rate or Tb were observed during any treatment. Finally, a putative site of testosterone action during hypoxia is the CB, since we detected the presence of AR in this structure.

Free access

Alan Conley, Ned J Place, Erin L Legacki, Geoff L Hammond, Gerald R Cunha, Christine M Drea, Mary L Weldele, and Steve E Glickman

The spotted hyaena (Crocuta crocuta) is a unique species, even amongst the Hyaenidae. Extreme clitoral development in female spotted hyaenas challenges aspects of the accepted framework of sexual differentiation and reproductive function. They lack a vulva and instead urinate, copulate and give birth through a single, long urogenital canal that traverses a clitoris superficially resembling a penis. Recent and historical evidence is reviewed to describe our changing understanding of the biology of this species. Expanding upon observations from hyaenas in nature, much has been learned from studies utilising the captive colony at the University of California, Berkeley. The steroid environment of pregnancy is shaped by placental androgen and oestrogen secretion and a late gestational increase in sex hormone binding globulin, the regulated expression and steroid-binding characteristics of which are unique within the Hyaenidae. While initial external genital development is largely free of androgenic influence, the increase in testosterone concentrations in late gestation influences foetal development. Specifically, anti-androgen (AA) treatment of pregnant females reduced the developmental influence of androgens on their foetuses, resulting in reduced androstenedione concentrations in young females and easier birth through a ‘feminised’ clitoris, but precluded intromission and mating by ‘feminised’ male offspring, and altered social interactions. Insight into the costs and benefits of androgen exposure on spotted hyaena reproductive development, endocrinology and behaviour emphasises the delicate balance that sustains reproductive success, forces a re-evaluation of how we define masculine vs feminine sexual characteristics, and motivates reflection about the representative value of model species.

Restricted access

Manesh Chittezhath, Cho M M Wai, Vanessa S Y Tay, Minni Chua, Sarah R Langley, and Yusuf Ali

Toll-like receptors (TLRs), particularly TLR4, may act as immune sensors for metabolic stress signals such as lipids and link tissue metabolic changes to innate immunity. TLR signalling is not only tissue-dependent but also cell-type dependent and recent studies suggest that TLRs are not restricted to innate immune cells alone. Pancreatic islets, a hub of metabolic hormones and cytokines, respond to TLR signalling. However, the source of TLR signalling within the islet remain poorly understood. Uncovering the specific cell source and its role in mediating TLR signalling, especially within type 2 diabetes (T2D) islet will yield new targets to tackle islet inflammation, hormone secretion dysregulation and ultimately diabetes. In the present study, we immuno-characterised TLRs linked to pancreatic islets in both healthy and obese diabetic mice. We found that while TLRs1–4 and TLR9 were expressed in mouse islets, these TLRs did not co-localise with insulin-producing β-cells. β-Cells from obese diabetic mice were also devoid of these TLRs. While TLR immunoreactivity in obese mice islets increased, this was driven mostly by increased islet endothelial cell and islet macrophage presence. Analysis of human islet single-cell RNA-seq databases revealed that macrophages were an important source of islet TLRs. However, only TLR4 and TLR8 showed variation and cell-type specificity in their expression patterns. Cell depletion experiments in isolated mouse islets showed that TLR4 signalled through macrophages to alter islet cytokine secretome. Together, these studies suggest that islet macrophages are a dominant source of TLR4-mediated signalling in both healthy and diabetic islets.

Restricted access

Xiaoyi Ma, Fei Gao, Qi Chen, Xiuping Xuan, Ying Wang, Hongjun Deng, Fengying Yang, and Li Yuan

The angiotensin-converting enzyme 2 (ACE2)/angiotensin 1–7 (A1–7)/MAS axis and glutamate decarboxylase 67 (GAD67)/gamma-aminobutyric acid (GABA) signal both exist in the islet and play important roles in regulating blood glucose metabolism. It has been reported that the activation of ACE2 in the brain increases GABA expression to improve biological effects; however, it is unclear whether there is functional correlation between the ACE2/A1–7/MAS axis and GAD67/GABA signal in the islet. In this study, we showed that the ACE2/A1–7/MAS and GABA signaling systems decreased in the islet of different metabolic stress models. In ACE2-knockout mice, we found that GAD67 and GABA expression decreased significantly, which was reversed by exogenous administration of A1–7. Furthermore, A1–7 mediated PDX1 and AKT activation was inhibited by allylglycine (a specific GAD67 inhibitor) in MIN6 cells. Moreover, giving A1–7 and GABA could significantly reduce beta-cell dedifferentiation and improved glucose metabolism during metabolic stress in vivo and in vitro. In conclusion, our study reveals that the ACE2/A1–7/MAS axis improves beta-cell function through regulating GAD67/GABA signal in beta cells and that up-regulating the ACE2/A1–7/MAS axis and GABA signals delays the development of obesity-induced diabetes.