Browse

You are looking at 21 - 30 of 13,656 items for

Open access

Romain Fontaine, Eirill Ager-Wick, Kjetil Hodne and Finn-Arne Weltzien

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhβ, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.

Open access

Koichiro Taguchi, Kazuo Kajita, Yoshihiko Kitada, Masayuki Fuwa, Motochika Asano, Takahide Ikeda, Toshiko Kajita, Tatsuo Ishizuka, Itaru Kojima and Hiroyuki Morita

Despite extensive investigation, the mechanisms underlying adipogenesis are not fully understood. We previously identified proliferative cells in adipose tissue expressing adipocyte-specific genes, which were named small proliferative adipocytes (SPA). In this study, we investigated the characteristics and roles of SPA in adipose tissue. Epididymal and inguinal fat was digested by collagenase, and then SPA were separated by centrifugation from stromal vascular cells (SVC) and mature white adipocytes. To clarify the feature of gene expression in SPA, microarray and real-time PCR were performed. The expression of adipocyte-specific genes and several neuronal genes was increased in the order of SVC < SPA < mature white adipocytes. In addition, proliferin was detected only in SPA. SPA differentiated more effectively into lipid-laden cells than SVC. Moreover, differentiated SPA expressed uncoupling protein 1 and mitochondria-related genes more than differentiated SVC. Treatment of SPA with pioglitazone and CL316243, a specific β3-adrenergic receptor agonist, differentiated SPA into beige-like cells. Therefore, SPA are able to differentiate into beige cells. SPA isolated from epididymal fat (epididymal SPA), but not SPA from inguinal fat (inguinal SPA), expressed a marker of visceral adipocyte precursor, WT1. However, no significant differences were detected in the expression levels of adipocyte-specific genes or neuronal genes between epididymal and inguinal SPA. The ability to differentiate into lipid-laden cells in epididymal SPA was a little superior to that in inguinal SPA, whereas the ability to differentiate into beige-like cells was greater in inguinal SPA than epididymal SPA. In conclusion, SPA may be progenitors of beige cells.

Free access

Wonsuk Choi, Joon Ho Moon and Hail Kim

Serotonin is a biogenic amine synthesized from the essential amino acid tryptophan. Because serotonin cannot cross the blood-brain barrier, it functions differently in neuronal and non-neuronal tissues. In the CNS, serotonin regulates mood, behavior, appetite, and energy expenditure. Although most serotonin in the body is synthesized at the periphery, its biological roles have not been well elucidated. Older studies using chemical agonists and antagonists yielded conflicting results, because the complexity of serotonin receptors and the low selectivity of agonists and antagonists were not known. Several recent studies using specific knock-out of serotonin receptors have been performed to assess the role of peripheral serotonin in regulating energy metabolism. This review discusses (1) the tissue-specific roles of peripheral serotonin in regulating energy metabolism, (2) the mechanism by which dysfunctional peripheral serotonin signaling can progress to metabolic diseases, and (3) how peripheral serotonin signaling could be a therapeutic target for metabolic diseases.

Restricted access

Federico Gatto, Richard A Feelders, Rob van der Pas, Peter van Koetsveld, Eleonora Bruzzone, Marica Arvigo, Fadime Dogan, Steven Lamberts, Diego Ferone and Leo Hofland

Pituitary-directed medical treatment for Cushing’s disease (CD) is currently represented by membrane receptor targeting drugs (somatostatin analogs and dopamine agonists). Somatostatin and dopamine receptors are regulated by β-arrestins, which have been shown to be differentially regulated by glucocorticoids in non-neuroendocrine cells. In this study we investigated the effects of glucocorticoids on β-arrestin expression in corticotroph tumor cells. First, AtT20 cells, a mouse model of CD, were exposed to dexamethasone (Dex) at different time points and β-arrestin expression was evaluated at mRNA and protein levels. Futhermore, β-arrestin mRNA expression was evaluated in 17 human corticotroph adenoma samples and correlated to patients’ pre-operative cortisol levels. We observed that Dex treatment induced a time-dependent increase in β-arrestin 1 mRNA expression and a decrease in β-arrestin 2. The same modulation pattern was observed at protein level. Dex-mediated modulation of β-arrestins was abolished by co-treatment with mifepristone, and Dex withdrawal restored β-arrestin expression to basal levels after 72 h. The evaluation of β-arrestin mRNA in corticotroph adenomas from CD patients with variable disease activity showed a significant positive correlation between β-arrestin 1 mRNA and urinary cortisol levels. The effect of glucocorticoids on β-arrestin levels was confirmed by the analysis of two samples from a single patient, which underwent adenomectomy twice, with different pre-operative cortisol levels. In conclusion, glucocorticoids induce an inverse modulation of the two β-arrestin isofoms in corticotroph tumor cells. Since β-arrestins regulate membrane receptor functions, this finding may help to better understand the variable response to pituitary-targeting drugs in patients with Cushing’s disease.

Restricted access

Yang Chen, Mingyue Zhao, Chenhao Wang, Huaizhen Wen, Yuntao Zhang, Mingxu Lu, Salah Adlat, Tingting Zheng, Mingjiao Zhang, Dan Li, Xiaodan Lu, Mengwei Guo, Hongyu Chen, Luqing Zhang, Xuechao Feng and Yaowu Zheng

Excessive fat accumulation causes obesity and many diseases. Previous study demonstrates VEGFB universal knockout induces obese phenotypes including expansion of white adipose tissue, whitening of brown adipose tissue, increase of fat accumulation and reduction in energy consumption. However, roles of VEGFB in adipose tissues are not clear. In this study, we have generated a mouse model with adipose-specific VEGFB repression using CRISPR/dCas9 system (Vegfb AdipoDown) and investigated the roles of VEGFB in adipose development and energy metabolism. VEGFB repression induced significant changes in adipose tissue structure and function. Vegfb AdipoDown mice have larger body sizes, larger volume of white adipose tissues than its wild type littermates. Adipose-specific VEGFB repression induced morphological and functional transformation of adipose tissues toward white adipose for energy storage. Metabolic processes are broadly changed in Vegfb AdipoDown adipose tissues including carbohydrate metabolism, lipid metabolism, nucleotide metabolism and amino acid metabolism. We have demonstrated that adipose VEGFB repression can recapitulate most of the phenotypes of the whole body VEGFB knockout mouse. Intriguingly, approximately 50% VEGFB repression in adipose tissues can almost completely mimic the effects of universal Vegfb deletion, suggesting adipose VEGFB is a major regulator of energy metabolism and may be important in prevention and treatment of obesity.

Restricted access

Sandra Szlapinski, Anthony A. Botros, Sarah Donegan, Renee T. King, Gabrielle Retta, Brenda J Strutt and David J Hill

Gestational diabetes mellitus increases the risk of dysglycemia postpartum in part due to pancreatic β-cell dysfunction. However, no histological evidence exists comparing endocrine pancreas after healthy and glucose intolerant pregnancies. This study sought to address this knowledge gap, in addition to exploring the contribution of an inflammatory environment to changes in endocrine pancreas after parturition. We used a previously established mouse model of gestational glucose intolerance induced by dietary low protein insult from conception until weaning. Pancreas and adipose samples were collected at 7, 30 and 90 days postpartum for histomorphometric and cytokine analyses, respectively. Glucose tolerance tests were performed prior to euthanasia and blood was collected via cardiac puncture. Pregnant female mice born to dams fed a low-protein diet previously shown to develop glucose intolerance at late gestation relative to controls continued to be glucose intolerant until 1 month postpartum. However, glucose tolerance normalized by 3 months postpartum. Glucose intolerance at 7 days postpartum was associated with lower beta- and alpha-cell fractional areas and higher adipose levels of proinflammatory cytokine, interleukin-6. By 3 months postpartum, a compensatory increase in the number of small islets and a higher insulin to glucagon ratio likely enabled euglycemia to be attained in the previously glucose intolerant mice. The results show that impairments in endocrine pancreas compensation in hyperglycemic pregnancy persist after parturition and contribute to prolonged glucose intolerance. These impairments may increase the susceptibility to development of future type 2 diabetes.

Restricted access

Chunchun Wei, Xianhua Ma, Kai Su, Shasha Qi, Yuangang Zhu, Junjian Lin, Chenxin Wang, Rui Yang, Xiaowei Chen, Weizhong Wang and Weiping J Zhang

Brown adipose tissue (BAT) plays a critical role in energy expenditure by uncoupling protein 1 (UCP1)-mediated thermogenesis. Carbohydrate response element-binding protein is one of the key transcription factors regulating de novo lipogenesis (DNL). As a constitutively active form, ChREBP-β is expressed at extremely low levels. Up to date, its functional relevance in BAT remains unclear. In this study, we show that ChREBP-β inhibits BAT thermogenesis. BAT ChREBP-β mRNA levels were elevated upon cold exposure, which prompted us to generate a mouse model overexpressing ChREBP-β specifically in BAT using the Cre/LoxP approach. ChREBP-β overexpression led to a whitening phenotype of BAT at room temperature, as evidenced by increased lipid droplet size and decreased mitochondrion content. Moreover, BAT thermogenesis was inhibited upon acute cold exposure, and its metabolic remodeling induced by long-term cold adaptation was significantly impaired by ChREBP-β overexpression. Mechanistically, ChREBP-β overexpression downregulated expression of genes involved in mitochondrial biogenesis, autophagy, and respiration. Furthermore, thermogenic gene expression (e.g. Dio2, UCP1) was markedly inhibited in BAT by the overexpressed ChREBP-β. Put together, our work points to ChREBP-β as a negative regulator of thermogenesis in brown adipocytes.

Restricted access

Yan Su, Sujuan Guo, Chunyan Liu, Na Li, Shuang Zhang, Yubin Ding, Xuemei Chen, Junlin He, Xueqing Liu, Yingxiong Wang and Rufei Gao

Embryo implantation is essential for normal pregnancy. Decidualization is known to facilitate embryo implantation and maintain pregnancy. Uterine stromal cells undergo transformation into decidual cells after embryo attachment to the endometrium. Pyruvate kinase M2 (PKM2) is a rate limiting enzyme in the glycolysis which catalyzes phosphoenolpyruvic acid transforming into pyruvate. However, little is known regarding the role of PKM2 during endometrium decidualization. In this study, PKM2 was found to mainly located in the uterine glandular epithelium and luminal epithelium on day 1 and day 4 of pregnancy and strongly expressed in decidual zone after embryo implantation. And it was dramatically increased with the onset of decidualization. Upon further exploration, it showed that PKM2 was higher expressed at the implantation sites than that at the inter-implantation sites on days 5 to 7 of pregnancy. PKM2 expression was also significantly increased after artificial decidualized both in vivo and in vitro. After PKM2 expression was knocked down by siRNA, the number of embryo implantation sites in mice on day 7 of pregnancy was significantly reduced and the decidualization markers BMP2 and Hoxa10 were also obviously downregulated in vivo and in vitro. Downregulated PKM2 could also compromise cell proliferation in primary endometrial stromal cells and in Ishikawa cells. The migration rate of Ishikawa cells was also obviously suppressed by si-PKM2 according to the wound healing assay. In conclusion, PKM2 might play an important role in decidualization during early pregnancy, and cell proliferation might be one pathway for PKM2 regulated decidualization.

Restricted access

Breno Picin Casagrande, Daniel Vitor De Souza, Daniel Araki Ribeiro, Alessandra Medeiros, Luciana Pellegrini Pisani and Débora Estadella

The negative aspects of unhealthy eating on obesity and hepatic health are well described. The axis between the adipose tissue and the liver participates in most of the damage caused to this tissue regarding obesogenic diets (OD). At the same time that the effects of consuming simple carbohydrates and saturated fatty acids are known, the effects of the cessation of its intake are scarce. Withdrawing from OD is thought to improve health; despite some studies had shown improvement in hepatic conditions in the long-term, short-term studies were not found. Therefore, we aimed to determine how OD intake and withdrawal would influence visceral and hepatic fat accumulation and inflammation. To this end, male 60-day-old wistar rats received standard chow (n=16) or a high-sugar/high-fat diet (HSHF) for 30 days (n=32), a cohort of the HSHF-fed animals was then kept 48h on standard chow (n=16). In opposition to the generally reported, the results indicate that hepatic inflammation preceded hepatic steatosis. Additionally, inflammatory markers on the liver positively correlated visceral adipokines and visceral fat accumulation mediated them in a deposit-dependent manner. At the same time, a 48h withdrawal as capable of reverting most of the risen inflammatory mediators, although, MyD88 and TNFα persisted, and serum non-HDL cholesterol was higher than control levels.

Restricted access

Miguel del Campo, Néstor Lagos and Hernán Lara

A high sympathetic tone is observed in the development and maintenance of the polycystic ovary (PCO) phenotype in rats. Neosaxitoxin (NeoSTX) specifically blocks neuronal voltage-dependent Na+ channels, and we studied the capacity of NeoSTX administered into the ovary to block sympathetic nerves and PCO phenotype that is induced by estradiol valerate (EV). The toxin was administered with a minipump inserted into the bursal cavity using two protocols: (1) the same day as EV administration and (2) 30 days after EV to block the final step of cyst development and maintenance of the condition. We studied the estrous cycling activity, follicular morphology, steroid plasma levels, and norepinephrine concentration. NeoSTX administered together with EV decreased NA intraovarian levels that were induced by EV, increased the number of corpora lutea, decreased the number of follicular cyst found after EV administration, and decreased the previously increased testosterone plasma levels induced by the PCO phenotype. Estrous cycling activity also recovered. NeoSTX applied after 30 days of EV administration showed near recovery of ovary function, suggesting that there is a specific window in which follicular development could be protected from cystic development. In addition, plasma testosterone levels decreased while those of progesterone increased. Our data strongly suggest that chronic inhibition of sympathetic nerves by a locally applied long-lasting toxin is a new tool to manage the polycystic phenotype in the rat and could be applied to other mammals depending on sympathetic nerve activity.