Browse

You are looking at 31 - 40 of 13,656 items for

Restricted access

Hui-Fang Wang, Qing-Qing Yu, Rui-Fang Zheng and Ming Xu

Cardiovascular complications of type 2 diabetes mellitus (T2DM) are associated with vascular remodeling in the arteries. Perivascular sympathetic neurons release an abundance of trophic factors to regulate vascular function via a paracrine signaling. Netrin-1, a diffusible protein that can be secreted outside the cell, is one of common signals of ‘conversation’ between nerve and vessel. The present study investigated whether netrin-1 is a novel modulator of sympathetic neurons paracrine signaling and played a critical role in vascular adventitial remodeling under T2DM. Vascular adventitial remodeling was observed in adventitial fibroblasts (AFs) responding to netrin-1 deficiency in the supernatant from primary rat superior cervical ganglia (SCG) neurons, shown as AFs proliferation, migration, and collagen deposition. Conditioned medium from the high glucose (HG)-treated SCG neurons contributed to AFs remodeling, which was effectively alleviated by exogenous netrin-1 supplementation. Further, it was found that uncoordinated-5-B (Unc5b) was mainly expressed in AFs among netrin-1 specific receptors. Treatment of netrin-1 inhibited H2O2 production derived from NADPH oxidase 4 (NOX4) through the UNC5b/CAMP/PKA signal pathway in AFs remodeling. In vivo, aorta adventitial remodeling was accompanied with the downregulation of netrin-1 in the perivascular sympathetic nerve in T2DM rats. Such abnormalities were restored by netrin-1 intervention, which was associated with the inhibition of NOX4 expression in the aorta adventitia. In conclusion, netrin-1 is a novel modulator of sympathetic neurons paracrine signaling to maintain AFs function. Vascular adventitial remodeling was aggravated by sympathetic neurons paracrine signaling under hyperglycemia, which was ameliorated by netrin-1 treatment through the UNC5b/CAMP/PKA/NOX4 pathway.

Restricted access

Qiaoyuan Zheng, Hesheng Xiao, Hongjuan Shi, Tingru Wang, Lina Sun, Wenjing Tao, Thomas D Kocher, Minghui Li and Deshou Wang

The impacts of androgens and glucocorticoids on spermatogenesis have intrigued scientists for decades. 11β-hydroxylase, encoded by cyp11c1, is the key enzyme involved in the synthesis of 11-ketotestosterone and cortisol, the major androgen and glucocorticoid in fish, respectively. In the present study, a Cyp11c1 antibody was produced. Western blot and immunohistochemistry showed that Cyp11c1 was predominantly expressed in the testicular Leydig cells and head kidney interrenal cells. A mutant line of cyp11c1 was established by CRISPR/Cas9. Homozygous mutation of cyp11c1 caused a sharp decrease of serum cortisol and 11-ketotestosterone, and a delay in spermatogenesis which could be rescued by exogenous 11-ketotestosterone or testosterone, but not cortisol treatment. Intriguingly, this spermatogenesis restored spontaneously, indicating compensatory effects of other androgenic steroids. In addition, loss of Cyp11c1 led to undersized testes with a smaller efferent duct and disordered spermatogenic cysts in adult males. However, a small amount of viable sperm was produced. Taken together, our results demonstrate that cyp11c1 is important for testicular development, especially for the initiation and proper progression of spermatogenesis. 11-ketotestosterone is the most efficient androgen in tilapia.

Restricted access

Tristan S Allemann, Gursimran K Dhamrait, Naomi J Fleury, Tamara N Abel, Prue H Hart, Robyn M Lucas, Vance B Matthews and Shelley Gorman

In previous preclinical studies, low (non-burning) doses of UV radiation (UVR) limited weight gain and metabolic dysfunction in mice fed with a high-fat diet. Here, we explored the effects of low-dose UVR on physical activity and food intake and mechanistic pathways in interscapular brown adipose tissue (iBAT). Young adult C57Bl/6J male mice, housed as individuals, were fed a high-fat diet and exposed to low-dose UVR (sub-oedemal, 1 kJ/m2 UVB, twice-a-week) or ‘mock’ treatment, with or without running wheel access (2 h, for ‘moderate’ physical activity) immediately after phototherapy. There was no difference in distance run in mice exposed to UVR or mock-treated over 12 weeks of exposure to running wheels (P = 0.14). UVR (alone) did not significantly affect food intake, adiposity, or signs of glucose dysfunction. Access to running wheels increased food intake (after 10 weeks, P ≤ 0.02) and reduced gonadal white adipose tissue and iBAT mass (P ≤ 0.03). Body weight and hepatic steatosis were lowest in mice exposed to UVR with running wheel access. In the iBAT of mice exposed to UVR and running wheels, elevated Atgl, Cd36, Fasn, Igf1, Pparγ, and Ucp1 mRNAs and reduced CD11c on F4-80 + MHC class II+ macrophages were observed, while renal Sglt2 mRNA levels were increased, compared to high-fat diet alone (P ≤ 0.03). Blood levels of 25-hydroxyvitamin D were not increased by exposure to UVR and/or access to running wheels. In conclusion, when combined with physical activity, low-dose UVR may more effectively limit adiposity (specifically, body weight and hepatic steatosis) and modulate metabolic and immune pathways in iBAT.

Restricted access

Takuro Okamura, Yoshitaka Hashimoto, Takafumi Osaka, Takafumi Senmaru, Takuya Fukuda, Masahide Hamaguchi and Michiaki Fukui

To investigate the role of microRNA (miRNA) in muscle atrophy, we performed microarray analysis of miRNA expression in skeletal muscles of Sham, orchiectomized (ORX) mice, and ORX mice treated with androgen and identified that the expression of miR-23b-3p in ORX mice was significantly higher than that in Sham mice (P = 0.007); however, miR-23b-3p expression in ORX mice treated with androgen was lower (P = 0.001). We also investigated the mechanism by which overexpression or knockdown of miR-23b-3p influences the expression of myosin heavy chain, muscle protein synthesis, ATP activity, and glucose uptake in C2C12 myotube cells. Moreover, we examined the serum miR-23b-3p levels among male subjects with type 2 diabetes and whether the serum miR-23b-3p levels could be a biomarker for muscle atrophy. The overexpression of miR-23b-3p in C2C12 myotube cells significantly upregulated the expression of myosin heavy chain, protein synthesis, ATP activity, and glucose uptake. Reporter assays raised a possible direct post-transcriptional regulation involving miR-23b-3p and the 3′-UTR of PTEN mRNA. Among subjects with type 2 diabetes, serum miR-23b-3p levels in the subjects with decreased muscle mass were significantly higher compared to the levels in the subjects without. Our results indicate that miR-23b-3p downregulates the expression of PTEN in myotube cells and induces the growth of myosin heavy chain. In addition, the serum level of miR-23b-3p can be used as a diagnostic marker for muscle atrophy.

Restricted access

Xin Li, Hongjiao Li, Di Zhang, Guojin Xu, Jinglin Zhang and Sheng Cui

MicroRNA-7 (miR-7) is an important modulator of a plenty of gene expressions and the interrelated biological processes, highly expressed in porcine pituitary. Norepinephrine (NE), acting as an important neurotransmitter or/and a hormone secreted excessively under stress, affects the synthesis and secretion of various hormones, including pituitary follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which are the key hormones which regulate sexual maturation and reproductive functions. However, the relationship among NE, miR-7 and gonadotropin needs to be elucidated. The aim of this study was to identify whether miR-7 involved in the NE-adrenoceptor signaling pathway affects the synthesis and secretion of FSH and LH in porcine pituitary. Our results showed that the NE intracerebroventricular injection increased pituitary miR-7 level and the synthesis and secretion of FSH and LH in porcine, whereas the inhibition of either endogenous miR-7 or β-adrenergic receptors hindered the rise of FSH and LH synthesis induced by NE in cultured primary porcine anterior pituitary cells. Further, we identified the molecular type of β-adrenergic receptors and the signaling pathway in porcine pituitary, and we found that NE played its roles relying on adrenoceptor beta 2 (β2AR) and the RAF/MEK/ERK1/2 signaling pathway. The phosphorylation of ERK1/2 upregulated miR-7 level which subsequently enhanced FSH and LH synthesis by targeting to Golgi glycoprotein 1 (GLG1). These suggest that miR-7 mediates NE’s effect on promoting FSH and LH synthesis in porcine pituitary.

Restricted access

H Y Li, Y X Liu, L Harvey, S Shafaeizadeh, E M van der Beek and W Han

The prevalence of gestational diabetes mellitus (GDM) is estimated at 14% globally, and in some countries, such as Singapore, exceeds 20%. Both women and children exposed to GDM have an increased risk of later metabolic diseases, cardiovascular disease and other health issues. Beyond lifestyle changes and pharmaceutical intervention using existing type 2 diabetes medications for expecting women, there are limited treatment options for women with GDM; targeting better outcomes of potentially affected infants is unexplored. Numerous animal models have been generated for understanding of pathological processes of GDM development and for development of treatment strategies. These models, however, suffer from limited windows of opportunity to examine risk factors and potential intervention options. By combining short-term high-fat diet (HFD) feeding and low-dose streptozotocin (STZ) treatments before pregnancy, we have established a mouse model with marked transient gestation-specific hyperglycemia, which allows testing of nutritional and pharmacological interventions before, during and beyond pregnancy.

Restricted access

Irit Miller, Hadas Bar-Joseph, Luba Nemerovsky, Ido Ben-Ami and Ruth Shalgi

Polycystic ovary syndrome (PCOS), one of the most common female endocrine disorder, is a prevalent cause of infertility. Hyperandrogenism is a key feature in PCOS, and is correlated with increased expression of VEGF and cytokines in the ovaries. We have previously shown that pigment epithelium-derived factor (PEDF), an endogenous protein, presents potent anti-angiogenic and anti-inflammatory activities in the ovary and negates the effects of cytokines and VEGF. Additionally, PEDF plays a role in both pathophysiology and treatment of ovarian-hyperstimulation syndrome (OHSS), frequently seen in PCOS patients. We established hyperandrogenic-PCOS models, both in-vivo, using mice exposed prenatally to dihydrotestosterone (DHT), and in-vitro, using human primary granulosa cells (hpGCs) and human granulosa cell line, (KGN). In PCOS-induced mice, the mRNA levels of IL-6, VEGF and AMH were higher than those of control; yet, treatment with rPEDF decreased these levels. Moreover, treating OHSS-induced PCOS-mice with rPEDF alleviated all OHSS symptoms. Stimulation of hpGCs with DHT resulted in downregulation of PEDF mRNA expression, concomitantly with a significant increase in IL-6 and IL-8 mRNAs expression. However, co-stimulation of DHT with rPEDF attenuated the increase in cytokines expression. The anti-inflammatory effect of PEDF was found to be mediated via PPARγ pathway. Our findings suggest that rPEDF treatment may normalize the ovarian angiogenic-inflammatory imbalance, induced by PCOS-associated hyperandrogenism. Moreover, the therapeutic potency of PEDF in preventing OHSS symptomes, offers a rationale for using PEDF as novel physiological treatment for PCOS sequels.

Restricted access

Harleen Kaur, Beverly S Muhlhausler, Pamela S-l Sim, Amanda Page, Hui Li, Maria Nunez-Salces, Georgia S Clarke, Lili Huang, Rebecca L Wilson, Johannes D Veldhuis, Chen Chen, Claire Trelford Roberts and Kathryn L Gatford

Circulating growth hormone (GH) concentrations increase during pregnancy in mice and remain pituitary-derived. Whether abundance or activation of the GH secretagogue, ghrelin increase during pregnancy or in response to dietary octanoic acid supplementation are unclear. We therefore measured circulating GH profiles in late pregnant C57BL/6J mice and in aged-matched non-pregnant females, fed standard laboratory chow supplemented with 5% octanoic or palmitic (control) acid (n=4-13/group). Serum total and acyl-ghrelin concentrations, stomach and placenta ghrelin mRNA and protein expression, Pcsk1 (encoding prohormone convertase 1/3) and Mboat4 (membrane bound O-acyl transferase 4) mRNA were determined at zeitgeber (ZT) 13 and ZT23. Total and basal GH secretion were higher in late pregnant than non-pregnant mice (P<0.001), regardless of diet. At ZT13, serum concentrations of total (P=0.004), but not acyl-ghrelin, and the density of ghrelin-positive cells in the gastric antrum (P=0.019) were higher, and gastric Mboat4 and Pcsk1 mRNA expression were lower in pregnant than non-pregnant mice at ZT23. In the placenta, ghrelin protein was localised mostly to labyrinthine trophoblast cells. Serum acyl-, but not total, ghrelin was lower at mid-pregnancy than in non-pregnant mice, but not different at early or late pregnancy. In conclusion, dietary supplementation with 5% octanoic acid did not increase activation of ghrelin in female mice. Our results further suggest that increases in maternal GH secretion throughout murine pregnancy are not due to circulating acyl-ghrelin acting at the pituitary. Nevertheless, time-dependent increased circulating total ghrelin could potentially increase ghrelin action in tissues that express the acylating enzyme and receptor.

Restricted access

Lili Men, Junjie Yao, Shanshan Yu, Yu Li, Siyuan Cui, Shi Jin, Guixin Zhang, Decheng Ren and Jianling Du

The induction of endoplasmic reticulum (ER) stress is associated with adipogenesis, during which the inositol-requiring enzyme 1 alpha (IRE1α)-X-box-binding protein 1 (XBP1) pathway is involved. Selenoprotein S (SelS), which is an ER resident selenoprotein, is involved in ER homeostasis regulation; however, little is known about the role of SelS in regulating adipogenesis. In vivo studies showed that SelS protein levels in white adipose tissue were increased in obese subjects and high-fat diet (HFD)-fed mice. Moreover, we identified that SelS protein levels increased in the early phase of adipogenesis and then decreased in the late phase during adipogenesis. Overexpression of SelS promoted adipogenesis. Conversely, knockdown (KD) of SelS resulted in the inhibition of adipogenesis, which was related to increasing cell death, decreased mitotic clonal expansion, and cell cycle G1 arrest. In vivo studies also showed that ER stress markers (p-IRE1α/IRE1α, XBP1s, and Grp78) were significantly increased with upregulating of SelS expression in subcutaneous and visceral adipose tissues in the obese subjects and HFD-fed mice. Furthermore, in SelS KD cells, the levels of Grp78 were increased and the levels of p-IRE1α/IRE1α were unchanged , but mRNA levels of spliced XBP1 (XBP1s) produced by IRE1α-mediated splicing were decreased, suggesting a role of SelS in the modulation of IRE1α-XBP1 pathway. Moreover, inhibition of adipogenesis by SelS suppression can be rescued by overexpression of XBP1s. Thus, SelS appears to function as a novel regulator of adipogenesis through the IRE1α-XBP1 signaling pathway.

Restricted access

Maria Konstandi, Christina E Andriopoulou, Jie Cheng and Frank J Gonzalez

The CYP2D subfamily catalyses the metabolism of about 25% of prescribed drugs, including the majority of antidepressants and antipsychotics. At present, the mechanism of hepatic CYP2D regulation remains largely unknown. This study investigated the role of sex steroid hormones in CYP2D regulation. For this purpose, Cyp2d22 expression was assessed in the distinct phases of the estrous cycle of normocyclic C57BL/6J (WT) female mice. Cyp2d22 was also evaluated in ovariectomised WT and CYP2D6-humanized (hCYP2D6) mice that received hormonal supplementation with either 17β-estradiol (E2) and/or progesterone. Comparisons were also made to male mice. The data revealed that hepatic Cyp2d22 mRNA, protein and activity levels were higher at estrous compared to the other phases of the estrous cycle, and ovariectomy repressed Cyp2d22 expression in WT mice. Tamoxifen, an antiestrogenic compound, also repressed hepatic Cyp2d22 via activation of GH/STAT5b and PI3k/AKT signalling pathways. Both hormones prevented the ovariectomy-mediated Cyp2d22 repression. In case of progesterone, this may be mediated by inhibition of the PI3k/AKT/FOX01 pathway. Notably, Cyp2d22 mRNA levels in WT males were similar to those in ovariectomised mice, and were markedly lower compared to females at estrous, a differentiation potentially regulated by the GH/STAT5b pathway. Sex steroid hormone-related alterations in Cyp2d22 mRNA expression were highly correlated with Hnf1a mRNA. Interestingly, fluctuations in Cyp2d22 in hippocampus and cerebellum followed those in liver. In contrast to WT mice, ovariectomy induced hepatic CYP2D6 expression in hCYP2D6 mice, whereas E2 and/or P prevented this induction. Apparently, sex steroid hormones display a significant gender- and species-specific role in the regulation of CYP2D.