Browse

You are looking at 81 - 90 of 13,567 items for

Free access

Andrew W Norris, Katie Larson Ode, Lina Merjaneh, Srinath Sanda, Yaling Yi, Xingshen Sun, John F Engelhardt and Rebecca L Hull

In cystic fibrosis (CF), ductal plugging and acinar loss result in rapid decline of exocrine pancreatic function. This destructive process results in remodeled islets, with only a modest reduction in insulin-producing β cells. However, β-cell function is profoundly impaired, with decreased insulin release and abnormal glucose tolerance being present even in infants with CF. Ultimately, roughly half the CF subjects develop diabetes (termed CF-related diabetes (CFRD)). Importantly, CFRD increases CF morbidity and mortality via worsening catabolism and pulmonary disease. Current accepted treatment options for CFRD are aimed at insulin replacement, thereby improving glycemia as well as preventing nutritional losses and lung decline. CFRD is a unique form of diabetes with a distinct pathophysiology that is as yet incompletely understood. Recent studies highlight emerging areas of interest. First, islet inflammation and lymphocyte infiltration are common even in young children with CF and may contribute to β-cell failure. Second, controversy exists in the literature regarding the presence/importance of β-cell intrinsic functions of CFTR and its direct role in modulating insulin release. Third, loss of the CF transmembrane conductance regulator (CFTR) from pancreatic ductal epithelium, the predominant site of its synthesis, results in paracrine effects that impair insulin release. Finally, the degree of β-cell loss in CFRD does not appear sufficient to explain the deficit in insulin release. Thus, it may be possible to enhance the function of the remaining β-cells using strategies such as targeting islet inflammation or ductal CFTR deficiency to effectively treat or even prevent CFRD.

Free access

Chen-Che Jeff Huang and Yuan Kang

The X-zone is a transient cortical region enriched in eosinophilic cells located in the cortical–medullary boundary of the mouse adrenal gland. Similar to the X-zone, the fetal zone in human adrenals is also a transient cortical compartment, comprising the majority of the human fetal adrenal gland. During adrenal development, fetal cortical cells are gradually replaced by newly formed adult cortical cells that develop into outer definitive zones. In mice, the regression of this fetal cell population is sexually dimorphic. Many mouse models with mutations associated with endocrine factors have been reported with X-zone phenotypes. Increasing findings indicate that the cell fate of this aged cell population of the adrenal cortex can be manipulated by many hormonal and nonhormonal factors. This review summarizes the current knowledge of this transient adrenocortical zone with an emphasis on genes and signaling pathways that affect X-zone cells.

Open access

Thomas Nicholson, Chris Church, Kostas Tsintzas, Robert Jones, Leigh Breen, Edward T Davis, David J Baker and Simon W Jones

Adipokines have emerged as central mediators of insulin sensitivity and metabolism, in part due to the known association of obesity with metabolic syndrome disorders such as type 2 diabetes. Recent studies in rodents have identified the novel adipokine vaspin as playing a protective role in inflammatory metabolic diseases by functioning as a promoter of insulin sensitivity during metabolic stress. However, at present the skeletal muscle and adipose tissue expression of vaspin in humans is poorly characterised. Furthermore, the functional role of vaspin in skeletal muscle insulin sensitivity has not been studied. Since skeletal muscle is the major tissue for insulin-stimulated glucose uptake, understanding the functional role of vaspin in human muscle insulin signalling is critical in determining its role in glucose homeostasis. The objective of this study was to profile the skeletal muscle and subcutaneous adipose tissue expression of vaspin in humans of varying adiposity, and to determine the functional role of vaspin in mediating insulin signalling and glucose uptake in human skeletal muscle. Our data shows that vaspin is secreted from both human subcutaneous adipose tissue and skeletal muscle, and is more highly expressed in obese older individuals compared to lean older individuals. Furthermore, we demonstrate that vaspin induces activation of the PI3K/AKT axis, independent of insulin receptor activation, promotes GLUT4 expression and translocation and sensitises older obese human skeletal muscle to insulin-mediated glucose uptake.

Open access

Jin Yu, Yuhuan Liu, Danying Zhang, Dongxia Zhai, Linyi Song, Zailong Cai and Chaoqin Yu

High androgen levels in patients suffering from polycystic ovary syndrome (PCOS) can be effectively reversed if the herb Scutellaria baicalensis is included in traditional Chinese medicine prescriptions. To characterize the effects of baicalin, extracted from S. baicalensis, on androgen biosynthesis in NCI-H295R cells and on hyperandrogenism in PCOS model rats and to elucidate the underlying mechanisms. The optimum concentration and intervention time for baicalin treatment of NCI-H295R cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and ELISA. The functional genes affected by baicalin were studied by gene expression profiling (GEP), and the key genes were identified using a dual luciferase assay, RNA interference technique and genetic mutations. Besides, hyperandrogenic PCOS model rats were induced and confirmed before and after baicalin intervention. As a result, baicalin decreased the testosterone concentrations in a dose- and time-dependent manner in NCI-H295R cells. GEP revealed that 3β-hydroxysteroid dehydrogenase type II (HSD3B2) was the key enzyme of androgen biosynthesis, and baicalin inhibited the expression of HSD3B2 by regulating the binding of transcription factor GATA-binding factor 1 (GATA1) to the HSD3B2 promoter. Hyperandrogenic PCOS model rats treated with baicalin significantly reversed the high androgen levels of serum and the abnormal ovarian status, restored the estrous cyclicity and decreased the expression of HSD3B2 in ovarian. In summary, our data revealed that GATA1 is an important transcription factor activating the HSD3B2 promoter in steroidogenesis, and baicalin will potentially be an effective therapeutic agent for hyperandrogenism in PCOS by inhibiting the recruitment of GATA1 to the HSD3B2 promoter in ovarian tissue.

Restricted access

Apiwan Arinno, Nattayaporn Apaijai, Puntarik Kaewthep, Wasana Pratchayasakul, Thidarat Jaiwongkam, Sasiwan Kerdphoo, Siriporn C Chattipakorn and Nipon Chattipakorn

Although a physiological dose of testosterone replacement therapy (p-TRT) has been shown to improve left ventricular (LV) function, some studies reported that it increased the risk of myocardial infarction in testosterone-deprived men. We previously reported that vildagliptin might be used as an alternative to p-TRT. In this study, we hypothesized that a combined low-dose TRT with vildagliptin exerts greater efficacy than single regimen in improving cardiometabolic function in obese, insulin-resistant rats with testosterone deprivation. Male rats were fed on a normal diet or high-fat diet for 12 weeks. Then, they were divided into two subgroups, sham operation and orchiectomy (normal diet rats with orchiectomy (NDO), high-fat diet rats with orchiectomy (HFO)) and fed their diets for another 12 weeks. At week 25, orchiectomized rats were subdivided into four groups: vehicle, p-TRT, vildagliptin and combined drugs. At week 29, cardiometabolic and biochemical parameters were determined. HFO rats had obese insulin resistance with a worse LV dysfunction, compared with sham. Vildagliptin and combined drugs effectively reduced insulin resistance. All treatments reduced blood pressure, cardiac autonomic imbalance, LV dysfunction, mitochondrial dysfunction, apoptosis and increased mitochondrial fusion in NDO and HFO rats. However, p-TRT and combined drugs, but not vildagliptin, reduced mitochondrial fission in NDO and HFO rats. We concluded that combined low-dose TRT with vildagliptin mitigated LV function at a similar level to the p-TRT alone and vildagliptin via improving mitochondrial fusion, reducing mitochondrial dysfunction and apoptosis in testosterone-deprived rats. Our findings suggest that low-dose TRT combined with vildagliptin may be an alternative for p-TRT in conditions of obese insulin resistance with testosterone deprivation.

Restricted access

Jia Sun, Haiping Zhu, Xiaorong Wang, Qiuqi Gao, Zhuoying Li and Huiya Huang

The molecular signaling mechanisms of Coenzyme Q10 (CoQ10) in diabetic nephropathy (DN) remain poorly understood. We verified that mitochondrial abnormalities, like defective mitophagy, the generation of mitochondrial reactive oxygen species (mtROS) and the reduction of mitochondrial membrane potential, occurred in the glomerulus of db/db mice, accompanied by reduced PINK and parkin expression and increased apoptosis. These changes were partially reversed following oral administration of CoQ10. In inner fenestrated murine glomerular endothelial cells (mGECs), high glucose (HG) also resulted in deficient mitophagy, mitochondrial dysfunction and apoptosis, which were reversed by CoQ10. Mitophagy suppression mediated by Mdivi-1 or siPINK abrogated the renoprotective effects exerted by CoQ10, suggesting a beneficial role for CoQ10-restored mitophagy in DN. Mechanistically, CoQ10 restored the expression, activity and nuclear translocation of Nrf2 in HG-cultured mGECs. In addition, the reduced PINK and parkin expression observed in HG-cultured mGECs were partially elevated by CoQ10. CoQ10-mediated renoprotective effects were abrogated by the Nrf2 inhibitor ML385. When ML385 abolished mitophagy and the renoprotective effects exerted by CoQ10, mGECs could be rescued by treatment with mitoTEMPO, which is a mtROS-targeted antioxidant. These results suggest that CoQ10, as an effective antioxidant in mitochondria, exerts beneficial effects in DN via mitophagy by restoring Nrf2/ARE signaling. In summary, CoQ10-mediated mitophagy activation positively regulates DN through a mechanism involving mtROS, which influences the activation of the Nrf2/ARE pathway.

Free access

Weiwei Xu, Jamie Morford and Franck Mauvais-Jarvis

One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose homeostasis by testosterone in male and females. Severe testosterone deficiency predisposes men to type 2 diabetes (T2D), while in contrast, androgen excess predisposes women to hyperglycemia. The role of androgen deficiency and excess in promoting visceral obesity and insulin resistance in men and women respectively is well established. However, although it is established that hyperglycemia requires β cell dysfunction to develop, the role of testosterone in β cell function is less understood. This review discusses recent evidence that the androgen receptor (AR) is present in male and female β cells. In males, testosterone action on AR in β cells enhances glucose-stimulated insulin secretion by potentiating the insulinotropic action of glucagon-like peptide-1. In females, excess testosterone action via AR in β cells promotes insulin hypersecretion leading to oxidative injury, which in turn predisposes to T2D.

Restricted access

Dong-Xu Han, Chang-Jiang Wang, Xu-Lei Sun, Jian-Bo Liu, Hao Jiang, Yan Gao, Cheng-Zhen Chen, Bao Yuan and Jia-Bao Zhang

Circular RNAs (circRNAs) are a new class of RNA that have a stable structure characterized by covalently closed circular molecules and are involved in invasive pituitary adenomas and recurrent clinically nonfunctioning pituitary adenomas. However, information on circRNAs in the normal pituitary, especially in rats, is limited. In this study, we identified 4123 circRNAs in the immature (D15) and mature (D120) rat anterior pituitary using the Illumina platform, and 32 differentially expressed circRNAs were found. A total of 150 Gene Ontology terms were significantly enriched, and 16 KEGG pathways were found to contain differentially expressed genes. Moreover, we randomly selected eight highly expressed circRNAs and detected their relative expression levels in the mature and immature rat pituitary by qPCR. In addition, we predicted 90 interactions between 53 circRNAs and 57 miRNAs using miRanda. Notably, circ_0000964 and circ_0001303 are potential miRNA sponges that may regulate the Fshb gene. The expression profile of circRNAs in the immature and mature rat anterior pituitary may provide more information about the roles of circRNAs in the development and reproduction in mammals.

Restricted access

Vinay Shukla, Jyoti Bala Kaushal, Pushplata Sankhwar, Murli Manohar and Anila Dwivedi

Embryo implantation and decidualization are critical events that occur during early pregnancy. Decidualization is synchronized by the crosstalk of progesterone and the cAMP signaling pathway. Previously, we confirmed the role of TPPP3 during embryo implantation in mice, but the underlying role and mechanism of TPPP3 in decidualization has not yet been understood. The current study was aimed to investigate the role of TPPP3 in decidualization in vivo and in vitro. For in vivo experiments, decidual reaction was artificially induced in the uteri of BALB/c mice. TPPP3 was found to be highly expressed during decidualization, whereas in the uteri receiving TPPP3 siRNA, decidualization was suppressed and the expression of β-catenin and decidual marker prolactin was reduced. In human endometrium, TPPP3 protein was found to be predominantly expressed in the mid-secretory phase (LH+7). In the primary culture of human endometrial stromal cells (hESCs), TPPP3 siRNA knockdown inhibited stromal-to-decidual cell transition and decreased the expression of the decidualization markers prolactin and IGFBP-1. Immunofluorescence and immunoblotting experiments revealed that TPPP3 siRNA knockdown suppressed the expression of β-catenin, NF-κB and COX-2 in hESCs during decidualization. TPPP3 inhibition also decreased NF-kB nuclear accumulation in hESCs and suppressed NF-κB transcriptional promoter activity. COX-2 expression was significantly decreased in the presence of a selective NF-kB inhibitor (QNZ) implicating that NF-kB is involved in COX-2 expression in hESCs undergoing decidualization. TUNEL assay and FACS analysis revealed that TPPP3 knockdown induced apoptosis and caused loss of mitochondrial membrane potential in hESCs. The study suggested that TPPP3 plays a significant role in decidualization and its inhibition leads to the suppression of β-catenin/NF-κB/COX-2 signaling along with the induction of mitochondria-dependent apoptosis.

Restricted access

María Florencia Heber, Silvana Rocío Ferreira, Giselle Adriana Abruzzese, Raíces Trinidad, Omar P Pignataro, Margarita Vega and Alicia B Motta

Insulin resistance is the decreased ability of insulin to mediate metabolic actions. In the ovary, insulin controls ovulation and oocyte quality. Alterations in ovarian insulin signaling pathway could compromise ovarian physiology. Here, we aimed to investigate the effects of fetal programming on ovarian insulin signaling and evaluate the effect of metformin treatment. Pregnant rats were hyperandrogenized with testosterone and female offspring born to those dams were employed; at adulthood, prenatally hyperandrogenized (PH) offspring presented two phenotypes: irregular ovulatory (PHiov) and anovulatory (PHanov). Half of each group was orally treated with metformin. Metformin treatment improved the estrous cyclicity in both PH groups. Both PH groups showed low mRNA levels of Ir, Irs1 and Glut4. Irs2 was decreased only in PHanov. Metformin upregulated the mRNA levels of some of the mediators studied. Protein expression of IR, IRS1/2 and GLUT4 was decreased in both PH groups. In PHiov, metformin restored the expression of all the mediators, whereas in PHanov, metformin restored only that of IR and IRS1/2. IRS1 phosphorylation was measured in tyrosine residues, which activates the pathway, and in serine residues, which impairs insulin action. PHiov presented high IRS1 phosphorylation on tyrosine and serine residues, whereas PHanov showed high serine phosphorylation and low tyrosine phosphorylation. Metformin treatment lowered serine phosphorylation only in PHanov rats. Our results suggest that PHanov rats have a defective insulin action, partially restored with metformin. PHiov rats had less severe alterations, and metformin treatment was more effective in this phenotype.