Browse

You are looking at 1 - 10 of 13,554 items for

Restricted access

Ernane Torres Uchoa, Paula Beatriz Marangon, Rodrigo Rorato, Silvia Graciela Ruginsk, Lucas Kniess Debarba, Jose Antunes-Rodrigues and Lucila L K Elias

Adrenalectomy (ADX) induces hypophagia and glucocorticoids counter-regulate the peripheral metabolic effects of insulin. This study evaluated the effects of ADX on ICV (lateral ventricle) injection of insulin-induced changes on food intake, mRNA expression of hypothalamic neuropeptides (insulin receptor (InsR), proopiomelanocortin, cocaine and amphetamine-regulated transcript (Cart), agouti-related protein, neuropeptide Y (Npy) in the arcuate nucleus of the hypothalamus (ARC), corticotrophin-releasing factor in the paraventricular nucleus of the hypothalamus) and hypothalamic protein content of insulin signaling-related molecules (insulin receptor substrate (IRS) 1, protein kinase B (AKT), extracellular-signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), protein tyrosine phosphatase-1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP)) Compared with sham animals, ADX increased the hypothalamic content of pJNK/JNK, PTP1B and TCPTP, as well as decreased mRNA expression of InsR, and corticosterone (B) treatment reversed these effects. Insulin central injection enhanced hypothalamic content of pAKT/AKT and Cart mRNA expression, decreased Npy mRNA expression and food intake only in sham rats, without effects in ADX and ADX + B rats. Insulin did not alter the hypothalamic phosphorylation of IRS1 and ERK1/2 in the three experimental groups. These data demonstrate that ADX reduces the expression of InsR and increases insulin counter-regulators in the hypothalamus, as well as ADX abolishes hypophagia, activation of hypothalamic AKT pathway and changes in Cart and Npy mRNA expression in the ARC induced by insulin. Thus, the higher levels of insulin counter-regulatory proteins and lower expression of InsR in the hypothalamus are likely to underlie impaired insulin-induced hypophagia and responses in the hypothalamus after ADX.

Free access

K A Walters, V Rodriguez Paris, A Aflatounian and D J Handelsman

In the last decade, it has been revealed that androgens play a direct and important role in regulating female reproductive function. Androgens mediate their actions via the androgen receptor (AR), and global and cell-specific Ar-knockout mouse models have confirmed that AR-mediated androgen actions play a role in regulating female fertility and follicle health, development and ovulation. This knowledge, along with the clinical data reporting a beneficial effect of androgens or androgen-modulating agents in augmenting in vitro fertilization (IVF) stimulation in women termed poor responders, has supported the adoption of this concept in many IVF clinics worldwide. On the other hand, substantial evidence from human and animal studies now supports the hypothesis that androgens in excess, acting via the AR, play a key role in the origins of polycystic ovary syndrome (PCOS). The identification of the target sites of these AR actions and the molecular mechanisms involved in underpinning the development of PCOS is essential to provide the knowledge required for the future development of novel, mechanism-based therapies for the treatment of PCOS. This review will summarize the basic scientific discoveries that have enhanced our knowledge of the roles of androgens in female reproductive function, discuss the impact these findings have had in the clinic and how a greater understanding of the role androgens play in female physiology may shape the future development of effective strategies to improve IVF outcomes in poor responders and the amelioration of symptoms in patients with PCOS.

Open access

Huali Yu, Ye Guo, Yang Zhao, Feng Zhou, Kehan Zhao, Mayuqing Li, Junxiong Wen, Zixuan He, Xiaojuan Zhu and Xiaoxiao He

Glucocorticoids (GCs) are a class of steroid hormones that regulate numerous physiological events in the human body. Clinically, glucocorticoids are used for anti-inflammatory and immunosuppressive actions via binding with glucocorticoid receptors (GRs). Emerging evidence has also indicated that inappropriate GC and GR levels are detrimental for brain development and eventually lead to severe neurological diseases. However, the roles of GC/GR signaling in brain development are not fully understood. Here, we showed that stable GR expression levels were critical for brain development, because both GR knockdown and overexpression severely impaired neuronal migration. Further studies showed that the multipolar–bipolar transition and leading process development were interrupted in GR-knockdown and GR-overexpressing neurons. To elucidate the underlying mechanism, we screened the protein levels of downstream molecules and identified RhoA as a factor negatively regulated by the GR. Restoration of the RhoA protein level partially rescued the neuronal migration defects in the GR-knockdown and GR-overexpressing neurons, indicating that RhoA played a major role in GR-mediated neuronal migration. These data suggest that an appropriate level of GC/GR signaling is essential for precise control of neuronal migration.

Restricted access

Rick van der Geest, Ronald J van der Sluis, Albert K Groen, Miranda Van Eck and Menno Hoekstra

Chronic glucocorticoid overexposure predisposes to the development of atherosclerotic cardiovascular disease in humans. Cholestatic liver disease is associated with increased plasma glucocorticoid levels. Here, we determined – in a preclinical setting – whether the chronic presence of cholestatic liver disease also induces a concomitant negative impact on atherosclerosis susceptibility. Hereto, regular chow diet-fed atherosclerosis-susceptible hypercholesterolemic apolipoprotein E (APOE)-knockout mice were treated with the bile duct toxicant alpha-naphthylisothiocyanate (ANIT) for 8 weeks. ANIT exposure induced the development of fibrotic cholestatic liver disease as evident from collagen deposits and compensatory bile duct hyperproliferation within the liver and the rise in plasma levels of bilirubin (+60%; P < 0.01) and bile acids (10-fold higher; P < 0.01). Adrenal weights (+22%; P < 0.01) and plasma corticosterone levels (+72%; P < 0.01) were increased in ANIT-treated mice. In contrast, atherosclerosis susceptibility was not increased in response to ANIT feeding, despite the concomitant increase in plasma free cholesterol (+30%; P < 0.01) and cholesteryl ester (+42%; P < 0.001) levels. The ANIT-induced hypercorticosteronemia coincided with marked immunosuppression as judged from the 50% reduction (P < 0.001) in circulating lymphocyte numbers. However, hepatic glucocorticoid signaling was not enhanced after ANIT treatment. It thus appears that the immunosuppressive effect of glucocorticoids is uncoupled from their metabolic effect under cholestatic disease conditions. In conclusion, we have shown that cholestatic liver disease-associated endogenous glucocorticoid overexposure does not increase atherosclerosis susceptibility in APOE-knockout mice. Our studies provide novel preclinical evidence for the observations that the hypercholesterolemia seen in cholestatic human subjects does not translate into a higher risk for atherosclerotic cardiovascular disease.

Restricted access

Guillermo García-Eguren, Oriol Giró, María del Mar Romero, Mar Grasa and Felicia A Hanzu

Excessive and prolonged glucocorticoid (GC) exposure, resulting from either prescribed or endogenous hypercortisolism, is associated with a high cardiovascular and metabolic burden (Cushing’s syndrome). Although previous studies in humans and mice have reported heterogeneous data about the persistence of metabolic syndrome features after remission of hypercortisolism, there is still controversy as to whether this is due to the deleterious changes induced by GCs during active disease or the result of various other factors interfering in the recovery period. In order to study metabolic effects after remission, we used a reversible mouse model of corticosterone (CORT) (100 µg/mL) administration in drinking water for 5 weeks, followed by a 10-week recovery period. We compared CORT-induced effects at these time points with a high-fat diet-treated group (HFD 45%) and a vehicle group (VEH). Plasma CORT, 11β-HSD activity, food intake, glucose levels, interscapular brown adiposity, hepatic triglycerides and muscle mass were found altered during CORT treatment but normalized after recovery. Although hyperinsulinemia and insulin resistance were increased during CORT and HFD treatment, insulin homeostasis remained altered following the recovery period only in CORT-treated mice. Subcutaneous and visceral adipose tissues (SAT and VAT) were enlarged during HFD and CORT treatment as measured by MRI. However, increased muscle lipid content, adiposity and macrophage infiltration in VAT were only present in the CORT group following recovery. Taken together, CORT-induced insulin alterations were more potent than HFD-induced ones during the same period of treatment, and also more persistent long term. Moreover, we demonstrated that CORT treatment induces more long-lasting VAT enlargement than HFD.

Restricted access

Brittney L Marshall, Yang Liu, Michelle J Farrington, Jiude Mao, William G Helferich, A Katrin Schenk, Nathan J Bivens, Saurav J Sarma, Zhentian Lei, Lloyd W Sumner, Trupti Joshi and Cheryl S Rosenfeld

Human offspring encounter high amounts of phytoestrogens, such as genistein (GEN), through maternal diet and soy-based formulas. Such chemicals can exert estrogenic activity and thereby disrupt neurobehavioral programming. Besides inducing direct host effects, GEN might cause gut dysbiosis and alter gut metabolites. To determine whether exposure to GEN affects these parameters, California mice (Peromyscus californicus) dams were placed 2 weeks prior to breeding and throughout gestation and lactation on a diet supplemented with GEN (250 mg/kg feed weight) or AIN93G phytoestrogen-free control diet (AIN). At weaning, offspring socio-communicative behaviors, gut microbiota and metabolite profiles were assayed. Exposure of offspring to GEN-induced sex-dependent changes in gut microbiota and metabolites. GEN exposed females were less likely to investigate a novel female mouse when tested in a three-chamber social test. When isolated, GEN males and females exhibited increased latency to elicit their first call, suggestive of reduced motivation to communicate with other individuals. Correlation analyses revealed interactions between GEN-induced microbiome, metabolome and socio-communicative behaviors. Comparison of GEN males with AIN males revealed the fraction of calls above 20 kHz was associated with daidzein, α-tocopherol, Flexispira spp. and Odoribacter spp. Results suggest early GEN exposure disrupts normal socio-communicative behaviors in California mice, which are otherwise evident in these social rodents. Such effects may be due to GEN disruptions on neural programming but might also be attributed to GEN-induced microbiota shifts and resultant changes in gut metabolites. Findings indicate cause for concern that perinatal exposure to GEN may detrimentally affect the offspring microbiome–gut–brain axis.

Restricted access

Jiean Xu, Qiuhua Yang, Xiaoyu Zhang, Zhiping Liu, Yapeng Cao, Lina Wang, Yaqi Zhou, Xianqiu Zeng, Qian Ma, Yiming Xu, Yong Wang, Lei Huang, Zhen Han, Tao Wang, David Stepp, Zsolt Bagi, Chaodong Wu, Mei Hong and Yuqing Huo

Insulin resistance-related disorders are associated with endothelial dysfunction. Accumulating evidence has suggested a role for adenosine signaling in the regulation of endothelial function. Here, we identified a crucial role of endothelial adenosine kinase (ADK) in the regulation of insulin resistance. Feeding mice with a high-fat diet (HFD) markedly enhanced the expression of endothelial Adk. Ablation of endothelial Adk in HFD-fed mice improved glucose tolerance and insulin sensitivity and decreased hepatic steatosis, adipose inflammation and adiposity, which were associated with improved arteriole vasodilation, decreased inflammation and increased adipose angiogenesis. Mechanistically, ADK inhibition or knockdown in human umbilical vein endothelial cells (HUVECs) elevated intracellular adenosine level and increased endothelial nitric oxide synthase (NOS3) activity, resulting in an increase in nitric oxide (NO) production. Antagonism of adenosine receptor A2b abolished ADK-knockdown-enhanced NOS3 expression in HUVECs. Additionally, increased phosphorylation of NOS3 in ADK-knockdown HUVECs was regulated by an adenosine receptor-independent mechanism. These data suggest that Adk-deficiency-elevated intracellular adenosine in endothelial cells ameliorates diet-induced insulin resistance and metabolic disorders, and this is associated with an enhancement of NO production caused by increased NOS3 expression and activation. Therefore, ADK is a potential target for the prevention and treatment of metabolic disorders associated with insulin resistance.

Restricted access

Yingxin Xian, Zonglan Chen, Hongrong Deng, Mengyin Cai, Hua Liang, Wen Xu, Jianping Weng and Fen Xu

Obesity-associated chronic inflammation in adipose tissue is partly attributed to hypoxia with insufficient microcirculation. Previous studies have shown that exenatide, a glucagon-like peptide 1 (GLP-1) receptor agonist, plays an anti-inflammatory role. Here, we investigate its effects on inflammation, hypoxia and microcirculation in white adipose tissue of diet-induced obese (DIO) mice. DIO mice were injected intraperitoneally with exenatide or normal saline for 4 weeks, while mice on chow diet were used as normal controls. The mRNA and protein levels of pro-inflammatory cytokines, hypoxia-induced genes and angiogenic factors were detected. Capillary density was measured by laser confocal microscopy and immunochemistry staining. After 4-week exenatide administration, the dramatically elevated pro-inflammatory cytokines in serum and adipose tissue and macrophage infiltration in adipose tissue of DIO mice were significantly reduced. Exenatide also ameliorated expressions of hypoxia-related genes in obese fat tissue. Protein levels of endothelial markers and pro-angiogenic factors including vascular endothelial growth factor and its receptor 2 were augmented in accordance with increased capillary density by exenatide in DIO mice. Our results indicate that inflammation and hypoxia in adipose tissue can be mitigated by GLP-1 receptor agonist potentially via improved angiogenesis and microcirculation in obesity.

Restricted access

Isis Gabrielli Barbieri de Oliveira, Marcos Divino Ferreira Junior, Paulo Ricardo Lopes, Dhiogenes Balsanufo Taveira Campos, Marcos Luiz Ferreira-Neto, Eduardo Henrique Rosa Santos, Paulo Cezar de Freitas Mathias, Flávio Andrade Francisco, Bruna Del Vechio Koike, Carlos Henrique de Castro, André Henrique Freiria-Oliveira, Gustavo Rodrigues Pedrino, Rodrigo Mello Gomes and Daniel Alves Rosa

Disruptions in circadian rhythms have been associated with several diseases, including cardiovascular and metabolic disorders. Forced internal desynchronization induced by a period of T-cycles of 22 h (T22 protocol) reaches the lower limit of entrainment and dissociates the circadian rhythmicity of the locomotor activity into two components, driven by different outputs from the suprachiasmatic nucleus (SCN). The main goal of this study was to evaluate the cardiovascular and metabolic response in rats submitted to internal desynchronization by T22 protocol. Male Wistar rats were assigned to either a control group subjected to a usual T-cycles of 24 h (12 h–12 h) or an experimental group subjected to the T22 protocol involving a 22-h symmetric light–dark cycle (11 h–11 h). After 8 weeks, rats subjected to the T22 exhibited desynchrony in their locomotor activity. Although plasma glucose and insulin levels were similar in both groups, desynchronized rats demonstrated dyslipidemia, significant hypertrophy of the fasciculate zone of the adrenal gland, low IRB, IRS2, PI3K, AKT, SOD and CAT protein expression and an increased expression of phosphoenolpyruvate carboxykinase in the liver. Furthermore, though they maintained normal baseline heart rates and mean arterial pressure levels, they also presented reduced baroreflex sensitivity. The findings indicate that circadian timing desynchrony following the T22 protocol can induce cardiometabolic disruptions. Early hepatic metabolism dysfunction can trigger other disorders, though additional studies are needed to clarify the causes.

Restricted access

Qiongge Zhang, Chaoqun Wang, Yehua Tang, Qiangqiang Zhu, Yongcheng Li, Haiyan Chen, Yi Bao, Song Xue, Liangliang Sun, Wei Tang, Xiangfang Chen, Yongquan Shi, Lefeng Qu, Bin Lu and Jiaoyang Zheng

Hyperglycemia plays a major role in the development of diabetic macrovascular complications, including atherosclerosis and restenosis, which are responsible for the most of disability and mortality in diabetic patients. Osteopontin (OPN) is an important factor involved in atherogenesis, and hyperglycemia enhances the transcriptional activity of FoxO1 which is closely association with insulin resistance and diabetes. Here, we showed that plasma OPN levels were significantly elevated in type 2 diabetic patients and positively correlated with glycated albumin (GA). The more atherosclerotic lesions were observed in the aorta of diabetic ApoE−/− mice analyzed by Sudan IV staining. High glucose increased both the mRNA and protein expression levels of OPN and inhibited the phosphorylation of FoxO1 in RAW 264.7 cells. Overexpression of WT or constitutively active mutant FoxO1 promoted the expression levels of OPN, while the dominant-negative mutant FoxO1 decreased slightly the expression of OPN. Conversely, knockdown of FoxO1 reduced the expression of OPN. Luciferase reporter assay revealed that high glucose and overexpression of FoxO1 enhanced the activities of the OPN promoter region nt −1918 ~ −713. Furthermore, the interactions between FoxO1 and the OPN promoter were confirmed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Our results suggest that high glucose upregulates OPN expression via FoxO1 activation, which would play a critical role in the development of diabetic atherogenesis.