You are looking at 1 - 10 of 13,980 items for

  • All content x
Clear All
Restricted access

Tanja Jene, Inigo Ruiz de Azua, Annika Hasch, Jennifer Klüpfel, Julia Deuster, Mirjam Maas, Cora H Nijboer, Beat Lutz, Marianne B Müller, and Michael van der Kooij

Stress has a major impact on the modulation of metabolism, as previously evidenced by hyperglycemia following chronic social defeat (CSD) stress in mice. Although CSD-triggered metabolic dysregulation might predispose to pre-diabetic conditions, insulin sensitivity remained intact, and obesity did not develop, when animals were fed with a standard diet (SD). Here, we investigated whether a nutritional challenge, a high fat diet (HFD), aggravates the metabolic phenotype, and whether there are particularly sensitive time windows for the negative consequences of HFD exposure. Chronically stressed male mice and controls (CTRL) were kept under (i) SD-conditions, (ii) with HFD commencing post-CSD, or (iii) provided with HFD lasting throughout, and after CSD. Under SD conditions, stress increased glucose levels early post-CSD. Both HFD regimens increased glucose levels in non-stressed mice, but not in stressed mice. Nonetheless, when HFD was provided after CSD, stressed mice did not differ from controls in long-term body weight gain, fat tissue mass and plasma insulin, and leptin levels. In contrast, when HFD was continuously available, stressed mice displayed reduced body weight gain, lowered plasma levels of insulin, and leptin, and reduced white adipose tissue weights as compared to their HFD-treated non-stressed controls. Interestingly, stress-induced adrenal hyperplasia and hypercortisolemia were observed in mice treated with SD and with HFD after CSD, but not in stressed mice exposed to a continuous HFD treatment. The present work demonstrates that CSD can reduce HFD-induced metabolic dysregulation. Hence, HFD during stress may act beneficially, as comfort food, by decreasing stress-induced metabolic demands.

Restricted access

Ken Takao, Katsumi Iizuka, Yanyan Liu, Teruaki Sakurai, Sodai Kubota, Saki Kubota-Okamoto, Toshinori Imaizumi, Yoshihiro Takahashi, Yermek Rakhat, Satoko Komori, Tokuyuki Hirose, Kenta Nonomura, Takehiro Kato, Masami Mizuno, Testuya Suwa, Yukio Horikawa, Masakatsu Sone, and Daisuke Yabe

Carbohydrate response element binding protein (ChREBP) is critical in the regulation of fatty acid and triglyceride synthesis in the liver. Interestingly, Chrebp-/- mice show reduced levels of plasma cholesterol, which is critical for steroid hormone synthesis in adrenal glands. Furthermore, Chrebp mRNA expression was previously reported in human adrenal glands. Thus, it remains to be investigated whether ChREBP plays a role directly or indirectly in steroid hormone synthesis and release in adrenal glands. In the present study, we find that Chrebp mRNA is expressed in mouse adrenal glands and that ChREBP binds to carbohydrate response elements. Histological analysis of Chrebp-/- mice shows no adrenal hyperplasia and less oil red O staining compared with that in wild-type mice. In adrenal glands of Chrebp-/- mice, expression of Fasn and Scd1, two enzymes critical for fatty acid synthesis, was substantially lower and triglyceride content was reduced. Expression of Srebf2, a key transcription factor controlling synthesis and uptake of cholesterol and the target genes was upregulated, while cholesterol content was not significantly altered in the adrenal glands of Chrebp-/- mice. Adrenal corticosterone content and plasma adrenocorticotropic hormone and corticosterone levels were not significantly altered in Chrebp-/- mice. Consistently, expression of genes related to steroid hormone synthesis was not altered. Corticosterone secretion in response to two different stimuli, namely 24-h starvation and cosyntropin administration, were also not altered in Chrebp-/- mice. Taking these results together, corticosterone synthesis and release were not affected in Chrebp-/- mice despite reduced plasma cholesterol levels.

Restricted access

Yirui He, Cheng Zhang, Yong Luo, Jinhua Chen, Mengliu Yang, Ling Li, Harvest F Gu, Gangyi Yang, and Xianxiang Zhang

Bone morphogenetic proteins (BMPs) are secreted ligands that belong to the transforming growth factor-β (TGF-β) superfamily. BMP7 has been reported to play a role in reversing obesity and regulating appetite in the hypothalamus. Whether BMP9 plays a central role in regulating glucose metabolism and insulin sensitivity remains unclear. Here, we investigated the impact of central BMP9 signaling and possible route of transmission. We performed intracerebroventricular (ICV) surgery and injected adenovirus expressing BMP9 (Ad-BMP9) into the cerebral ventricle of mice. Metabolic analysis, hyperinsulinemic-euglycemic clamp test, and analysis of phosphatidylinositol 3, 4, 5- trisphosphate (PIP3) formation were then performed. Real-time PCR and western blotting were performed to detect gene expression and potential pathways involved. We found that hypothalamic BMP9 expression was downregulated in obese and insulin-resistant mice. Overexpression of BMP9 in the mediobasal hypothalamus reduced food intake, body weight, and blood glucose level, and elevated the energy expenditure in high-fat diet (HFD)-fed mice. Importantly, central treatment with BMP9 improved hepatic insulin resistance (IR) and inhibited hepatic glucose production in HFD-fed mice. ICV BMP9-induced increase in hepatic insulin sensitivity and related metabolic effects were blocked by ICV injection of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) signaling. In addition, ICV BMP9 promoted the ability of insulin to activate the insulin receptor / phosphoinositide 3-kinase (PI3K) / Akt pathway in the hypothalamus. Thus, this study provides insights into the potential mechanism by which central BMP9 ameliorates hepatic glucose metabolism and IR via activating the mTOR/PI3K/Akt pathway in the hypothalamus.

Restricted access

Wailan Shan, Shiyin Lu, Biqian Ou, Jia Feng, Zixian Wang, Huixian Li, Xiaohua Lu, and Ma Yi

Obesity is strongly linked to male infertility. Apoptotic inflammatory response caused by oxidative stress in testicular spermatogenic cells is one of the important causes of obesity-related male infertility. Pituitary adenylate cyclase activating polypeptide (PACAP) as a bioactive peptide secreted by the pituitary gland, has a powerful triple role of anti-oxidation, anti-apoptosis and anti-inflammation, and is involved in male reproduction regulation, but the specific mechanism remains unknown. The purpose of the current study is to explore the role of PACAP in obesity-related male infertility. In cell-level experiments, Mouse spermatocytes (GC-2) were treated with palmitate (PA) to establish an high-fat injury cell model in vitro and then treated with PACAP. In animal-level experiments, C57BL/6 male mice were fed with a high-fat diet (HFD) to induce obesity and then treated with PACAP. The cell mechanism studies showed that PACAP selectively binds to the PAC1 receptor to attenuate palmitic acid-induced mouse spermatogenic cell (GC-2) oxidative damage and apoptotic inflammatory response via the PKA/ERK/Nrf2 signaling axis. However, this mechanism was inhibited in GC-2 cells inhibiting the activity of Nrf2. The animal experiment studies showed that PACAP treatment ameliorated obesity characteristics, including body weight, epididymal adipose weight, testes/body weight, serum lipids levels, and reproductive hormone levels in vivo. Additionally, PACAP was shown to improve the reproductive function of the obese mice, which was characterized by improved testis morphology and sperm parameters via Keap1/Nrf2/ARE pathway. These beneficial effects of PACAP were abolished in obese mice with testis-specific knockdown of Nrf2.

Restricted access

Meghan F Hogan, Daryl J Hackney, Alfred C Aplin, Thomas O Mundinger, Megan J Larmore, Joseph J Castillo, Nathalie Esser, Sakeneh Zraika, and Rebecca L Hull

Islet endothelial cells produce paracrine factors important for islet beta-cell function and survival. Under conditions of type 2 diabetes, islet endothelial cells exhibit a dysfunctional phenotype including increased expression of genes involved in cellular adhesion and inflammation. We sought to determine whether treatment of hyperglycemia with the sodium glucose co-transporter 2 inhibitor empagliflozin, either alone or in combination with metformin, would improve markers of endothelial cell function in islets, assessed ex vivo, and if such an improvement is associated with improved insulin secretion in a mouse model of diabetes in vivo. For these studies, db/db diabetic mice and non-diabetic littermate controls were treated for 6 weeks with empagliflozin or metformin, either alone or in combination. For each treatment group, expression of genes indicative of islet endothelial dysfunction was quantified. Islet endothelial and beta-cell area was assessed by morphometry of immunochemically stained pancreas sections. Measurements of plasma glucose and insulin secretion during an intravenous glucose tolerance test were performed on vehicle and drug treated diabetic animals. We found that expression of endothelial dysfunction marker genes is markedly increased in diabetic mice. Treatment with either empagliflozin or metformin lowered expression of the dysfunction marker genes ex vivo, which correlated with improved glycemic control, and increased insulin release in vivo. Empagliflozin treatment was more effective than metformin alone, with a combination of the two drugs demonstrating the greatest effects. Improving islet endothelial function through strategies such as empagliflozin/metformin treatment may provide an effective approach for improving insulin release in human type 2 diabetes.

Restricted access

Ankana Ganguly, Jennifer A Tamblyn, Alexandra Shattock, Annsha Joseph, Dean P Larner, Carl Jenkinson, Janesh Gupta, Stephane R Gross, and Martin Hewison

Early pregnancy is characterised by elevated circulating levels of vitamin D binding protein (DBP). The impact of this on maternal and fetal health is unclear but DBP is present in the placenta, and DBP gene variants have been linked to malplacentation disorders such as preeclampsia. A functional role for DBP in the placenta was investigated using trophoblastic JEG3, BeWo and HTR8 cells. All three cells lines showed intracellular DBP, with increased expression and nuclear localisation of DBP in cells treated with the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). When cultured in serum from mice lacking DBP (DBP-/-), JEG3 cells showed no intracellular DBP indicating uptake of exogenous DBP. Inhibition of the membrane receptor for DBP, megalin, also suppressed intracellular DBP. Elimination of intracellular DBP with DBP-/- serum or megalin inhibitor suppressed matrix invasion by trophoblast cells, and was associated with increased nuclear accumulation of G-actin. Conversely, treatment with 1,25D enhanced matrix invasion. This was independent of the nuclear vitamin D receptor but was associated with enhanced ERK phosphorylation, and inhibition of ERK kinase suppressed trophoblast matrix invasion. When cultured with serum from pregnant women, trophoblast matrix invasion correlated with DBP concentration, and DBP was lower in first trimester serum from women who later developed preeclampsia. These data show that trophoblast matrix invasion involves uptake of serum DBP and associated intracellular actin binding and homeostasis. DBP is a potential marker of placentation disorders such as preeclampsia and may also provide a therapeutic option for improved placenta and pregnancy health.

Restricted access

Alice Bongrani, Namya Mellouk, Christelle Ramé, Marion Cornuau, Fabrice Guerif, Pascal Froment, and Joëlle Dupont

Vaspin is a novel adipokine mainly expressed in visceral adipose tissue and closely related to obesity and insulin-resistance. Currently, data about its ovarian expression are limited to animal models and its role in human reproduction is largely unexplored. Our study’s aims were thento characterise vaspin expression in the human ovary and to study in vitro its effects on granulosa cells physiology. Secondly, we assessed vaspin and its receptor GRP78 variations in granulosa cells and follicular fluid of a cohort of 112 infertile women undergoing an in vitro fertilisation procedure and allocated to 3 groups, each including normal-weight and obese subjects: 34 PCOS patients, 33 women with isolated polycystic ovary morphology (ECHO group) and 45 controls. Vaspin and GRP78 expression in the ovary was assessed by immunohistochemistry, RT-qPCR and Western blot. Granulosa cells and follicular fluid were analysed by RT-qPCR and ELISA, respectively. In vitro, granulosa cells metabolism was studied after stimulation with recombinant human vaspin, with and without a small interfering RNA directed against GRP78. Vaspin was highly expressed in the human ovary and concentration-dependently enhanced granulosa cells steroidogenesis, proliferation and viability through GRP78 (p<0.0001). Vaspin levels in both granulosa cells and follicular fluid were significantly higher in obese women (p<0.0001) and in the normal-weight ECHO group (p<0.001), which also had the highest expression rates of GRP78 (p<0.05).Although further investigation is needed, vaspin appears as a novel modulator of human granulosa cells physiology and possibly plays a role in PCOS pathogenesis, notably protecting from insulin-resistance induced complications.

Free access

Michael E Symonds, Mark Pope, Ian Bloor, James Law, Reham Alagal, and Helen Budge

Adipose tissue is usually laid down in small amounts in the foetus and is characterised as possessing small amounts of the brown adipose tissue-specific mitochondrial uncoupling protein (UCP)1. In adults, a primary factor determining the abundance and function of UCP1 is ambient temperature. Cold exposure causes activation and the rapid generation of heat through the free flow of protons across the mitochondria with no requirement to convert ADP to ATP. In rodents, housing at an ambient temperature below thermoneutrality promotes the appearance of beige like adipocytes. These arise as discrete regions of UCP1 containing cells in white fat depots. There is increasing evidence to show that to gain credible translational results on brown and beige fat function in rodent models that they should be housed at thermoneutrality. This not only reflects the type of environment in which humans spend a majority of their time, but is in accord with the rise of global temperature caused by industrialisation and the uncontrolled burning of fossil fuels. There is now good evidence in adult humans, that stimulating brown fat can improve glucose homeostasis which can be achieved either by nutritional or pharmacological interventions. The challenge, therefore, is to establish credible developmental models in animals maintained at thermoneutrality which will elucidate the true impact of nutrition. The primary focus should fall specifically on the components of breast milk and how these modulate long term effects on brown or beige fat development and function.

Open access

Bin Li, Jiming Yin, Jing Chang, Jia Zhang, Yangjia Wang, Haixia Huang, Wei Wang, and Xiangjun Zeng

Microcirculatory injuries had been reported to be involved in diabetic cardiomyopathy, which was mainly related to endothelial cell dysfunction. Apelin, an adipokine which is upregulated in diabetes mellitus, was reported to improve endothelial cell dysfunction and attenuate cardiac insufficiency induced by ischemia and reperfusion. Therefore, it is hypothesized that apelin might be involved in alleviating endothelial cell dysfunction and followed cardiomyopathy in diabetes mellitus. The results showed that apelin improved endothelial cell dysfunction via decreasing apoptosis and expression of adhesion molecules and increasing proliferation, angiogenesis, and expression of E-cadherin, VEGFR 2 and Tie-2 in endothelial cells, which resulted in the attenuation of the capillary permeability in cardiac tissues and following diabetic cardiomyopathy. Meanwhile, the results from endothelial cell specific APJ knockout mice and cultured endothelial cells confirmed that the effects of apelin on endothelial cells were dependent on APJ and the downstream NFκB pathways. In conclusion, apelin might reduce microvascular dysfunction induced by diabetes mellitus via improving endothelial dysfunction dependent on APJ activated NFκB pathways.