Browse

You are looking at 1 - 10 of 14,248 items for

  • Refine by Access: All content x
Clear All
Open access

Bettina Geidl-Flueck and Philipp A Gerber

Despite the existence of numerous studies supporting a pathological link between fructose consumption and the development of the metabolic syndrome and its sequelae, such as non-alcoholic fatty liver disease (NAFLD), this link remains a contentious issue. With this article, we shed a light on the impact of sugar/fructose intake on hepatic de novo lipogenesis (DNL), an outcome parameter known to be dysregulated in subjects with type 2 diabetes and/or NAFLD. In this review, we present findings from human intervention studies using physiological doses of sugar as well as mechanistic animal studies. There is evidence from both human and animal studies that fructose is a more potent inducer of hepatic lipogenesis than glucose. This is most likely due to the liver’s prominent physiological role in fructose metabolism, which may be disrupted under pathological conditions by increased hepatic expression of fructolytic and lipogenic enzymes. Increased DNL may not only contribute to ectopic fat deposition (i.e. in the liver), but it may also impair several metabolic processes through DNL-related fatty acids (e.g. beta-cell function, insulin secretion, or insulin sensitivity).

Restricted access

Yuta Kasahara, Hiroshi Kishi, Ryo Yokomizo, and Aikou Okamoto

There are many previous reports on the effects of ethanol on physiological function, including reports of elevated blood estrogen levels in women who drank alcohol. However, the mechanism of ethanol's effects on ovarian functions, such as follicle development and hormone secretion, has not been fully clarified. Therefore, in this study, we investigated the impacts of ethanol on these phenomena and their mechanisms using a primary culture system of rat ovarian granulosa cells (GCs). In the present experiment, groups were created in which follicle-stimulating hormone (FSH) or ethanol was added alone or FSH and ethanol were co-added, and mRNA and protein expression in each group was measured for luteinizing hormone receptor (LHR) and sex steroid hormone synthase, as well as for estradiol (E2) production, cAMP production, and FSH receptor (FSHR) internalization rate. The addition of FSH induced mRNA expression of LHR and aromatase, which led to membrane LHR expression and E2 production. The coexistence of ethanol enhanced all these responses. The action of FSH is exerted via cAMP, and the co-addition of ethanol enhanced this cAMP production. Ethanol alone did not induce cAMP production. The enhancing effect of ethanol was also observed for cAMP induced by cholera toxin. Ethanol had no significant effect on the internalization rate of FSHR. In conclusion, ethanol increased FSH-stimulated cAMP production by increasing the activity of adenylyl cyclase, which enhanced FSH actions in rat GCs. Alcohol is an exacerbating factor in several female hormone-related diseases, and the mechanism of ethanol-induced increase in estrogen secretion revealed in this study may be involved in the pathogenesis of these diseases.

Restricted access

Jitendra Vishwakarma, Keerti Gupta, Juhi Mishra, Asmita Garg, Rafat Malik, Amit Kashyap, Manoj Shukla, Dhirendra Singh, and Sanghamitra Bandyopadhyay

Thyroid hormones (TH) are vital for brain functions, while TH deficiency, i.e. hypothyroidism, induces neurological impairment in children and adults. Cerebellar neuronal apoptosis and motor deficits are crucial events in hypothyroidism; however, the underlying mechanism is less-known. Using a methimazole-treated hypothyroidism rat model, we investigated cerebellar autophagy, growth factor, and apoptotic mechanisms that participate in motor functions. We first identified that methimazole up-regulated cerebellar autophagy, marked by enhanced LC3B-II, Beclin-1, ATG7, ATG5-12, p-AMPKα/AMPKα, and p62 degradation as well as reduced p-AKT/AKT, p-mTOR/mTOR, and p-ULK1/ULK1 in developing and young adult rats. We probed upstream effectors of this abnormal autophagy and detected a methimazole-induced reduction in cerebellar phospho-epidermal growth factor receptor (p-EGFR)/EGFR and heparin-binding EGF-like growth factor (HB-EGF). Here, while a thyroxine-induced TH replenishment alleviated autophagy process and restored HB-EGF/EGFR, HB-EGF treatment regulated AKT-mTOR and autophagy signaling in the cerebellum. Moreover, neurons of the rat cerebellum demonstrated this reduced HB-EGF-dependent increased autophagy in hypothyroidism. We further checked whether the above events were related to cerebellar neuronal apoptosis and motor functions. We detected that comparable to thyroxine, treatment with HB-EGF or autophagy inhibitor, 3-MA, reduced methimazole-induced decrease in Nissl staining and increase in c-Caspase-3 and TUNEL-+ve apoptotic count of cerebellar neurons. Additionally, 3-MA, HB-EGF, and thyroxine attenuated the methimazole-induced diminution in riding time on rota-rod and grip strength for the motor performance of rats. Overall, our study enlightens HB-EGF/EGFR-dependent autophagy mechanism as a key to cerebellar neuronal loss and functional impairments in developmental hypothyroidism, which may be inhibited by HB-EGF and 3-MA treatments, like thyroxine.

Free access

Mari van de Vyver

Inflammation is part of the body’s innate immune response and is an essential process that not only defends against harmful bacteria and pathogens but also plays a key role in the maintenance and repair of tissues. Under pathological conditions, there is bilateral crosstalk between immune regulation and aberrant metabolism resulting in persistent inflammation in the absence of infection. This phenomenon is referred to as sterile metabolic inflammation (metainflammation) and occurs if the initiating stimulus is not removed or if the resolution process is disrupted. Disruption of this tightly regulated immune response and its failure to resolve as is evident in metabolic disorders is not only associated with disease progression but also leads to immune senescence and should not be neglected in the clinical management of patients. This review gives an overview of the mechanisms underlying chronic metabolic inflammation, the aberrant metabolic activation of innate immune cells (neutrophils, macrophages, mast cells, dendritic cells), and its role in disease progression using obesity–diabetes as a prime example. Addressing the underlying subclinical metabolic inflammation in addition to achieving glucose control may contribute significantly towards therapeutic interventions aimed at preventing the onset of co-morbidities in diabetic patients.

Free access

Samuel M Lee, Jose Muratalla, Marta Sierra-Cruz, and Jose Cordoba-Chacon

Peroxisome proliferator-activated receptor γ (PPARγ) belongs to a family of nuclear receptors that could serve as lipid sensors. PPARγ is the target of a group of insulin sensitizers called thiazolidinediones (TZDs) which regulate the expression of genes involved in glucose and lipid metabolism as well as adipokines that regulate metabolic function in other tissues. Non-alcoholic fatty liver disease (NAFLD) has a high prevalence worldwide and is even higher in patients with obesity and insulin resistance. TZD-mediated activation of PPARγ could serve as a good treatment for NAFLD because TZDs have shown anti-fibrogenic and anti-inflammatory effectsin vitro and increase insulin sensitivity in peripheral tissues which improves liver pathology. However, mechanistic studies in mouse models suggest that the activation of PPARγ in hepatocytes might reduce or limit the therapeutic potential of TZD against NAFLD. In this review, we briefly describe the short history of PPAR isoforms, the relevance of their expression in different tissues, as well as the pathogenesis and potential therapeutics for NAFLD. We also discuss some evidence derived from mouse models that could be useful for endocrinologists to assess tissue-specific roles of PPARs, complement reverse endocrinology approaches, and understand the direct role that PPARγ has in hepatocytes and non-parenchymal cells.

Free access

Jasleen Kaur and Elizabeth R Seaquist

Glucagon is secreted by the pancreatic alpha cell and has long been known to oppose insulin action. A lyophilized form of the hormone has been available to treat episodes of insulin-induced hypoglycemia in insulin-treated people with diabetes for decades, but the difficulty of use was a barrier to widespread utilization. Newer formulations of glucagon are stable at room temperature in single-use devices that many caregivers find are easier to use than the original glucagon emergency kit. In this review , we will review what is known about the role of glucagon in normal physiology and diabetes and then discuss how the research in this area has been translated into treatment for metabolic conditions.

Restricted access

Karel David, Vanessa Dubois, Anja Verhulst, Vera Sommers, Dieter Schollaert, Ludo Deboel, Karen Moermans, Geert Carmeliet, Patrick D'Haese, Dirk Vanderschueren, Frank Claessens, Pieter Evenepoel, and Brigitte Decallonne

Patients suffering from chronic kidney disease (CKD) often experience bone loss and arterial calcifications. It is unclear if hypogonadism contributes to the development of these complications, and whether androgen therapy might prevent them. Male adult rats were randomized into 4 groups. The first group received standard chow (Control), while three other groups were fed a 0.25% adenine/low vitamin K diet (CKD). Two CKD groups were treated with testosterone (T) or dihydrotestosterone (DHT), whereas the control group and one CKD group received vehicle (VEH). CKD animals had 10-fold higher serum creatinine and more than 15-fold higher PTH-levels compared to controls. Serum T levels were more than 2-fold lower in the CKD-VEH group compared to Control-VEH and CKD-T groups. Seminal vesicle weight was reduced by 50% in CKD-VEH animals, and restored by T and DHT. CKD animals showed a low bone mass phenotype with decreased trabecular bone volume fraction and increased cortical porosity, which was not rescued by androgen treatment. Aortic calcification was much more prominent in CKD animals and not unequivocally prevented by androgens. Messenger RNA expression of the androgen receptor-responsive genes Acta1 and Col1a1 was reduced by CKD and stimulated by androgen treatment in levator ani muscle, but not in bone or aortic tissue. We conclude that adenine-induced CKD results in the development of hypogonadism in male rats. Androgen therapy is effective in restoring serum T levels and androgen-sensitive organ weights, but does not prevent bone loss or arterial calcifications, at least not in the presence of severe hyperparathyroidism.

Open access

J N Zamarbide Losada, E Sulpice, S Combe, G S Almeida, D A Leach, J Choo, L Protopapa, M P Hamilton, S McGuire, X Gidrol, C L Bevan, and C E Fletcher

Breast cancer (BC) is the most diagnosed cancer in women worldwide. In estrogen receptor (ER)-positive disease, anti-estrogens and aromatase inhibitors (AI) improve patient survival; however, many patients develop resistance. Dysregulation of apoptosis is a common resistance mechanism; thus, agents that can reinstate the activity of apoptotic pathways represent promising therapeutics for advanced drug-resistant disease. Emerging targets in this scenario include microRNAs (miRs). To identify miRs modulating apoptosis in drug-responsive and -resistant BC, a high-throughput miR inhibitor screen was performed, followed by high-content screening microscopy for apoptotic markers. Validation demonstrated that miR-361-3p inhibitor significantly increases early apoptosis and reduces proliferation of drug-responsive (MCF7), plus AI-/antiestrogen-resistant derivatives (LTED, TamR, FulvR), and ER- cells (MDA-MB-231). Importantly, proliferation-inhibitory effects were observed in vivo in a xenograft model, indicating the potential clinical application of miR-361-3p inhibition. RNA-seq of tumour xenografts identified FANCA as a direct miR-361-3p target, and validation suggested miR-361-3p inhibitor effects might be mediated in part through FANCA modulation. Moreover, miR-361-3p inhibition resulted in p53-mediated G1 cell cycle arrest through activation of p21 and reduced BC invasion. Analysis of publicly available datasets showed miR-361-3p expression is significantly higher in primary breast tumours vspaired normal tissue and is associated with decreased overall survival. In addition, miR-361-3p inhibitor treatment of BC patient explants decreased levels of miR-361-3p and proliferation marker, Ki67. Finally, miR-361-3p inhibitor showed synergistic effects on BC growth when combined with PARP inhibitor, Olaparib. Together, these studies identify miR-361-3p inhibitor as a potential new treatment for drug-responsive and -resistant advanced BC.

Restricted access

Emma Hamilton and Stephen Twigg

Diabetes-related foot disease (DFD), defined as ulceration, infection, or destruction of tissues of the foot in a person with current or previously diagnosed diabetes mellitus, is associated with a heavy burden for both patients and the healthcare system with high morbidity, mortality and costs. Improved outcomes for people with DFD are achieved with an interdisciplinary approach and adherence to best practice clinical guidelines, however in the Australian context, the vastness of the country presents unique challenges in achieving optimal outcomes for all people with DFD, with variation in service delivery, availability and accessibility between metropolitan, rural and remote areas. Aboriginal and Torres Strait Islander Australians and people with diabetes living in rural and remote areas experience higher rates of lower extremity amputation and further efforts and resources are required to improve outcomes for these high risk groups. In recent years, there have been advances in knowledge, including the understanding of the pathogenesis of diabetes-related peripheral neuropathy, genetic polymorphisms and mechanisms of disease associated with acute Charcot neuroarthropathy, biomarkers and potential mediators of diabetes-related foot ulcer (DFU) healing, the microbiology and microbiome profile of DFUs, pressure assessment and management as well as an expanded understanding of DFU sequelae and comorbidities. In this review, we describe new insights into pathophysiology, sequelae and comorbidities of DFD with a focus on basic and translational aspects and contributions to the field from Australian and New Zealand DFD researchers.

Open access

Shiho Fujisaka, Yoshiyuki Watanabe, and Kazuyuki Tobe

The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70–90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.