You are looking at 1 - 10 of 14,012 items for

  • All content x
Clear All
Restricted access

Fangyuan Chen, Haili Yu, Haichuan Zhang, Runzhu Zhao, Kaifang Cao, Yinghua Liu, Jiandong Luo, and Qin Xue

Our previous study has demonstrated maternal high-fat diet (HFD) caused sex-dependent cardiac hypertrophy in adult male, but not female offspring. The present study tested the hypothesis that estrogen normalizes maternal HFD-induced cardiac hypertrophy by regulating angiotensin II receptor (ATR) expression in adult female offspring. Pregnant rats were divided into the normal diet (ND) and HFD (60% kcal fat) groups. Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Maternal HFD had no effect on left ventricular (LV) wall thickness, cardiac function and molecular markers of cardiac hypertrophy function in sham groups. However, maternal HFD caused cardiac hypertrophy of offspring in OVX groups, which was abrogated by E2 replacement. In addition, maternal HFD had no effect on ERα and ERβ in sham groups. In contrast, HFD significantly decreased ERα, but not ERβ in OVX groups. In sham groups, there was no difference in the cardiac ATR type 1 (AT1R) and ATR type 2 (AT2R) between ND and HFD offspring. HFD significantly increased AT2R, but not AT1R in OVX groups. Furthermore, maternal HFD resulted in decreased glucocorticoid receptors (GRs) binding to the glucocorticoid response elements at the AT2R promoter, which was due to decreased GRs in hearts from OVX offspring. These HFD-induced changes in OVX groups were abrogated by E2 replacement. These results support a key role of estrogen in the sex difference of maternal HFD-induced cardiac hypertrophy in offspring, and suggest that estrogen protects female offspring from cardiac hypertrophy in adulthood by regulating AT2R.

Free access

Marion Régnier, Matthias Van Hul, Claude Knauf, and Patrice D Cani

Restricted access

Lin-Yu Jin, Zhen-Dong Lv, Xin-Jin Su, Shuai Xu, Hai-Ying Liu, and Xin-Feng Li

Estrogen receptors (ERs) regulate the development of the growth plate (GP) by binding to estrogen, a phenomenon that determines the growth of skeletal bone. However, the exact mechanisms underlying the regulatory effects of ERs on axial and appendicular growth plates during puberty remain unclear. In the present study, the strategy of ERβ blocking resulted in increased longitudinal elongation of the appendicular bone (P < 0.01), whereas ERα blocking suppressed appendicular elongation (P < 0.05). Blocking both ERs did not have opposite effects on axial longitudinal growth. The expression of chondrocyte proliferation genes including collagen II, aggrecan, and Sox9 and hypertrophic marker genes including collagen X, MMP13, and Runx2 was significantly increased in the growth plate of female mice treated with ERβ antagonist compared with that in the GP of control mice (P < 0.05). There were no significant differences in local insulin-like growth factor 1 (IGF-1) expression among these groups (P > 0.05), and Indian hedgehog protein (Ihh) and parathyroid-related protein (PTHrP) expressions differed among these groups (P < 0.05). ERs appeared not to affect axial bone growth during puberty in female mice (P > 0.05). Our data show that the blocking of different ER subtypes might have a region-specific influence on longitudinal appendicular and axial growth.

Free access

Irving Salinas, Niharika Sinha, and Aritro Sen

In recent years, androgens have emerged as critical regulators of female reproduction and women’s health in general. While high levels of androgens in women are associated with polycystic ovary syndrome (PCOS), recent evidence suggests that a certain amount of direct androgen action through androgen receptor is also essential for normal ovarian function. Moreover, prenatal androgen exposure has been reported to cause developmental reprogramming of the fetus that manifests into adult pathologies, supporting the Developmental Origins of Health and Disease (DOHaD) hypothesis. Therefore, it has become imperative to understand the underlying mechanism of androgen actions and its downstream effects under normal and pathophysiological conditions. Over the years, there has been a lot of studies on androgen receptor function as a transcriptional regulator in the nucleus as well as androgen-induced rapid extra-nuclear signaling. Conversely, new evidence suggests that androgen actions may also be mediated through epigenetic modulation involving both the nuclear and extra-nuclear androgen signaling. This review focuses on androgen-induced epigenetic modifications in female reproduction, specifically in the ovary, and discusses emerging concepts, latest perceptions, and highlight the areas that need further investigation.

Restricted access

Melissa A Davis, Leticia E Camacho, Alexander L Pendleton, Andrew T Antolic, Rosa I Luna-Ramirez, Amy C Kelly, Nathan R Steffens, Miranda J Anderson, and Sean W Limesand

Fetuses with intrauterine growth restriction (IUGR) have high concentrations of catecholamines, which lowers the insulin secretion and glucose uptake. Here, we studied the effect of hypercatecholaminemia on glucose metabolism in sheep fetuses with placental insufficiency-induced IUGR. Norepinephrine concentrations are elevated throughout late gestation in IUGR fetuses but not in IUGR fetuses with a bilateral adrenal demedullation (IAD) at 0.65 of gestation. Euglycemic (EC) and hyperinsulinemic–euglycemic (HEC) clamps were performed in control, intact-IUGR, and IAD fetuses at 0.87 of gestation. Compared to controls, basal oxygen, glucose, and insulin concentrations were lower in IUGR groups. Norepinephrine concentrations were five-fold higher in IUGR fetuses than in IAD fetuses. During the EC, rates of glucose entry (GER, umbilical + exogenous), glucose utilization (GUR), and glucose oxidation (GOR) were greater in IUGR groups than in controls. In IUGR and IAD fetuses with euglycemia and euinsulinemia, glucose production rates (GPR) remained elevated. During the HEC, GER and GOR were not different among groups. In IUGR and IAD fetuses, GURs were 40% greater than in controls, which paralleled the sustained GPR despite hyperinsulinemia. Glucose-stimulated insulin concentrations were augmented in IAD fetuses compared to IUGR fetuses. Fetal weights were not different between IUGR groups but were less than controls. Regardless of norepinephrine concentrations, IUGR fetuses not only develop greater peripheral insulin sensitivity for glucose utilization but also develop hepatic insulin resistance because GPR was maintained and unaffected by euglycemia or hyperinsulinemia. These findings show that adaptation in glucose metabolism of IUGR fetuses are independent of catecholamines, which implicate that hypoxemia and hypoglycemia cause the metabolic responses.

Restricted access

Pryscila D S Teixeira, Angela M Ramos-Lobo, Mariana Rosolen Tavares, Frederick Wasinski, Renata Frazao, and Jose Donato Jr

Leptin is a hormone required for the regulation of body weight in adult animals. However, during the postnatal period, leptin is mostly involved in developmental processes. Because the precise moment at which leptin starts to exert its metabolic effects is not well characterized, our objective was to identify the approximate onset of leptin effects on the regulation of energy balance. We observed that male Lepob/ob mice started to exhibit increased body fat mass from postnatal day 13 (P13), whereas in females, the increase in adiposity began on P20. Daily leptin injections from P10 to P22 did not reduce the weight gain of WT mice. However, an acute leptin injection induced an anorexigenic response in 10-day-old C57BL/6 mice but not in 7-day-old mice. An age-dependent increase in the number of leptin receptor-expressing neurons and leptin-induced pSTAT3 cells was observed in the hypothalamus of P7, P10 and P16 mice. Leptin deficiency started to modulate the hypothalamic expression of transcripts involved in the regulation of metabolism between P7 and P12. Additionally, fasting-induced hypothalamic responses were prevented by leptin replacement in 10-day-old mice. Finally, 12-day-old males and females showed similar developmental timing of axonal projections of arcuate nucleus neurons in both WT and Lepob/ob mice. In summary, we provided a detailed characterization of the onset of leptin’s effects on the regulation of energy balance. These findings contribute to the understanding of leptin functions during development.

Open access

Tina Seidu, Patrick McWhorter, Jessie Myer, Rabita Alamgir, Nicole Eregha, Dilip Bogle, Taylor Lofton, Carolyn Ecelbarger, and Stanley Andrisse

Hyperandrogenemia (HA) is a hallmark of polycystic ovary syndrome (PCOS) and is an integral element of nonalcoholic fatty liver disease (NALFD) in females. Administering low dose dihydrotestosterone (DHT) induced a normal weight PCOS-like female mouse model displaying NAFLD. The molecular mechanism of HA-induced NAFLD has not been fully determined. We hypothesized that DHT would regulate hepatic lipid metabolism via increased SREBP1 expression leading to NAFLD. We extracted liver from control and low dose DHT female mice; and performed histological and biochemical lipid pro-files, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver compared to controls. However, DHT did not alter the levels of SREBP2 in the liver. DHT mice displayed increased SCAP protein expression and SCAP-SREBP1 binding compared to controls. DHT mice exhibited increased AR binding to intron-8 of SCAP leading to increased SCAP mRNA compared to controls. FAS mRNA and protein expression was increased in liver of DHT mice compared to controls. p-ACC levels were unaltered in liver. Other lipid metabolism pathways were examined in liver, but no changes were observed. Our findings support evidence that DHT increased de novo lipogenic proteins resulting in increased hepatic lipid content via regulation of SREBP1 in liver. We show that in the presence of DHT the SCAP-SREBP1 interaction was elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. We propose that the mechanism of action may be increased AR binding to an ARE in SCAP intron-8.

Restricted access

Qiuhua Yang, Jiean Xu, Qian Ma, Zhiping Liu, Yaqi Zhou, Yongfeng Cai, Xiaoxiao Mao, David Stepp, Neal Weintraub, David J Fulton, Mei Hong, and Yuqing Huo

Overnutrition-induced endothelial inflammation plays a crucial role in high fat diet (HFD)-induced insulin resistance in animals. Endothelial glycolysis plays a critical role in endothelial inflammation and proliferation, but its role in diet-induced endothelial inflammation and subsequent insulin resistance has not been elucidated. PFKFB3 is a critical glycolytic regulator, and its increased expression has been observed in adipose vascular endothelium of C57BL/6J mice fed with HFD in vivo, and in palmitate (PA)-treated primary human adipose microvascular endothelial cells (HAMECs) in vitro. We generated mice with Pfkfb3 deficiency selective for endothelial cells to examine the effect of endothelial Pfkfb3 in endothelial inflammation in metabolic organs and in the development of HFD-induced insulin resistance. EC Pfkfb3-deficient mice exhibited mitigated HFD-induced insulin resistance, including decreased body weight and fat mass, improved glucose clearance and insulin sensitivity, and alleviated adiposity and hepatic steatosis. Mechanistically, cultured PFKFB3 knockdown HAMECs showed decreased NF-κB activation induced by PA, and consequent suppressed adhesion molecule expression and monocyte adhesion. Taken together, these results demonstrate that increased endothelial PFKFB3 expression promotes diet-induced inflammatory responses and subsequent insulin resistance, suggesting that endothelial metabolic alteration plays an important role in the development of insulin resistance.

Restricted access

Zachary Silver, Sam Abbott-Tate, Lindsay Hyland, Frances Sherratt, Barbara Woodside, and Alfonso Abizaid

Chronic exposure to high circulating glucocorticoid or ghrelin concentrations increases food intake, weight gain and adiposity, suggesting that ghrelin could contribute to the metabolic effects of chronic glucocorticoids. In male mice, however, blocking ghrelin receptor (GHSR) signalling increased the weight gain and adiposity induced by chronic corticosterone (CORT), rather than attenuating them. In the current study, we investigated the role of GHSR signalling in the metabolic effects of chronic exposure to high circulating CORT in female mice. To do this, female WT and GHSR KO mice were treated with either CORT in a 1% ethanol (EtOH) solution or 1% EtOH alone in their drinking water for 32 days (N=5-8/group). Body weight, food, and water intake as well as vaginal cyclicity were assessed daily. As expected, CORT treatment induced significant increases in body weight, food intake, adiposity and also impaired glucose tolerance. In contrast to results observed in male mice, WT and GHSR KO female mice did not differ on any of these parameters. Neither plasma levels of ghrelin, LEAP-2, the endogenous GHSR antagonist produced by the liver, nor their ratio were altered by chronic glucocorticoid exposure. In addition, CORT treatment disrupted vaginal cyclicity, produced a reduction in sucrose consumption and increased locomotor activity regardless of genotype. Chronic CORT also decreased exploration in WT but not GHSR KO mice. Collectively, these data suggest that most metabolic, endocrine, reproductive and behavioral effects of chronic CORT exposure are independent of GHSR signalling in female mice.

Restricted access

Lu Fu, Hongyuan Zhang, Jeremiah Ong’achwa Machuki, Tingting Zhang, Lin Han, Lili Sang, Lijuan Wu, Zhiwei Zhao, Matthew James Turley, Xide Hu, Hongjian Hou, Dongye Li, Sian E Harding, and Hong Sun

Currently, there are no conventional treatments for stress-induced cardiomyopathy (SCM, also known as Takotsubo syndrome), and the existing therapies are not effective. The recently discovered G protein-coupled estrogen receptor (GPER) executes the rapid effects of estrogen (E2). In this study, we investigated the effects and mechanism of GPER on epinephrine (Epi)-induced cardiac stress. SCM was developed with a high dose of Epi in adult rats and human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs). (1) GPER activation with agonist G1/E2 prevented an increase in left ventricular internal diameter at end-systole, the decrease both in ejection fraction and cardiomyocyte shortening amplitude elicited by Epi. (2) G1/E2 mitigated heart injury induced by Epi, as revealed by reduced plasma brain natriuretic peptide and lactate dehydrogenase release into culture supernatant. (3) G1/E2 prevented the raised phosphorylation and internalization of β2-adrenergic receptors (β2AR). (4) Blocking Gαi abolished the cardiomyocyte contractile inhibition by Epi. G1/E2 downregulated Gαi activity of cardiomyocytes and further upregulated cAMP concentration in culture supernatant treated with Epi. (5) G1/E2 rescued decreased Ca2+ amplitude and Ca2+ channel current (ICa-L) in rat cardiomyocytes. Notably, the above effects of E2 were blocked by the GPER antagonist, G15. In hiPSC-CM (which expressed GPER, β1AR and β2ARs), knockdown of GPER by siRNA abolished E2 effects on increasing ICa-L and action potential duration in the stress state. In conclusion, GPER played a protective role against SCM. Mechanistically, this effect was mediated by balancing the coupling of β2AR to the Gαs and Gαi signaling pathways.