You are looking at 31 - 40 of 13,607 items

Free access

L Lundholm, G Bryzgalova, H Gao, N Portwood, S Fält, K D Berndt, A Dicker, D Galuska, J R Zierath, J-Å Gustafsson, S Efendic, K Dahlman-Wright and A Khan

Restricted access

Akiko Mizokami, Satoru Mukai, Jing Gao, Tomoyo Kawakubo-Yasukochi, Takahito Otani, Hiroshi Takeuchi, Eijiro Jimi and Masato Hirata

Osteocalcin is a bone-derived hormone that in its uncarboxylated form (GluOC) plays an important role in glucose and energy metabolism by stimulating insulin secretion and pancreatic β-cell proliferation through its putative receptor GPRC6A. We previously showed that the effect of GluOC on insulin secretion is mediated predominantly by glucagon-like peptide–1 (GLP-1) released from intestinal endocrine cells in response to GluOC stimulation. Moreover, oral administration of GluOC was found to reduce the fasting blood glucose level, to improve glucose tolerance, and to increase the fasting serum insulin concentration and β-cell area in the pancreas in wild-type mice. We have now examined the effects of oral GluOC administration for at least 4 weeks in GLP-1 receptor knockout mice. Such administration of GluOC in the mutant mice triggered glucose intolerance, enhanced gluconeogenesis, and promoted both lipid accumulation in the liver as well as adipocyte hypertrophy and inflammation in adipose tissue. Furthermore, inactivation of GLP-1 receptor signaling in association with GluOC administration induced activation of the transcription factor FoxO1 and expression of its transcriptional coactivator PGC1α in the liver, likely accounting for the observed up-regulation of gluconeogenic gene expression. Our results thus indicate that the beneficial metabolic effects of GluOC are dependent on GLP-1 receptor signaling.

Restricted access

Wenqi Chen, Siyu Lu, Chengshun Yang, Na Li, Xuemei Chen, Junlin He, Xueqing Liu, Yubin Ding, Chao Tong, Chuan Peng, Chen Zhang, Yan Su, Yingxiong Wang and Rufei Gao

Previous research on the role of insulin has focused on metabolism. This study investigated the effect of insulin on angiogenesis in endometrial decidualization. High insulin-treated mouse model was constructed by subcutaneous injection of insulin. Venous blood glucose, serum insulin, P4, E2, FSH and LH levels in the pregnant mice were detected by ELISA. Decidual markers, angiogenesis factors and decidual vascular network were detected during decidualization in the pregnant mouse model and an artificially induced decidualization mouse model. Tube formation ability and angiogenesis factors expression were also detected in high insulin-treated HUVECS cells. To confirm whether autophagy participates in hyperinsulinemia-impaired decidual angiogenesis, autophagy was detected in vivo and in vitro. During decidualization, in the condition of high insulin, serum insulin and blood glucose were significantly higher, while ovarian steroid hormones were also disordered (P < 0.05), decidual markers BMP2 and PRL were significantly lower (P < 0.05). Uterine CD34 staining showed that the size of the vascular sinus was significantly smaller than that in control. Endometrial VEGFA was significantly decreased after treatment with high insulin in vivo and in vitro (P < 0.05), whereas ANG-1 and TIE2 expression was significantly increased (P < 0.05). In addition, aberrant expression of autophagy markers revealed that autophagy participates in endometrial angiogenesis during decidualization (P < 0.05). After treatment with the autophagy inhibitor 3-MA in HUVEC, the originally damaged cell tube formation ability and VEGFA expression were repaired. This study suggests that endometrial angiogenesis during decidualization was impaired by hyperinsulinemia in early pregnant mice.

Open access

Alyce M Martin, Emily W Sun and Damien Keating

The homoeostatic regulation of metabolism is highly complex and involves multiple inputs from both the nervous and endocrine systems. The gut is the largest endocrine organ in our body and synthesises and secretes over 20 different hormones from enteroendocrine cells that are dispersed throughout the gut epithelium. These hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of whom play pivotal roles in maintaining energy balance and glucose homeostasis. Some are now the basis of several clinically used glucose-lowering and weight loss therapies. The environment in which these enteroendocrine cells exist is also complex, as they are exposed to numerous physiological inputs including ingested nutrients, circulating factors and metabolites produced from neighbouring gut microbiome. In this review, we examine the diverse means by which gut-derived hormones carry out their metabolic functions through their interactions with different metabolically important organs including the liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and microbial metabolites affect gut hormone secretion and the mechanisms underlying these interactions.

Restricted access

Eloise A Bradley, Dino Premilovac, Andrew C Betik, Donghua Hu, Emily Attrill, Stephen M Richards, Stephen Rattigan and Michelle A Keske

Insulin stimulates glucose disposal in skeletal muscle in part by increasing microvascular blood flow, and this effect is blunted during insulin resistance. We aimed to determine whether metformin treatment improves insulin-mediated glucose disposal and vascular insulin responsiveness in skeletal muscle of insulin-resistant rats. Sprague–Dawley rats were fed a normal (ND) or high-fat (HFD) diet for 4 weeks. A separate HFD group was given metformin in drinking water (HFD + MF, 150 mg/kg/day) during the final 2 weeks. After the intervention, overnight-fasted (food and metformin removed) anaesthetised rats underwent a 2-h euglycaemic–hyperinsulinaemic clamp (10 mU/min/kg) or saline infusion. Femoral artery blood flow, hindleg muscle microvascular blood flow, muscle glucose disposal and muscle signalling (Ser473-AKT and Thr172-AMPK phosphorylation) were measured. HFD rats had elevated body weight, epididymal fat pad weight, fasting plasma insulin and free fatty acid levels when compared to ND. HFD-fed animals displayed whole-body and skeletal muscle insulin resistance and blunting of insulin-stimulated femoral artery blood flow, muscle microvascular blood flow and skeletal muscle insulin-stimulated Ser473-AKT phosphorylation. Metformin treatment of HFD rats reduced fasting insulin and free fatty acid concentrations and lowered body weight and adiposity. During euglycaemic-hyperinsulinaemic clamp, metformin-treated animals showed improved vascular responsiveness to insulin, improved insulin-stimulated muscle Ser473-AKT phosphorylation but only partially restored (60%) muscle glucose uptake. This occurred without any detectable levels of metformin in plasma or change in muscle Thr172-AMPK phosphorylation. We conclude that 2-week metformin treatment is effective at improving vascular and metabolic insulin responsiveness in muscle of HFD-induced insulin-resistant rats.

Free access

Joan Villarroya, Rubén Cereijo, Aleix Gavaldà-Navarro, Marion Peyrou, Marta Giralt and Francesc Villarroya

In recent years, an important secretory role of brown adipose tissue (BAT) has emerged, which is consistent, to some extent, with the earlier recognition of the important secretory role of white fat. The so-called brown adipokines or ‘batokines’ may play an autocrine role, which may either be positive or negative, in the thermogenic function of brown adipocytes. Additionally, there is a growing recognition of the signalling molecules released by brown adipocytes that target sympathetic nerve endings (such as neuregulin-4 and S100b protein), vascular cells (e.g., bone morphogenetic protein-8b), and immune cells (e.g., C-X-C motif chemokine ligand-14) to promote the tissue remodelling associated with the adaptive BAT recruitment in response to thermogenic stimuli. Moreover, existing indications of an endocrine role of BAT are being confirmed through the release of brown adipokines acting on other distant tissues and organs; a recent example is the recognition that BAT-secreted fibroblast growth factor-21 and myostatin target the heart and skeletal muscle, respectively. The application of proteomics technologies is aiding the identification of new members of the brown adipocyte secretome, such as the extracellular matrix or complement system components. In summary, BAT can no longer be considered a mere producer of heat in response to environment or dietary challenges; it is also an active secretory tissue releasing brown adipokines with a relevant local and systemic action. The identification of the major brown adipokines and their roles is highly important for the discovery of novel candidates useful in formulating intervention strategies for metabolic diseases.

Restricted access

Jennifer H Stern, Gordon I Smith, Shiuwei Chen, Roger H Unger, Samuel Klein and Philipp E Scherer

Hyperglucagonemia, a hallmark in obesity and insulin resistance promotes hepatic glucose output, exacerbating hyperglycemia and thus predisposing to the development type 2 diabetes. As such, glucagon signaling is a key target for new therapeutics to manage insulin resistance. We evaluated glucagon homeostasis in lean and obese mice and people. In lean mice, fasting for 24 h caused a rise in glucagon. In contrast, a decrease in serum glucagon compared to baseline was observed in diet-induced obese mice between 8 and 24 h of fasting. Fasting decreased serum insulin in both lean and obese mice. Accordingly, the glucagon:insulin ratio was unaffected by fasting in obese mice but increased in lean mice. Re-feeding (2 h) restored hyperglucagonemia in obese mice. Pancreatic perfusion studies confirm that fasting (16 h) decreases pancreatic glucagon secretion in obese mice. Consistent with our findings in the mouse, a mixed meal increased serum glucagon and insulin concentrations in obese humans, both of which decreased with time after a meal. Consequently, fasting and re-feeding less robustly affected glucagon:insulin ratios in obese compared to lean participants. The glucoregulatory disturbance in obesity may be driven by inappropriate regulation of glucagon by fasting and a static glucagon:insulin ratio.

Restricted access

Nan Li, James A Oakes, Karl Storbeck, Vincent T Cunliffe and Nils Krone

The cytochrome P450 side-chain cleavage enzyme, encoded by the CYP11A1 gene, catalyzes the first and rate-limiting step of steroid hormone biosynthesis. Previous morpholino knockdown studies in zebrafish suggested cyp11a2 is a functional equivalent of human CYP11A1 and is essential for interrenal steroidogenesis in zebrafish larvae. The role of Cyp11a2 in adult zebrafish, particularly in gonadal steroidogenesis, remains elusive. To explore the role of Cyp11a2 in adults, we developed zebrafish mutant lines by creating deletions in cyp11a2 using the CRISPR/Cas9 genomic engineering approach. Homozygous mutant zebrafish larvae showed an upregulation of the hypothalamic–pituitary–interrenal axis. Furthermore, Cyp11a2-deficient zebrafish demonstrated profound glucocorticoid and androgen deficiencies. Cyp11a2 homozygotes only developed into males with feminized secondary sex characteristics. Adult cyp11a2-/- mutant fish showed a lack of natural breeding behaviors. Histological characterization revealed disorganized testicular structure and significantly decreased numbers of mature spermatozoa. These findings are further supported by the downregulation of the expression of several pro-male genes in the testes of cyp11a2 homozygous zebrafish, including sox9a, dmrt1 and amh. Moreover, the spermatogonia markers nanos2 and piwil1 were upregulated, while the spermatocytes marker sycp3 and spermatids marker odf3b were downregulated in the testes of cyp11a2 homozygous mutants. Our expression analysis is consistent with our histological studies, suggesting that spermatogonia are the predominant cell types in the testes of cyp11a2 homozygous mutants. Our work thus demonstrates the crucial role of Cyp11a2 in interrenal and gonadal steroidogenesis in zebrafish larvae and adults.

Restricted access

Eileen I Chang, Paul J. Rozance, Stephanie R Wesolowski, Leanna M Nguyen, Steven C Shaw, Robert A Sclafani, Kristen K Bjorkman, Angela K Peter, William Hay and Laura D Brown

Intrauterine growth restricted (IUGR) fetuses are born with reduced skeletal muscle mass. We hypothesized that reduced rates of myogenesis would contribute to fewer and smaller myofibers in IUGR fetal hindlimb muscle compared to the normally growing fetus. We tested this hypothesis in IUGR fetal sheep with progressive placental insufficiency produced by exposing pregnant ewes to elevated ambient temperatures from 38 to 116 days gestation (dGA; term=147 dGA). Surgically catheterized control (CON, n=8) and IUGR (n=13) fetal sheep were injected with intravenous 5-bromo-2’-deoxyuridine (BrdU) prior to muscle collection (134 dGA). Rates of myogenesis, defined as the combined processes of myoblast proliferation, differentiation, and fusion into myofibers, were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. Total myofiber number was determined for the entire cross-section of the FDS muscle. In IUGR fetuses, the number of BrdU+ myonuclei per myofiber cross-section was lower in BF, TA, and FDS (P<0.05), total myonuclear number per myofiber cross-section was lower in BF and FDS (P<0.05), and total myofiber number was lower in FDS (P<0.005) compared to CON. mRNA expression levels of cyclins, cyclin dependent protein kinases, and myogenic regulatory factors were lower (P<0.05), and inhibitors of the cell cycle were higher (P<0.05) in IUGR BF compared to CON. Markers of apoptosis were not different in IUGR BF muscle. These results show that in IUGR fetuses, reduced rates of myogenesis produce fewer numbers of myonuclei, which may limit hypertrophic myofiber growth. Fewer myofibers of smaller size contribute to smaller muscle mass in the IUGR fetus.

Restricted access

Kanta Kon, Hiroshi Tsuneki, Hisakatsu Ito, Yoshinori Takemura, Kiyofumi Sato, Mitsuaki Yamazaki, Yoko Ishii, Masakiyo Sasahara, Assaf Rudich, Takahiro Maeda, Tsutomu Wada and Toshiyasu Sasaoka

Disrupted sleep is associated with increased risk of type 2 diabetes. Central actions of orexin, mediated by orexin-1 and orexin-2 receptors, play a crucial role in the maintenance of wakefulness; accordingly, excessive activation of the orexin system causes insomnia. Resting-phase administration of dual orexin receptor antagonist (DORA) has been shown to improve sleep abnormalities and glucose intolerance in type 2 diabetic db/db mice, although the mechanism remains unknown. In the present study, to investigate the presence of functional link between sleep and glucose metabolism, the influences of orexin antagonists with or without sleep-promoting effects were compared on glucose metabolism in diabetic mice. In db/db mice, 2-SORA-MK1064 (an orexin-2 receptor antagonist) and DORA-12 (a DORA) acutely improved non-rapid eye movement sleep, whereas 1-SORA-1 (an orexin-1 receptor antagonist) had no effect. Chronic resting-phase administration of these drugs improved glucose intolerance, without affecting body weight, food intake, locomotor activity and energy expenditure calculated from O2 consumption and CO2 production. The expression levels of proinflammatory factors in the liver were reduced by 2-SORA-MK1064 and DORA-12, but not 1-SORA-1, whereas those in the white adipose tissue were reduced by 1-SORA-1 and DORA-12 more efficiently than 2-SORA-MK1064. When administered chronically at awake phase, these drugs caused no effect. In streptozotocin-induced type 1-like diabetic mice, neither abnormality in sleep–wake behavior nor improvement of glucose intolerance by these drugs were observed. These results suggest that both 1-SORA-type (sleep-independent) and 2-SORA-type (possibly sleep-dependent) mechanisms can provide chronotherapeutic effects against type 2 diabetes associated with sleep disturbances in db/db mice.