You are looking at 1 - 10 of 13,908 items for

  • All content x
Clear All
Free access

Alberto Dinarello, Giorgio Licciardello, Camilla Maria Fontana, Natascia Tiso, Francesco Argenton, and Luisa Dalla Valle

Glucocorticoids (GCs) are steroid hormones that contribute to the regulation of many physiological processes, such as inflammation, metabolism and stress response, mainly through binding to their cognate receptor, GR, which works as a ligand-activated transcription factor. Due to their pleiotropy and the common medical use of these steroids to treat patients affected by different pathologies, the investigation of their mechanisms of action is extremely important in biology and clinical research. The evolutionary conservation of GC physiological function, biosynthesis pathways, as well as the sequence and structure of the GC nuclear receptors has stimulated, in the last 20 years, the use of zebrafish (a teleost of Cyprinidae family) as a reliable model organism to investigate this topic. In this review, we wanted to collect many of the most significant findings obtained by the the scientific community using zebrafish to study GCs and their receptors. The paper begins by describing the experiments with transient knockdown of zebrafish gr to gain insights, mainly during development, and continues with the discoveries provided by the generation of transgenic reporter lines. Finally, we discuss how the generation of mutant lines for either gr or the enzymes involved in GC synthesis has significantly advanced our knowledge on GC biology.

Full access

James A Oakes, Lise Barnard, Karl-Heinz Storbeck, Vincent T Cunliffe, and Nils P Krone

The roles of androgens in male reproductive development and function in zebrafish are poorly understood. To investigate this topic, we employed CRISPR/Cas9 to generate cyp11c1 (11β-hydroxylase) mutant zebrafish lines. Our study confirms recently published findings from a different cyp11c1−/− mutant zebrafish line, and also reports novel aspects of the phenotype caused by loss of Cyp11c1 function. We report that Cyp11c1-deficient zebrafish display predominantly female secondary sex characteristics, but may possess either ovaries or testes. Moreover, we observed that cyp11c1−/− mutant male zebrafish are profoundly androgen- and cortisol-deficient. These results provide further evidence that androgens are dispensable for testis formation in zebrafish, as has been demonstrated previously in androgen-deficient and androgen-resistant zebrafish. Herein, we show that the testes of cyp11c1−/− mutant zebrafish exhibit a disorganised tubular structure; and for the first time demonstrate that the spermatic ducts, which connect the testes to the urogenital orifice, are severely hypoplastic in androgen-deficient zebrafish. Furthermore, we show that spermatogenesis and characteristic breeding behaviours are impaired in cyp11c1−/ mutant zebrafish. Expression of nanos2, a type A spermatogonia marker, was significantly increased in the testes of Cyp11c1-deficient zebrafish, whereas expression of markers for later stages of spermatogenesis was significantly decreased. These observations indicate that in zebrafish, production of type A spermatogonia is androgen-independent, but differentiation of type A spermatogonia is an androgen-dependent process. Overall, our results demonstrate that whilst androgens are not required for testis formation, they play important roles in determining secondary sexual characteristics, proper organisation of seminiferous tubules, and differentiation of male germ cells.

Free access

Morag J Young, Colin D Clyne, and Karen E Chapman

Coronavirus disease (COVID-19) is caused by a new strain of coronavirus, the severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2. At the time of writing, SARS-CoV-2 has infected over 5 million people worldwide. A key step in understanding the pathobiology of the SARS-CoV-2 was the identification of -converting enzyme 2 (ACE2) as the receptor for SARS-CoV-2 to gain entry into host cells. ACE2 is an established component of the ‘protective arm’ of the renin-angiotensin-aldosterone-system (RAAS) that opposes ACE/angiotensin II (ANG II) pressor and tissue remodelling actions. Identification of ACE2 as the entry point for SARS-CoV-2 into cells quickly focused attention on the use of ACE inhibitors (ACEi), angiotensin receptor blockers (ARB) and mineralocorticoid receptor antagonists (MRA) in patients with hypertension and cardiovascular disease given that these pharmacological agents upregulate ACE2 expression in target cells. ACE2 is cleaved from the cells by metalloproteases ADAM10 and ADAM17. Steroid hormone receptors regulate multiple components of the RAAS and may contribute to the observed variation in the incidence of severe COVID-19 between men and women, and in patients with pre-existing endocrine-related disease. Moreover, glucocorticoids play a critical role in the acute and chronic management of inflammatory disease, independent of any effect on RAAS activity. Dexamethasone, a synthetic glucocorticoid, has emerged as a life-saving treatment in severe COVID-19. This review will examine the endocrine mechanisms that control ACE2 and discusses the impact of therapies targeting the RAAS, glucocorticoid and other endocrine systems for their relevance to the impact of SARS-CoV-2 infection and the treatment and recovery from COVID-19-related critical illness.

Full access

Isabelle Lee, Guannan Zhang, Clementina Mesaros, and Trevor M Penning

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants generated from the incomplete combustion of organic material. PAHs have been studied as genotoxicants, but some also act via non-genotoxic mechanisms in estrogen-dependent malignancies, such as breast cancer. PAHs require metabolic activation to electrophilic metabolites to exert their genotoxicity but non-genotoxic properties may also contribute to their carcinogenicity. The role of PAHs in endometrial cancer, a cancer associated with unopposed estrogen action is unknown. We assessed the metabolism of the representative PAH, benzo[a]pyrene (B[a]P), to estrogenic compounds in Ishikawa human endometrial cells in the presence and absence of cytochrome P450 induction. Using stable-isotope dilution high-performance liquid chromatography and APCI tandem mass spectrometry in the selected reaction monitoring mode, we analyzed B[a]P metabolism in Ishikawa cells. Estrogenic activity of B[a]P metabolites was determined by the endogenous estrogen inducible alkaline phosphatase reporter gene and an exogenous estrogen response element (ERE) luciferase reporter gene construct. We also assessed whether PAHs can induce a proliferative phenotype via estrogen receptor (ER)- and non-ER-regulated pathways. We demonstrate that B[a]P can be metabolized in human endometrial cells into 3-OH-B[a]P and B[a]P-7,8-dione in sufficient amounts to activate ERs. We also show that only B[a]P-7,8-dione induces endometrial cell proliferation at concentrations lower than required to activate the ER; instead non-genomic signaling by the EGF receptor (EGFR) and activation of the mitogen-activated protein kinase (MAPK) pathway was responsible. This work indicates that human endometrial cells can metabolize PAHs into estrogenic metabolites, which may induce cell proliferation through non-ER-regulated pathways.

Full access

Anjara Rabearivony, Huan Li, Shiyao Zhang, Siyu Chen, Xiaofei An, and Chang Liu

Environmental temperature remarkably impacts on metabolic homeostasis, raising a serious concern about the optimum housing temperature for translational studies. Recent studies suggested that mice should be housed slightly below their thermoneutral temperature (26°C). On the other hand, the external temperature, also known as a zeitgeber, can reset the circadian rhythm. However, whether housing temperature affects the circadian oscillators of the liver remains unknown. Therefore, we have compared the effect of two housing temperatures, namely 21°C (conventional; TC) and 26°C (thermoneutral; TN), on the circadian rhythms in mice. We found that the rhythmicity of food intake showed an advanced phase at TC, while the activity was more robust at TN, with a prolonged period onset. The serum levels of norepinephrine were remarkably induced at TC, but failed to oscillate rhythmically at both temperatures. Likewise, circulating glucose levels were increased but were non-rhythmic under TC. Both total cholesterol and triglycerides levels were induced at TN, but showed an advanced phase under TC. Additionally, the expression of hepatic metabolic genes and clock genes remained rhythmic at both temperatures, with the exception of G6Pase, Fasn, Cpt1a and Cry2, at TN. Nevertheless, the liver histology examination did not show any significant changes in response to housing temperature. Although the non-consistent trends of phase changes in each temperature, our results suggest a non-reductant role of temperature in mouse internal rhythmicity resetting. Thus, the temperature-controlled internal circadian synchronization within organs should be taken into consideration when optimizing housing temperature for mice.

Full access

Yuriko Sakai, Hideyuki Arie, Yinhua Ni, Fen Zhuge, Liang Xu, Guanliang Chen, Naoto Nagata, Takuya Suzuki, Shuichi Kaneko, Tsuguhito Ota, and Mayumi Nagashimada

Intestinal mucosal barrier dysfunction is closely related to the pathogenesis of nonalcoholic steatohepatitis (NASH). Gut immunity has been recently demonstrated to regulate gut barrier function. The Lactobacillus pentosus strain S-PT84 activates helper T cells and natural killer/natural killer T cells. In this study, we examined the effect of S-PT84 on NASH progression induced by high-cholesterol/high-fat diet (CL), focusing on the immune responses involved in gut barrier function. C57BL/6 mice were fed a normal chow or CL diet with or without 1 × 1010 S-PT84 for 22 weeks. S-PT84 administration improved hepatic steatosis by decreasing triglyceride and free fatty acid levels by 34% and 37%, respectively. Furthermore, S-PT84 inhibited the development of hepatic inflammation and fibrosis, suppressed F4/80+ macrophage/Kupffer cell infiltration, and reduced liver hydroxyproline content. Administration of S-PT84 alleviated hyperinsulinemia and enhanced hepatic insulin signalling. Compared with mice fed CL diet, mice fed CL+S-PT84 had 71% more CD11c-CD206+ M2 macrophages, resulting in a significantly decreased M1/M2 macrophage ratio in the liver. Moreover, S-PT84 inhibited the CL diet-mediated increase in intestinal permeability. Additionally, S-PT84 reduced the recruitment of interleukin-17-producing T cells and increased the levels of intestinal tight junction proteins, including zonula occludens-1, occludin, claudin-3, and claudin-7. In conclusion, our findings suggest that S-PT84 attenuates diet-induced insulin resistance and subsequent NASH development by maintaining gut permeability. Thus, S-PT84 represents a feasible approach to prevent the development of NASH.

Full access

Juliana I Candelaria, Maria B Rabaglino, and Anna C Denicol

Follicle-stimulating hormone (FSH) is required for ovarian antral folliculogenesis and steroidogenesis, and there is increasing evidence that it may play critical roles in preantral follicle development. We hypothesized that preantral follicles begin responding to FSH as early as the primary stage of development. Our objectives were to establish whether the FSH receptor (FSHR) was expressed in bovine preantral follicles and to determine the effects of FSH in these follicles and the surrounding ovarian tissue. Preantral follicles were isolated from bovine ovaries and subjected to immunolocalization of FSHR. Ovarian cortical strips were cultured with FSH or vehicle for 2 or 4 days and subjected to RNA sequencing, hematoxylin/eosin staining and immunostaining for p42/44 MAPK. Finally, cortical strips were cultured for 4 days with FSH before Western blot analysis of total and phosphorylated p42/44 MAPK and total aromatase. We found greater FSHR labeling intensity per cell in preantral follicles at the primary stage compared to other stages (P < 0.05). FSH upregulated genes involved in energy metabolism and MAPK signaling and downregulated genes related to phagosome and allograft rejection in the ovarian cortex. Preantral follicles cultured in situ with FSH had greater expression of total p42/44 MAPK (P < 0.05), but no difference was detected in whole tissue Western blot for phosphorylated p42/44 MAPK or aromatase. We conclude that the FSHR is expressed in preantral follicles as early as the primary stage of development, and that FSH upregulates cell metabolism and activates MAPK signaling pathways in preantral follicles.

Full access

Rodrigo Martins Pereira, Kellen Cristina da Cruz Rodrigues, Marcella Ramos Sant’Ana, Guilherme Francisco Peruca, Ana Paula Morelli, Fernando M Simabuco, Adelino S R da Silva, Dennys Esper Cintra, Eduardo Rochete Ropelle, José Rodrigo Pauli, and Leandro Pereira de Moura

Obesity is linked to a reduction in the control of hepatic glucose production, which is the primary mechanism related to fasting hyperglycemia and the development of type 2 diabetes mellitus (T2DM). The main system involved in hepatic gluconeogenesis synthesis is controlled by pyruvate carboxylase (PC), which increases in obesity conditions. Recently, we showed that short-term strength training is an important tool against obesity-induced hyperglycemia. As aerobic exercise can reduce the hepatic PC content of obese animals, we hypothesized that strength exercise can also decrease this gluconeogenic enzyme. Therefore, this study investigated whether the metabolic benefits promoted by short-term strength training are related to changes in hepatic PC content. Swiss mice were divided into three groups: lean control (Ctl), obese sedentary (ObS), and obese short-term strength training (STST). The STST protocol was performed through one session/day for 15 days. The obese exercised animals had reduced hyperglycemia and insulin resistance. These results were related to better control of hepatic glucose production and hepatic insulin sensitivity. Our bioinformatics analysis showed that hepatic PC mRNA levels have positive correlations with glucose levels and adiposity, and negative correlations with locomotor activity and muscle mass. We also found that hepatic mRNA levels are related to lipogenic markers in the liver. Finally, we observed that the obese animals had an increased hepatic PC level; however, STST was efficient in reducing its amount. In conclusion, we provide insights into new biomolecular mechanisms by showing how STST is an efficient tool against obesity-related hyperglycemia and T2DM, even without body weight changes.

Full access

Lauriane Bonnet, Esma Karkeni, Charlene Couturier, Julien Astier, Catherine Defoort, Ljubica Svilar, Franck Tourniaire, Lourdes Mounien, and Jean Francois Landrier

Obesity is classically associated to low serum total and free 25(OH)D. Hypotheses have been advanced to explain this observation but mechanisms remain poorly understood, and notably priming events that could explain such association. We investigated the impact of short-term high fat (HF) diet to investigate early events occurring in vitamin D metabolism. Male C57BL/6J mice were fed with control diet (control group) and HF diet for 4 days. HF fed mice displayed similar body weight to control mice but significantly increased adiposity, together with a decrease of free 25(OH)D concentrations, which could be explain at least in part by a decrease of Cyp2r1 and Cyp3a11 expression in the liver. An increase of 1,25(OH)2D concentration was also observed and could be explained by a decrease of Cyp24a1 expression observed in the kidney. In white adipose tissue (WAT), no modification of vitamin D metabolites quantity detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, an increase of Cyp2r1 and Cyp27a1 mRNA expression and a decrease of Cyp27b1 mRNA expression, could suggest a possible storage of 25(OH)D in WAT at long-term. Our data are supportive of an active role of HF diet in mediating a priming effect leading the well-established perturbation of the vitamin D metabolism associated to obesity, including a decrease of free 25(OH)D and modulation of expression of genes involved in vitamin D metabolism.

Full access

Cecilia Brännmark, Emma I Kay, Unn Örtegren Kugelberg, Belén Chanclón, Man Mohan Shrestha, Ingrid Wernstedt Asterholm, Peter Strålfors, and Charlotta S Olofsson

Here we have investigated the role of the protein caveolin 1 (Cav1) and caveolae in the secretion of the white adipocyte hormone adiponectin. Using mouse primary subcutaneous adipocytes genetically depleted of Cav1, we show that the adiponectin secretion, stimulated either adrenergically or by insulin, is abrogated while basal (unstimulated) release of adiponectin is elevated. Adiponectin secretion is similarly affected in wildtype mouse and human adipocytes where the caveolae structure was chemically disrupted. The altered ex vivo secretion in adipocytes isolated from Cav1 null mice is accompanied by lowered serum levels of the high-molecular weight (HMW) form of adiponectin, whereas the total concentration of adiponectin is unaltered. Interestingly, levels of HMW adiponectin are maintained in adipose tissue from Cav1-depleted mice, signifying that a secretory defect is present. The gene expression of key regulatory proteins known to be involved in cAMP/adrenergically triggered adiponectin exocytosis (the beta-3-adrenergic receptor and exchange protein directly activated by cAMP) remains intact in Cav1 null adipocytes. Microscopy and fractionation studies indicate that adiponectin vesicles do not co-localise with Cav1 but that some vesicles are associated with a specific fraction of caveolae. Our studies propose that Cav1 has an important role in secretion of HMW adiponectin, even though adiponectin-containing vesicles are not obviously associated with this protein. We suggest that Cav1, and/or the caveolae domain, is essential for the organisation of signalling pathways involved in the regulation of HMW adiponectin exocytosis, a function that is disrupted in Cav1/caveolae-depleted adipocytes.