Improvement of glucose homeostasis and hepatic insulin resistance in ob/ob mice given oral molybdate

B A Reul, D J Becker, L N Ongemba, C J Bailey, J-C Henquin and S M Brichard

Endocrinology and Metabolism Unit, University of Louvain, Faculty of Medicine, UCL 55.30, Avenue Hippocrate 55, B-1200 Brussels, Belgium and

1Department of Pharmaceutical and Biological Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK

Abstract

Molybdate (Mo) exerts insulinomimetic effects in vitro. In this study, we evaluated whether Mo can improve glucose homeostasis in genetically obese, insulin-resistant ob/ob mice. Oral administration of Mo (174 mg/kg molybdenum element) for 7 weeks did not affect body weight, but decreased the hyperglycaemia (~20 mM) of ob/ob mice to the levels of lean (+/+) mice, and reduced the hyperinsulinaemia to one-sixth of pretreatment levels. Tolerance to oral glucose was improved: total glucose area was 30% lower in Mo-treated mice than in untreated ob/ob mice (O), while the total insulin area was halved. Hepatic glucokinase (GK) mRNA level and activity were unchanged in O mice compared with L mice, but the mRNA level and activity of L-type pyruvate kinase (L-PK) were increased in O mice by 3.5- and 1.7-fold respectively. Mo treatment increased GK mRNA levels and activity (by 2.2-fold and 61% compared with O values), and had no, or only a mild, effect on the already increased L-PK variables. mRNA levels and activity of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK) were augmented in O liver (sixfold and by 57% respectively), and these were reduced by Mo treatment. Insulin binding to partially purified receptors from liver was reduced in O mice and restored by Mo treatment. Despite this correction, overall receptor tyrosine kinase activity was not improved in Mo mice. Moreover, the overexpression (by two- to fourfold) of the cytokine tumour necrosis factor α (TNFα) in white adipose tissue, which may have a determinant role in the insulin resistance of the O mice, was unaffected by Mo. Likewise, overexpression of the ob gene in white adipose tissue was unchanged by Mo. In conclusion, Mo markedly improved glucose homeostasis in the ob/ob mice by an insulin-like action which appeared to be exerted distal to the insulin receptor tyrosine kinase step. The blood glucose-lowering effect of Mo was unrelated to overexpression of the TNFα and ob genes in O mice, but resulted at least in part from attenuation of liver insulin resistance by the reversal of pre-translational regulatory defects in these mice.

Journal of Endocrinology (1997) 155, 55–64

Introduction

Considerable interest is currently paid to drugs that could alleviate insulin resistance. Insulin-sensitizers such as thiazolidinediones (reviewed in Saltiel & Olefsky 1996) and insulin-mimickers such as vanadium salts (reviewed in Brichard & Henquin 1995) are particularly promising; they open new therapeutic perspectives for the management of type 2 (non-insulin-dependent) diabetes.

Besides vanadium, other trace elements have been shown to exhibit insulin-like properties (Rossetti et al. 1990, McNeill et al. 1991, Brichard & Henquin 1995, Ozcelikay et al. 1996). Evidence has recently been presented that molybdenum could affect glucose metabolism in vitro. Addition of molybdate (Mo) to the incubation medium of isolated hepatocytes stimulated glycolysis and accelerated glycogen degradation (Fillat et al. 1992). Mo also increased insulin receptor autophosphorylation and phosphorylation of its substrate (pp160) (Mooney & Bordwell 1992), and augmented glucose transport, oxidation and lipogenesis in adipocytes (Goto et al. 1992, Li et al. 1995a).

In vivo, oral Mo has little effect on plasma glucose concentrations in normal rats (D J Becker, AM Pottier and SM Brichard, unpublished data), but can markedly decrease blood glucose levels in rats made insulin-deficient and diabetic by injection of streptozotocin (Li et al. 1995b, Ozcelikay et al. 1996). The potential beneficial effects of Mo have not been explored in an animal model of type 2 diabetes.

In this study, we administered oral Mo to genetically obese, hyperinsulinaemic and insulin-resistant ob/ob mice given oral molybdate
ob/ob mice for 7 weeks, and evaluated parameters of glucose homeostasis and the expression of genes coding for key enzymes involved in hepatic glucose metabolism (glycolysis/gluconeogenesis). We also investigated whether Mo modified the expression of two genes in white adipose tissue that have an important role in the obese insulin-resistant syndrome: ob and tumour necrosis factor α (TNFα).

Materials and Methods

Animals

Obese hyperglycaemic (ob/ob) (male and female; 9–15 weeks old; 84 ± 2 g) and lean homozygous (+/+) (male only; 11–15 weeks old; 44 ± 2 g) mice were obtained from the colony of Aston University (Birmingham, UK). The sex of obese mice did not influence the severity of their diabetes. The animals were housed in individual cages at a constant temperature (22 °C) with a fixed 12 h light:12 h darkness cycle (lights on 0700–1900 h). Standard laboratory chow in powdered form (A03, Usine d’Alimentation Rationnelle, Villemoisson-sur-Orge, France) composed of (wet weight): 50% carbohydrate, 5% fat, 23% protein and 22% water–minerals–cellulose was available ad libitum to all mice.

Experimental design

The mice were divided into three experimental groups: lean mice (L; n=14); untreated obese mice (O; n=16); obese mice treated with molybdate (Mo; n=13). In preliminary experiments performed in normal (lean) Wistar rats, we found no difference in basal and stimulated (after an oral glucose test) glycaemia between treated and untreated animals (D J Becker, unpublished data); a group of lean mice treated with Mo was therefore not included in the present study. At 0 week, the ob/ob mice (O and Mo groups) were matched for initial body weight (O: 81 ± 2 g; Mo: 82 ± 3 g) and fed plasma glucose levels (O: 15.6 ± 1.8 mm; Mo: 14.3 ± 1.5 mm). They were also matched, as seen a posteriori, for fed plasma insulin concentrations (O: 10.5 ± 1.7 nm; Mo: 12.8 ± 2.6 nm). To partially overcome an initial aversion to molybdate and ensure long-term fluid and food intake, the treated group received increasing amounts of sodium molybdate (Na2MoO4·2H2O, Merck, Darmstadt, Germany) in food and in two different drinking solutions consisting of either distilled water empirically supplemented with 85 mM NaCl or water slightly flavoured with cocoa. The solutions were freshly prepared every 3rd day. The initial concentration of sodium molybdate (0.2 g/l in solutions and 0.375 g/kg in food) was progressively increased to 1.5 g/l and 3.0 g/kg in drinking fluid and food respectively after 4 weeks, and then remained unchanged until the end of the study (Fig. 1). The progressive increase in Mo concentrations and the maximal dose reached after 4 weeks (mg/kg body weight) were based on our previous studies in insulinopenic animals (A T Ozcelikay, unpublished data, Ozcelikay et al. 1996). The drinking solutions of O mice contained the same amount of NaCl or cocoa as the treated solutions.

Sampling and tests

On several occasions, tail vein blood was collected from fed mice (between 0830 and 0900 h) for determination of plasma glucose and insulin levels. All mice underwent an oral glucose tolerance test (OGTT) after 5 weeks of treatment. On the day before the test, food was removed at 1800 h. The test started at 0830 h. For the OGTT, glucose (40% in water) was introduced directly into the stomach through a fine gastric catheter at a dose of 2 g/kg body weight. Mice were gently wrapped in a towel to restrain them during injections or blood samplings.

After 7 (i.e. between 7 and 8) weeks of treatment, the mice were killed by decapitation between 0130 h and 0430 h (i.e. in the absorptive state). Blood samples were saved for determination of plasma glucose, insulin and non-esterified fatty acids (NEFA). Pancreas, liver and pairs of epididymal and inguinal fat pads were immediately removed, frozen in liquid nitrogen and stored at −70 °C for insulin or RNA extraction and enzyme measurements.

RNA extraction and Northern blot analysis

Total RNA was isolated with an acid guanidinium–thiocyanate–phenol–chloroform mixture after removal of liver glycogen as described previously (Ozcelikay et al. 1996). The concentration of RNA was determined by absorbance at 260 nm. At 260/280 nm, all samples had an absorbance ratio of about 1.8. For Northern blot analysis, RNA (15 µg for white adipose tissue, 30 µg for liver) was denatured in a solution containing 2:2 mM formaldehyde and 50% formamide (v/v) by heating at 95 °C for 2 min. RNA was then size-fractionated by 1% agarose gel electrophoresis, transferred to a Hybond-N membrane (Amersham International, Amersham, Bucks, UK) and cross-linked by ultraviolet irradiation. The integrity and relative amounts of RNA were assessed by methylene blue staining of the blot.

The cDNA probes were kindly supplied by Dr P Iynedjian for glucokinase (GK) (Iynedjian et al. 1987), Dr A Kahn for pyruvate kinase (L-PK) (Simon et al. 1983), Dr R W Hanson for phosphoenolpyruvate carboxykinase (PEPCK) (Yoo–Warren et al. 1983), Dr B Thorens for glucose transporter isoform (GLUT) 2 (Thorens et al. 1988), Dr W Fiers for TNFa (Fransen et al. 1985) and Dr D E James for GLUT4 (James et al. 1989). The ob cDNA probe was prepared as described previously (Becker et al. 1995). Probes were labelled with 32P using the
Multiprime labelling system kit (Amersham). Hybridizations with GK, L-PK, PEPCCK, GLUT2, GLUT4 or ob probes and subsequent washings of the membranes were performed as reported earlier (Becker et al. 1995, Ozcelikay et al. 1996). Hybridization with the TNFα probe was similar to that of PEPCCK. The filters were thereafter exposed to Kodak X-OMAT AR films for 2–48 h at −70 °C with intensifying screens. The same filters were successively hybridized with the different radiolabelled cDNA probes. Intensity of the mRNA bands on the blots was quantified by scanning densitometry (Ultrascan XL, LKB, Sweden). To verify that equivalent amounts of total RNA were loaded on each lane, blots were hybridized with a synthetic oligonucleotide specific for ribosomal 18S RNA (Chan et al. 1984).

Measurements of enzyme activities

The activities of GK (EC 2.7.1.1), L-PK (EC 2.7.1.40) and PEPCCK (EC 4.1.1.32) were measured at 37 °C, as described previously (Brichard et al. 1993, Ozcelikay et al. 1996). Results were expressed as milliunits (mU) enzyme per mg protein of liver cytosolic fraction, 1 mU enzyme being defined as that amount which catalyses the conversion of 1 nmol substrate per min under the assay conditions.

Preparation of insulin receptors, binding studies and tyrosine kinase activity assay

Insulin receptors were solubilized and partially purified with wheat germ–agglutinin–agarose beads (Le Marchand-Brustel et al. 1985, Heydrick et al. 1993) from homogenates of 350 mg liver tissue. Yields of glycoprotein were similar in the three groups of mice. Aliquots of receptor preparations (6 µg protein) were incubated in Hepes–NaCl buffer and BSA (0.1%) containing 125I-labelled insulin (Amersham) in the absence and presence of increasing concentrations of unlabelled insulin. After 2 h at 20 °C, insulin–receptor complexes were separated from free insulin by precipitation with polyethylene glycol (Le Marchand-Brustel et al. 1985). Non-specific binding (<5%) was defined as the radioactivity precipitated in the presence of 1 µM unlabelled insulin. The dissociation constant (Kd; reciprocal of the affinity) and the insulin-binding capacity (receptor number) were calculated by regression analysis of the Scatchard plot.

Phosphorylation of poly(Glu4Tyr1) by the insulin receptor kinase was measured as described previously (Le Marchand-Brustel et al. 1985). Partially purified insulin receptors were incubated for 1 h at 20 °C in HEPES–NaCl buffer and BSA (0.2%) with and without 10−7 M insulin. Poly(Glu4Tyr1) (final concentration 0.25 mg/ml) was then added for an additional 30 min before initiation of the phosphorylation reaction by addition of the ATP mixture (20 µM [γ32P]ATP, 2.5 µCi, 4 mM MnCl2, 8 mM MgCl2, final concentrations). After 20 min, the reaction was stopped by applying samples to Whatman ET 31 filters and soaking the papers in 10% (w/v) trichloroacetic acid containing 10 mM sodium pyrophosphate. Radioactivity incorporated into the substrate was quantified by Cerenkov counting.

Analytical procedures

Plasma glucose was measured by a glucose oxidase method (Glucose Analyzer, Beckman, Fullerton, CA, USA). Plasma insulin was determined by a double-antibody radioimmunoassay, using rat insulin as standard (Novo Research Institute, Bagsvaerd, Denmark). Plasma NEFAs were assayed by a spectrophotometric method using a commercial kit (Wako Chemicals GmbH, Neuss, Germany). Pancreatic insulin was extracted by homogenization and sonication of the tissue in acidified ethanol. Liver glycogen was measured after extraction with KOH, precipitation in ethanol and hydrolysis with α-amyllo-glucosidase.

Statistical analysis

Results are presented as means ± s.e. for the indicated numbers of mice. Comparisons between lean, untreated ob/ob and Mo-treated ob/ob mice were carried out by analysis of variance followed by the Newman–Keuls test for multiple comparisons. Differences were considered statistically significant at P<0.05.

Results

Body weights of the three groups of mice remained stable throughout the study. O mice were twice as heavy as L mice, and their body weight was unaffected by Mo treatment (Fig. 1).

Average fed plasma glucose levels of O mice were typically about 15–20 mM, being two- to threefold higher than those of L mice. Mo administration induced a concentration–dependence decrease in glycaemia. After 2 weeks of treatment, plasma glucose levels of Mo mice were already significantly lower than those of O mice (P<0.05) and decreased to values similar to those in L mice from the 4th week onward (Fig. 1) when the maximal amounts of Mo were supplied in the food and drinking fluid. Daily food intake was ~2.6-fold higher in O than in L mice (8.8 ± 0.9 compared with 3.4 ± 0.1 g/day; P<0.001) and was not significantly reduced in Mo mice (7.6 ± 0.5), whereas the polydipsia of O mice (15.3 ± 2.4 ml/day compared with 5.2 ± 0.4 ml/day in L mice; P<0.001) was significantly attenuated by the treatment (to 9.1 ± 0.5 ml/day; P<0.01). Thus, at week 4, daily consumption of molybdenum element per mouse averaged 174 ± 9 mg/kg body weight.
Average fed plasma insulin levels of O mice (11·1 ± 0·9 nM) were ∼25-fold higher than those of L mice (0·5 ± 0·1 nM). The decrease in insulinaemia induced by Mo was concomitant with the decrease in glycaemia, and the concentrations reached at the end of the study were not different from those in L mice (Fig. 1). Mo-induced changes in glycaemia and insulinaemia were also observed when the animals were in an absorptive state (measurements at 0200–0400 h; stippled area in Fig. 1).

As reported previously (Lombardo et al. 1983), plasma NEFA levels were similar in O and L mice (0·19 ± 0·01 g/l and 0·21 ± 0·01 g/l respectively; n= 14–16; values obtained at the end of the study). They were unchanged by administration of Mo (0·20 ± 0·02 g/l; n= 13).

After an overnight fast (time zero of the OGTT), plasma glucose levels of Mo mice were lower than those of O mice (7·1 ± 0·5 compared with 12·6 ± 1·7 mm, P<0·01), and were approaching the values in L mice (4·8 ± 0·3 mm) (Fig. 2). Fasting plasma insulin levels of Mo mice were reduced by ∼50% compared with those of O mice (0·7 ± 0·2 compared with 1·5 ± 0·3 nM; P<0·01), but remained higher than those of L mice (0·06 ± 0·01 nM; P<0·05) (Fig. 2).

During the OGTT, plasma glucose levels remained less than 15 mm in L mice, but increased to more than 30 mm and remained increased throughout the test in O mice (Fig. 2). In Mo mice, glucose concentrations were consistently lower (P<0·05 or less) than in O mice and decreased to similar values as in L mice at 120 min. Total glucose area (above zero level) in Mo mice was 33% smaller than in O mice (P<0·01), but remained greater than that in L mice (Fig. 2). Plasma insulin levels of L mice were less than 0·2 nM, and a significant ∼2·2-fold increase was observed between 0 min and each time point of the OGTT (P<0·001 or less by paired t-test; scarcely visible in Fig. 2). Insulinaemia of O mice was markedly increased at all time points (8- to 24-fold), but did not increase further in response to glucose. Hyperinsulinaemia was consistently reduced by Mo treatment (P<0·05 or less compared with O mice), although the response at 30 min was not significantly restored. Total insulin area was 11-fold higher in O than in L mice and was reduced by ∼50% after administration of Mo.

Pancreatic insulin reserves (nmol/pancreas) were similar in L and O mice (19·4 ± 1·2 and 15·4 ± 3·6 respectively) and about twofold higher in Mo-treated animals (41·3 ± 4·7 nmol/pancreas; P<0·01).

Hepatic glycogen stores were not modified in the O mice (56·7 ± 2·2 mg/g liver compared with 56·1 ± 2·3 mg/g liver in L mice), but the expression of certain genes involved in key steps of glucose metabolism was altered. The abundance of GK mRNA was not modified in the liver of O mice (~71% of control L mice), whereas that of L-PK mRNA was markedly increased (~350% of L mice) (Fig. 3). Accordingly, the activities of GK and

Figure 1 Effects of molybdate treatment on body weight, plasma glucose and insulin levels of the ob/ob mice. Three groups were studied: untreated lean (L) mice, untreated ob/ob (O) mice, and ob/ob mice treated with molybdate (Mo). Molybdate was given as increasing amounts of Na2MoO4·2H2O in drinking solutions and in food. All measurements were made between 0830 and 0900 h except those in the stippled area (0200–0400 h). Values are the mean ± s.e.m. for 14, 16 and 13 mice in the respective groups.
L-PK were unchanged or augmented in O mice (Fig. 3). Mo treatment did not influence hepatic glycogen (54·0 ± 3·3 mg/g), increased GK mRNA and activity (by 120% and 61% compared with O values), and had no, or only a mild, effect on the already increased levels of L-PK mRNA and activity (Fig. 3). mRNA levels and activity of the gluconeogenic enzyme, PEPCK, were increased in the liver of O mice (sixfold and 57% respectively), but were corrected by Mo treatment (Fig. 3). GLUT2 mRNA concentrations were augmented 4·7-fold in O mice, but were unaltered by treatment with Mo (Fig. 3). Hepatic 18S rRNA levels were similar in the three groups of mice (data not shown).

Partially purified insulin receptors were prepared from liver of the three groups of mice. As described previously (Kahn et al. 1973), insulin binding was decreased by 230% in O mice compared with L mice. At variance with another study in ob/ob mice from the same colony (Lord et al. 1983), Scatchard analysis of the present data indicated that this decrease was due mainly to a reduction in binding affinity (K_d 0·25 ± 0·04 nM) (Fig. 4). Insulin receptor tyrosine kinase activity was measured towards the copolymer poly(Glu4Tyr1), and expressed as pmol 32P incorporated per min per mg of glycoprotein present in the receptor preparations. Basal tyrosine kinase activity measured in the absence of insulin was similar in all groups (L: 49 ± 4, O: 48 ± 4, Mo: 54 ± 5). Likewise, there was no difference in stimulated tyrosine kinase activity, measured in the presence of 10^{-7}M insulin, between the groups (L: 68 ± 5, O: 68 ± 8, Mo: 70 ± 7).

We next examined whether Mo treatment of obese mice modified the abnormal expression of genes which are believed to have a determinant role in the pathogenesis of the obese insulin-resistant syndrome. Expression of the ob gene was increased by 44% and 113% in epididymal and inguinal white adipose tissue of O mice, and was unaffected by Mo treatment (Fig. 5). The cytokine TNFα was also overexpressed in both adipose tissue sites (four- and twofold) and remained unchanged in Mo mice (Fig. 5). GLUT4 mRNA was decreased in epididymal adipose...
tissue of O mice, and was again unmodified by Mo administration. There was no significant difference in GLUT4 mRNA in inguinal fat pads of the three groups (Fig. 5).

Discussion

The present study has shown that molybdate is an effective antihyperglycaemic agent in obese-diabetic animals with severe insulin resistance. The blood glucose-lowering action of Mo was marked and sustained, and observed both during an oral glucose load and under basal conditions. It was associated with a substantial reduction of hyperinsulinaemia and an apparent increase in pancreatic insulin stores. The glucose-lowering effect of Mo may be partly related to attenuation of hepatic glucose production (and possibly also to increased glucose usage), but appears to be unrelated to the overexpression of the TNFα and ob genes.

Mutation of ob leads to undetectable plasma levels of ob protein (leptin) (Halaas et al. 1995) and increased mRNA concentrations – as part of a feedback loop – (Zhang et al. 1994), and results in profound obesity with a non-insulin-dependent form of diabetes. Injection of leptin to ob/ob mice reduces ob mRNA (Pelleymounter et al. 1995), and produces dose-dependent weight loss and decreases in serum insulin and glucose levels (Halaas et al. 1995, Slier et al. 1996). Leptin-induced improvement of diabetes appears to result in part from intrinsic effects of the hormone on glucose metabolism, but also from weight loss (Schwartz et al. 1996). Whatever the exact mechanisms, those involved in Mo action appear to be totally different, as treatment with the element improves glucose homeostasis independently from changes in body weight and ob expression.

Recent data suggest that TNFα also has a key role in the pathogenesis of the obese insulin-resistant syndrome. TNFα expression is increased in the adipose tissue in human type 2 diabetes and in many experimental models of obesity (including the ob/ob mice) (Hotamisligil & Spiegelman 1994). In one of these models, neutralization of TNFα improved insulin sensitivity by increasing
In the liver of ob/ob mice, the activities of the key glycolytic enzyme L-PK, and the gluconeogenic enzyme PEPCK were increased. This is in keeping with the acceleration of both the glycolytic and gluconeogenic pathways found in most (Seidman et al. 1967, Kreutnner et al. 1975, Hue & van de Werve 1982), but not all (Ferber et al. 1994), reports on the liver of these mice. In the present study, evidence that these abnormalities were mediated at the pre-translational level is further presented by the increased mRNA levels. As GK mRNA was unchanged and PEPCK mRNA augmented in spite of hyperinsulinaemia, the insulin-induced regulation of these two genes, but not of L-PK, appears to be impaired in ob/ob mice. This is in agreement with a recent observation in another animal model of type 2 diabetes (Noguchi et al. 1993). Mo treatment decreased the hyperinsulinaemia of ob/ob mice, increased GK mRNA and decreased PEPCK mRNA, thereby leading to a possible enhancement of hepatic glucose usage and to inhibition of glucose overproduction. This suggests a reversal of liver insulin resistance at the pre-translational level.

We next determined whether the action of Mo on the liver was mediated by insulin receptor or post-receptor events. Insulin binding was decreased in O mice, as reported previously (Kahn et al. 1973), and was restored by Mo treatment. In spite of this correction, overall tyrosine kinase activity was not improved. As far as in vitro assays may reflect in vivo changes, these data taken together suggest that the improvement of glucose homeostasis brought about by Mo may occur distal to the insulin receptor tyrosine kinase step. Similar conclusions were reached for the effects of vanadate in ob/ob mice (Meyerovitch et al. 1991).

GLUT4 and hexokinase II mRNA were unaltered in heart and hind-limb skeletal muscle of O mice and unchanged by Mo treatment (B Reul, unpublished data). As other factors have a determinant role in muscle insulin resistance (such as functional defects of GLUT4) (Kahn 1992), the possibility that the antidiabetic properties of Mo can also be ascribed to an insulin-like action on this tissue cannot be ruled out. By contrast, GLUT4 mRNA levels were decreased in epididymal white adipose tissue of O mice (Brichard et al. 1991). These low levels were not corrected by Mo treatment. Thus there was no conclusive evidence for an insulin-like effect of Mo in adipose tissue in vivo. Similarly, the altered expression of TNFα was unmodified. This absence of effects in white adipose tissue is in line with the lack of change in adipose tissue metabolism of streptozotocin-diabetic rats treated with molybdate or of ob/ob mice treated with vanadate (Brichard et al. 1990, Ozcelikay et al. 1996).

An effect of Mo on pancreatic β-cells must also be considered. The β-cell population of obese mice is initially greater than that in lean mice, but declines markedly with advancing age and diabetes (Bailey et al. 1982). At the end of the study, the pancreatic insulin content was twofold lower in O mice than in L mice (B Reul, unpublished data). Such a result is consistent with the decrease of glucose transport into muscle and adipose tissue already described above, and with the impaired insulin action on the liver, as well as with the pertinent observations made on another mouse strain, the db/db (Brichard et al. 1995).

Several other mechanisms could, theoretically, contribute to the improvement of glucose homeostasis induced by Mo. An inhibition of intestinal glucose reabsorption is unlikely to be the sole explanation because the action of Mo was detectable in fasted and in fed rats. A reduction in NEFA levels, with subsequent attenuation of the glucose–fatty acid cycle (Randle et al. 1963), may also be excluded, because plasma NEFA concentrations were unaffected by the treatment. An insulin-like action similar to that described in vitro may be of major importance in the in vivo effects of Mo. This is supported by the significant decrease in blood glucose levels coupled with a marked lowering of the hyperinsulinaemia, and by the significant effects on hepatic glucose regulatory enzymes described below. Our in vivo observations, however, contradict the report that Mo stimulates glycogen degradation in isolated hepatocytes (Fillat et al. 1992).

Figure 4 Scatchard plots of insulin binding to receptors partially purified from liver of lean (L), untreated ob/ob (O) and molybdate-treated ob/ob (Mo) mice. Specific binding was normalized to protein concentration in the wheat germ eluate. Values are the means ± S.E.M. for 11 different mice per group.
higher in ~5-month-old obese mice treated with Mo than in untreated O mice. We interpret this higher content as a sparing effect by the element. Indeed, the attenuation of insulin resistance by Mo may decrease the needs for endogenous insulin and preserve the stores of the hormone.

Although the effects of Mo on glucose metabolism are reminiscent of those produced by vanadate in ob/ob and db/db mice (Brichard et al. 1990, Meyerovitch et al. 1991), they may not be identical. First, vanadate and molybdate inhibit different phosphotyrosine phosphatases, ultimately to activate a similar non-insulin-dependent cytosolic tyrosine kinase, which is believed to mediate their effects (Li et al. 1995a). Hence, the trigger of the insulin-like cascade would be different. Secondly, the insulin-like properties of vanadate and molybdate have been found to be synergistic in vitro (Mooney & Bordwell 1992). If this should be confirmed in vivo, it would carry significant therapeutic potential.

There were no toxic side-effects of Mo on renal or hepatic function in streptozotocin-diabetic rats chronically treated with the element (Ozcelikay et al. 1996). Recent clinical studies with vanadium compounds have also been encouraging. Two or three weeks of treatment of human type 2 diabetic patients with small doses of these agents improved the inhibition of hepatic glucose production by insulin and the stimulation of peripheral glucose disposal (Cohen et al. 1995, Goldfine et al. 1995). Whether Mo could be alternative or complementary to vanadium therapy remains speculative. Further animal studies are warranted.

In conclusion, Mo proved to be an effective blood glucose-lowering agent in severely diabetic and insulin-resistant mice by an insulin-like action which involved post-insulin receptor tyrosine kinase events. Its anti-hyperglycaemic effects were unrelated to changes in TNFα and ob overexpression, but resulted partly from attenuation of liver insulin resistance subsequent to reversal of altered pre-translational regulatory mechanisms.

Figure 5 Influence of molybdate treatment on ob, TNFα and GLUT4 mRNA, and 18S rRNA levels in epididymal and inguinal white adipose tissue (Wat) of ob/ob mice. Values are the means ± S.E.M. for five to eight lean (L), untreated ob/ob (O) mice and molybdate-treated ob/ob (Mo) mice. mRNA and rRNA levels were quantified by scanning densitometry of autoradiographic signals obtained from Northern blots as shown in the inserts. The results are expressed as percentages of values in L mice. *P<0·05, **P<0·01 compared with L mice.

Journal of Endocrinology (1997) 155, 55–64

Figure 5 Influence of molybdate treatment on ob, TNFα and GLUT4 mRNA, and 18S rRNA levels in epididymal and inguinal white adipose tissue (Wat) of ob/ob mice. Values are the means ± S.E.M. for five to eight lean (L), untreated ob/ob (O) mice and molybdate-treated ob/ob (Mo) mice. mRNA and rRNA levels were quantified by scanning densitometry of autoradiographic signals obtained from Northern blots as shown in the inserts. The results are expressed as percentages of values in L mice. *P<0·05, **P<0·01 compared with L mice.
Acknowledgements

We thank Drs W Fiers (Ghent, Belgium), R W Hanson (Cleveland, OH, USA), P Iynedjian (Geneva, Switzerland), D E James (St Louis, MO, USA), A Kahn (Paris, France) and B Thorens (Lausanne, Switzerland) for kindly providing us with the cDNA probes used in this study. We are grateful to Dr J P Desager for NEFA measurements, to Mrs A M Pottier for skilled assistance and to Professor R De Hertogh for ultracentrifuge facilities. This work was supported by grants from the Foundation of Scientific and Medical Research (3·4513.93), the Fund for Scientific Development (University of Louvain) and the Fonds S and J Pirart (A B D). S M B is Chercheur Qualifié of the Fonds National de la Recherche Scientifique.

References

Hue L & van de Werve G 1982 Increased concentration of fructose 2,6-bisphosphate in livers of genetically obese mice. FEBS Letters 145 263–266.

insulin is differentially impaired in the liver of the genetically
Ozcelikay AT, Becker DJ, Ongemba LN, Pottier AM, Henquin JC &
Brichard SM 1996 Improvement of glucose and lipid metabolism in
diabetic rats treated with molybdate. American Journal of Physiology
270 E344–E352.
Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D,
Boone T & Collins F 1995 Effects of the obese gene product on
Randle PJ, Garland PB, Hales CN & Newsholme EA 1963 The
glucose–fatty acid cycle: its role in insulin sensitivity and the
Rossetti L, Giaccari A, Klein-Robbenhaar E & Vogel LR 1990 The
insulin-like properties of trace elements and characterization of their
Saltiel AR & Olefsky JM 1996 Thiazolidinediones in the treatment of
Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D,
DS 1996 Specificity of leptin action on elevated blood glucose levels
and hypothalamic neuropeptide Y gene expression in ob/ob mice.
Diabetes 45 531–535.
Seidman I, Horland AA & Trebor GW 1967 Hepatic glycolytic and
gluconeogenic enzymes of the obese-hyperglycemic mouse.
Biochimica et Biophysica Acta 146 600–603.
Simon MP, Besmond C, Cottreau D, Weber A, Chaumet-Ruffaud P,
Dreyfus JC, Sala Trépat J, Marie J & Kahn A 1983 Molecular
cloning for rat L-type pyruvate kinase and aldolase B. Journal of
Biological Chemistry 258 14576–14584.
Sheker LJ, Sloop KW, Surface PL, Kriaucionas A, LaQuier F, Manetta
J, Bue-Valleskey J & Stephens TW 1996 Regulation of ob mRNA
and protein by glucocorticoids and cAMP. Journal of Biological
Chemistry 271 5301–5304.
Thorens B, Sarkar HK, Kaback HR & Lodish HF 1988 Cloning and
functional expression of a novel glucose transporter present in liver,
Yoo–Warren H, Monahan JE, Short J, Short H, Bruzel A,
Wynshaw-Boris A, Meisner HM, Samols D & Hanson RW 1983
Isolation and characterization of the gene coding for cytosolic
phosphoenolpyruvate carboxykinase (GTP) from the rat. Proceedings
of the National Academy of Sciences of the USA 80 3656–3660.
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L & Friedman
JM 1994 Positional cloning of the mouse obese gene and its human

Received 13 December 1996
Revised manuscript received 21 March 1997
Accepted 21 April 1997