Regulation of 11β-hydroxysteroid dehydrogenase type 1 in primary cultures of rat and human hepatocytes

M L Ricketts, K J Shoesmith¹, M Hewison, A Strain¹, M C Eggo and P M Stewart

Department of Medicine and ¹Liver Research Laboratories, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK

(Requests for offprints should be addressed to P M Stewart, Department of Medicine, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK)

Abstract

Two isozymes of the enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) are responsible for the interconversion of the active glucocorticoid, cortisol in man, (corticosterone in the rodent), to the inactive 11-keto metabolite, cortisone (11-dehydrocorticosterone). We have examined the regulation of type 1 11β-HSD (11β-HSD1) using primary cultures of rat and human hepatocytes, both of which express only 11β-HSD1. Only 11 oxo-reductase activity could be demonstrated in cultured hepatocytes (apparent K_m for cortisone 382 ± 43 nM in human hepatocytes, apparent K_m for 11-dehydrocorticosterone 14.6 ± 1.5 µM in rat hepatocytes). There exists a marked discrepancy between 11β-HSD oxo-reductase activity and 11β-HSD1 mRNA levels in cultured human hepatocytes and human liver. Thus oxo-reductase specific activity is much higher in the cultured hepatocytes (7.2 ± 0.01 nmoles cortisol/mg/h vs 0.89 ± 0.06 for whole liver homogenates) whilst the converse is true for steady state 11β-HSD1 mRNA levels (0.78 ± 0.02 vs 1.94 ± 0.07 in whole liver, 11β-HSD1/18S expressed as arbitrary units).

Carbenoxolone has a significant inhibitory effect on 11 oxo-reductase activity in both rat and human hepatocytes. However, there is clear species-specific regulation of 11 oxo-reductase activity by thyroid hormone (tri-iodothyronine (T₃), which increases 11 oxo-reductase activity in rat hepatocytes but has no effect on activity in human hepatocytes, and progesterone which inhibits activity in human hepatocytes, but has no effect on activity in rat hepatocytes. Neither T₃ nor progesterone altered 11β-HSD1 mRNA levels. A series of growth factors (hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, transforming growth factor β₁) were without effect on 11 oxo-reductase activity in cultured rat hepatocytes.

In contrast to homogenates of human liver, cultured hepatocytes express only 11β-HSD oxo-reductase activity. This is inhibited by carbenoxolone and shows species-specific regulation by T₃ and progesterone. Growth factors do not appear to regulate activity or expression of 11β-HSD1. The discrepant enzyme activity data and 11β-HSD1 mRNA expression in hepatocytes and whole liver could reflect unstable 11β-HSD1 oxo-reductase activity or, alternatively, an additional 11β-HSD oxo-reductase isoform in cultured hepatocytes.

Journal of Endocrinology (1998) 156, 159–168

Introduction

11β-Hydroxysteroid dehydrogenase (11β-HSD) (EC. 1.1.1.146) is the enzyme complex responsible for the interconversion of the active glucocorticoids cortisol (Kendall's compound F) in man and corticosterone (compound B) in the rodent, to their hormonally inactive 11-keto metabolites, cortisone (compound E) and 11-dehydrocorticosterone (compound A) respectively (Monder & Shackleton 1984). Two isozymes of 11β-HSD have been cloned and characterised. Type 1 11β-HSD was originally purified from rat liver microsomes (Lakshmi & Monder 1988), and subsequently both rat and human complementary DNAs have been isolated (Agarwal et al. 1989, Tamin et al. 1991). Human type 1 11β-HSD (11β-HSD1) is a reversible NADP/NADPH-dependent isozyme with a K_m for cortisol of 2.1 µM and a K_m for cortisone of 0.3 µM, suggesting that in vivo this isozyme behaves predominantly as an oxo-reductase, whilst type 2 11β-HSD (11β-HSD2) is a high affinity uni-directional dehydrogenase with a K_m for cortisol in man of 50 nM (Brown et al. 1993, Stewart et al. 1994). Type 2 11β-HSD cDNA has also been isolated from many species including human (Albiston et al. 1994) and rat (Zhou et al. 1995).

Recent studies have shown that mutations in the gene encoding 11β-HSD2 account for a unique form of inherited human hypertension, the syndrome of apparent mineralocorticoid excess (Mune et al. 1995, Wilson et al. 1995, Stewart et al. 1996). It is this type 2 isozyme of 11β-HSD which dictates specificity upon the
mineralocorticoid receptor (MR) (Edwards et al. 1988). In contrast, the type 1 11β-HSD isozyme is predominantly localized to glucocorticoid target tissues: liver, lung, gonad, and central nervous system (Whorwood et al. 1995). At these sites, modulation of 11β-HSD1 activity has been shown to regulate glucocorticoid hormone action (Whorwood et al. 1993a, Monder et al. 1994, Jamieson et al. 1995, Rajan et al. 1996).

Previous studies which addressed the regulation of 11β-HSD were largely carried out prior to the cloning of the second isozyme. In vitro studies evaluating the effects of thyroid hormone (tri-iodothyronine (T₃)) (Whorwood et al. 1993b), sex steroids (Low et al. 1993) and glycyrrehinic acid, the active component of liquorice (Monder et al. 1989) were carried out on rodent tissues or established cell lines, which are now known to express both isozymes of 11β-HSD. A classic example of this is the rodent kidney which, in contrast to human kidney expresses abundant amounts of both 11β-HSD types 1 and 2. In addition, clinical studies evaluating urinary cortisol metabolites have invariably been unable to dissect out alterations in the type 1 (liver) or type 2 (renal) enzyme (Stewart et al. 1993, Rodin et al. 1994).

11β-HSD1 is now established as a crucial pre-receptor signalling pathway for the glucocorticoid receptor and the regulation of this isozyme at a tissue level will have signalling pathway for the glucocorticoid receptor and the lines, which are now known to express both isozymes of 1989) were carried out on rodent tissues or established cell et al.

11β-HSD1 activity was largely carried out prior to the cloning of the second isozyme. In vitro studies evaluating the effects of thyroid hormone (tri-iodothyronine (T₃)) (Whorwood et al. 1993b), sex steroids (Low et al. 1993) and glycyrrehinic acid, the active component of liquorice (Monder et al. 1989) were carried out on rodent tissues or established cell lines, which are now known to express both isozymes of 11β-HSD. A classic example of this is the rodent kidney which, in contrast to human kidney expresses abundant amounts of both 11β-HSD types 1 and 2. In addition, clinical studies evaluating urinary cortisol metabolites have invariably been unable to dissect out alterations in the type 1 (liver) or type 2 (renal) enzyme (Stewart et al. 1993, Rodin et al. 1994).

11β-HSD1 is now established as a crucial pre-receptor signalling pathway for the glucocorticoid receptor and the regulation of this isozyme at a tissue level will have ramifications for glucocorticoid hormone action. With this in mind we have established an in vitro system to analyse further the regulation of 11β-HSD1.

Materials and Methods

Isolation and culture of hepatocytes

Primary rat hepatocytes were obtained from male Wistar rats weighing approximately 225 g. Normal human liver tissue, excess to surgical transplant requirements was obtained from the segmental graft liver programme, Queen Elizabeth Hospital, Birmingham, under guidelines approved by the local Hospital Ethical Committee. All patients were male and aged between 7 and 51 years old. Hepatocytes were isolated and maintained aseptically at 4 °C in preservation fluid (either University of Wisconsin or Euro–Collins) (Ismail et al. 1991). Cells were normally isolated 12 to 24 h after removal of the liver from the donor. Both rat and human hepatocytes were isolated via two-step collagenase perfusion (modification of the method developed by Seglen) (Seglen 1976, Strain et al. 1991). Viability of cells was assessed by trypan blue exclusion and was >85%. Percoll gradients were used in some preparations of human hepatocytes to improve cell viability.

Cells were plated at a density of 3 × 10⁵/ml on rat-tail collagen-coated dishes (35 mm) in 2 ml plating medium (Dulbecco’s modified essential medium (DMEM) and 10% newborn calf serum (NCS) (Gibco, Paisley, Scotland)). After approximately 1–2 h, attached cells were washed in phosphate-buffered saline (PBS) and refed with serum-free Williams E medium (Gibco) supplemented with 0.4 mM ornithine, 100 nM insulin, 100 U/ml penicillin and 100 µg/ml streptomycin. Cultures were incubated for 72 h at 37 °C in 5% CO₂/95% air and media were changed daily. Under these conditions rat hepatocytes could be cultured for up to a maximum of 7 days before they detached, and human hepatocytes could be cultured for 10–14 days. However, experiments were always performed 48–72 h after isolation, when the cells were at the peak of S-phase (Ismail et al. 1991). Each experiment was repeated with hepatocytes from three separate preparations, and in each case in triplicate.

Enzymatic analysis

Determination of Kₘ for 11 oxo-reductase in rat and human hepatocytes

Primary hepatocytes were incubated for 48 h in serum-free Williams E medium, after which the cells were incubated with various concentrations of substrate ranging from 50 nM–20 µM 11-dehydrocorticosterone (with [³H]11-dehydrocorticosterone as tracer) for 10 min. Similarly human hepatocytes were incubated with various concentrations of cortisone (0.01–2.5 µM, with [³H]cortisone as tracer). [³H]11-Dehydrocorticosterone and [³H]cortisone were synthesized in-house as previously described (Shimojo et al. 1996).

The steroids were extracted using dichloromethane, and run on TLC plates to separate the two steroids using 8:92, ethanol:chloroform as the mobile phase. TLC plates were scanned on a Bioscan imaging detector for 10 min and the fractional conversion of 11-dehydrocorticosterone to corticosterone, or cortisone to cortisol was calculated.

Regulation studies

Hepatocytes were pre-treated for 4 or 16 h with various factors, such as carbenoxolone, T₃, progesterone, and growth factors (hepatocyte growth factor (HGF), epidermal growth factor (EGF) basic fibroblast growth factor (bFGF), transforming growth factor β₁ (TGFβ₁)), followed by incubation with 1 µM 11-dehydrocorticosterone for 15 min with [³H]11-dehydrocorticosterone as tracer (rat), or 0.5 µM cortisone for 1 h with [³H]cortisone as tracer (human). At these substrate concentrations and time points product formation was linear, i.e. first order kinetics were maintained. The steroids were extracted as above, and the fractional conversion of 11-dehydrocorticosterone to corticosterone, or cortisone to cortisol was calculated. Dehydrogenase activity was assessed by incubating rat hepatocytes with concentrations of 0.1, 1 and 10 µM corticosterone with [³H]cortisone as tracer, or human hepatocytes with 0.1, 1 and 10 µM cortisol with [³H]cortisol as tracer for varying time intervals between 5 min and 16 h. No dehydrogenase activity was observed in either case.
Enzyme activity studies in liver homogenates Normal human liver tissue was homogenized and 100 μg/ml protein were incubated in 100 mM potassium phosphate buffer (pH 7-6), containing 200 000 d.p.m. [3H]cortisol, 0·5–2·5 μM cortisol, and 400 μM NADP for 1 h at 37 °C in a shaking water-bath (n=3, in triplicate).

Similarly, 11-oxo-reductase activity was assessed over a range of substrate concentrations (0·1–20 μM cortisone, with [3H]cortisone as tracer), in the presence of 400 μM NADPH for 1 h. The steroids were extracted as above and run on TLC.

Statistical analysis

In each case experimental data are described as the mean ± s.e.m. of three replicates of three different cultures. Data were compared using analysis of variance and Dunnet’s post hoc tests as appropriate, with significance set at P<0·05.

mRNA analysis

Total RNA was isolated from rat and human hepatocytes using RNAzol B (AMS Biotechnology Ltd, Oxon, UK) and a single-step extraction method based on that of Chomczynski and Sacchi (1987). Northern blot analysis was performed as previously described (Whorwood et al. 1993a). Briefly, 20 μg total RNA were electrophoresed in a 1·5% agarose/15% formaldehyde gel containing ethidium bromide in 1× MOPS (morpholinopropane-sulphonic acid buffer) (Sigma Chemical Company, Poole, Dorset, UK) at 100 mA for 4 h. RNA was transferred onto a nylon (Hybond N+) membrane (Amersham International) by oligonucleotide random priming of the excised cDNA fragment using a commercially available kit (Pharmacia, Uppsala, Sweden).

Results

Regulation studies used primary cultures of rat and human hepatocytes, both of which only convert the inactive metabolite cortisone in man, or 11-dehydrocorticosterone in the rodent, to the active form cortisol or corticosterone. In keeping with these enzyme activity results, reverse transcription (RT)-PCR studies (Whorwood et al. 1995) detected only type 1 11β-HSD expression in liver; type 2 11β-HSD was absent in liver and hepatocytes (data not shown).

Kinetic analysis of rat 11β-HSD 11-oxo-reductase activity revealed a low affinity enzyme. From Lineweaver-Burk plots we established the apparent Kₘ for 11-dehydrocorticosterone in rat hepatocytes to be 14±6 ± 1·5 μM (mean ± s.e., n=3 in triplicate), and 382 ± 43 nM for cortisone in human hepatocytes (Fig. 1).

Parallel Northern blot analyses and activity studies carried out on cultured human hepatocytes and whole human liver revealed discrepant results (Fig. 2). Specific activity (nmols cortisol formed/mg protein/h) was much higher in cultured hepatocytes (7·2 ± 0·01) compared with whole liver homogenates (0·89 ± 0·06) whilst the converse was true for 11β-HSD1 mRNA expression (11β-HSD1/18S, expressed as arbitrary units, 0·78 ± 0·02 for hepatocytes, 1·94 ± 0·07 for liver, P<0·001).

Screening studies were performed on both rat and human hepatocytes. Table 1 shows the effects of various factors on rat and human hepatocyte 11-oxo-reductase activity. As shown in Table 2, a series of putative regulatory factors including HGF, bFGF and TGFβ, were without effect on 11 oxo-reductase activity in rat hepatocytes. Initial experiments using relatively high doses of progesterone, T₃ and carbeneoxolone (CBX) indicated that progesterone inhibited activity in human hepatocytes but not in rat hepatocytes, whereas T₃ increased activity in rat, but not human hepatocytes. CBX significantly inhibited activity in both systems at 4 h pretreatment (Table 1).

The effects of T₃ and progesterone were further evaluated. There was an increase in 11β-HSD1 11-oxo-reductase activity following pre-incubation with T₃ (10⁻¹¹–10⁻⁷ M) for 16 h in rat hepatocytes (Fig. 3a). In human hepatocytes there was a dose-dependent decrease in oxo-reductase activity following incubation with progesterone for 16 h. The maximal effective dose of progesterone in this regard was 10⁻⁶ M (Fig. 4a). Despite these changes in enzyme activity no significant changes in rat 11β-HSD1 mRNA levels were observed following treatment
with thyroid hormone (Fig. 3b), and no significant changes were observed in human 11β-HSD1 mRNA levels following treatment with progesterone (Fig. 4b).

Further analysis of the effects of CBX on the inhibition of 11 oxo-reductase activity in rat hepatocytes can be seen in Table 3. At both 4 and 16 h pre-treatment there was significant inhibition of activity, but with doses of CBX greater than 10^-5 M. There was no change in type 1 11β-HSD mRNA levels (not shown). Similar results were observed with CBX on human hepatocytes following incubation for 4 h in the presence of 1 μM cortisoline (Moender & Shackleton 1984, Tannin et al. 1991, Brown et al. 1993, Albiston et al. 1994, Stewart et al. 1994). The liver, or type 1 isozyme of 11β-HSD behaves predominantly as an oxo-reductase in vivo generating cortisol from cortisone. This evidence comes from several sources. First, cortisol/cortisone affinity studies carried out on the expressed human 11β-HSD isozyme reveal a lower Km for cortisone than cortisol (Stewart et al. 1994). Secondly, selective venous catheterisation studies indicate low cortisone but high cortisol concentrations within the hepatic vein (Walker et al. 1992), in keeping with the observation that cortisone, taken by mouth, is rapidly converted to cortisol, with little or no change in circulating cortisone concentrations in the peripheral plasma (Stewart et al. 1990). Finally, recent experiments similar to those conducted herein on cultured rat hepatocytes have indicated high amounts of 11 oxo-reductase activity, with little or no dehydrogenase activity in intact cells (Jamieson et al. 1995).

The liver is known to express high levels of glucocorticoid receptors. Glucocorticoid receptors have 10–40 times lower affinity for cortisol compared with mineralocorticoid receptors which are not very abundant in the liver, and hepatic 11β-HSD is thought to be required to ensure adequate exposure of cortisol to these low affinity glucocorticoid receptors (Walker et al. 1995). Thus the presence of a 11β-HSD oxo-reductase ensures conversion of cortisone to cortisol and, therefore, adequate exposure to the glucocorticoid receptor. Primary cultures of hepatocytes are an excellent model to use to study the regulation of this enzyme (Jamieson et al. 1995) as they...
represent a pure source of type 1 11β-HSD as determined by RT-PCR studies. No type 2 11β-HSD is present within these cells. In contrast to the earlier studies of Jamieson et al. (1995), our experimental model involved both rat and human hepatocytes cultured on collagen-coated dishes in serum-free conditions. Experiments were performed within 72 h after cell isolation, which precludes overgrowth of other cell types and increases the likelihood that the hepatocytes themselves would deviate less radically from their physiological state within the animal than in longer-term cultures, where a progression of adaptive changes to in vitro conditions could be a possibility (Bissell & Guzelian 1980).

11 Oxo-reductase activity in rat hepatocytes was unaffected by cAMP (forskolin) and the growth factors HGF, bFGF and TGFβ1. cAMP regulates related hydroxysteroid dehydrogenases including 3β-HSD, 17β-HSD (Tremblay & Beaudoin 1993) and the type 2 isozyme of 11β-HSD (placenta but not kidney) (Pasquarette et al. 1996). Both HGF and TGFβ1 have profound effects on

<table>
<thead>
<tr>
<th>Percentage conversion A to B</th>
<th>4 h</th>
<th>16 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100·00 ± 5·59</td>
<td>100·00 ± 4·54</td>
</tr>
<tr>
<td>EGF (10⁻⁸ M)</td>
<td>101·56 ± 1·85</td>
<td>95·83 ± 4·93</td>
</tr>
<tr>
<td>CBX (10⁻⁵ M)</td>
<td>57·14 ± 12·45**</td>
<td>82·69 ± 6·52</td>
</tr>
<tr>
<td>Progesterone (2 × 10⁻⁵ M)</td>
<td>101·19 ± 1·50</td>
<td>105·34 ± 4·48</td>
</tr>
<tr>
<td>T₃ (10⁻⁷ M)</td>
<td>110·69 ± 4·48</td>
<td>127·99 ± 3·29**</td>
</tr>
<tr>
<td>Forskolin (10⁻⁵ M)</td>
<td>106·33 ± 0·77</td>
<td>106·37 ± 0·26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentage conversion E to F</th>
<th>4 h</th>
<th>16 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100·00 ± 3·92</td>
<td>100·00 ± 9·13</td>
</tr>
<tr>
<td>EGF (10⁻⁸ M)</td>
<td>103·34 ± 3·91</td>
<td>105·86 ± 2·60</td>
</tr>
<tr>
<td>CBX (10⁻⁵ M)</td>
<td>64·17 ± 1·01**</td>
<td>70·69 ± 1·21</td>
</tr>
<tr>
<td>Progesterone (2 × 10⁻⁵ M)</td>
<td>27·39 ± 1·18**</td>
<td>36·02 ± 1·72**</td>
</tr>
<tr>
<td>T₃ (10⁻⁷ M)</td>
<td>94·06 ± 2·57</td>
<td>109·95 ± 1·18</td>
</tr>
<tr>
<td>Forskolin (10⁻⁵ M)</td>
<td>107·45 ± 0·59</td>
<td>107·13 ± 2·24</td>
</tr>
</tbody>
</table>

**P<0·01 compared with control.

Table 2 The effect of HGF (1, 10, 50 and 100 ng/ml), bFGF (10 and 40 ng/ml) and TGFβ₁ (1 and 10 ng/ml) on 11 oxo-reductase activity in cultured rat hepatocytes. Results are means ± s.e. (n=3) and are expressed as percentage conversion of A to B (11-dehydrocortisol to cortisol) relative to control

<table>
<thead>
<tr>
<th>Percentage conversion A to B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth factor</td>
<td>Dose</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100·00 ± 2·42</td>
<td></td>
</tr>
<tr>
<td>HGF</td>
<td>1 ng/ml</td>
<td>113·60 ± 3·48</td>
</tr>
<tr>
<td>10 ng/ml</td>
<td>116·76 ± 2·91</td>
<td></td>
</tr>
<tr>
<td>50 ng/ml</td>
<td>105·94 ± 4·02</td>
<td></td>
</tr>
<tr>
<td>100 ng/ml</td>
<td>102·16 ± 5·92</td>
<td></td>
</tr>
<tr>
<td>bFGF</td>
<td>10 ng/ml</td>
<td>108·15 ± 1·88</td>
</tr>
<tr>
<td>40 ng/ml</td>
<td>107·23 ± 2·04</td>
<td></td>
</tr>
<tr>
<td>TGFβ₁</td>
<td>1 ng/ml</td>
<td>101·05 ± 3·00</td>
</tr>
<tr>
<td>10 ng/ml</td>
<td>103·97 ± 3·04</td>
<td></td>
</tr>
</tbody>
</table>

P>0·05 in all experiments.
Regulation of 11β-HSD in hepatocytes

(a)

% conversion A to B

<table>
<thead>
<tr>
<th>%</th>
<th>conversion A to B</th>
<th>T₃ [M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>40</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>10^{-7}</td>
</tr>
</tbody>
</table>

(b)

% conversion A to B

<table>
<thead>
<tr>
<th>%</th>
<th>conversion A to B</th>
<th>T₃ [M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>40</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>10^{-7}</td>
</tr>
</tbody>
</table>
hepatocyte growth and DNA synthesis (Braun et al. 1988, Strain et al. 1991), but in our rat hepatocyte culture system had no effect on 11β-HSD1 activity or expression and, by inference, no effect on glucocorticoid availability in vivo.

Previous studies have shown that CBX and glycyrrhetinic acid (GE) exert an inhibitory effect on 11β-HSD (Monder et al. 1989, Stewart et al. 1990, Whorwood et al. 1993a) but this is the first time that CBX has been shown to inhibit hepatic 11 oxo-reductase activity in vitro. High doses of CBX (10^{-4} M) were required to inhibit 11β-HSD1 oxo-reductase activity, in keeping with our earlier studies on the expressed 11β-HSD1 isozyme (Bujalska et al. 1997). Despite inhibition of activity, 11β-HSD1 messenger RNA levels did not change, suggesting competitive inhibition. We have previously demonstrated that the related compounds glycyrrhizic and glycyrrhetinic acids do inhibit 11β-HSD1 mRNA levels in vivo and in vitro (Monder et al. 1989, Whorwood et al. 1993a), but after culture for 24 h. There is no doubt that these liquorice derivatives are competitive inhibitors of the 11β-HSD proteins and more prolonged exposure of the hepatocytes to CBX may have resulted in an inhibition of mRNA levels. Clinically, the inhibition of hepatic 11β-HSD1 activity may explain why liquorice and its derivatives do not cause such a marked increase in the ratio of urinary cortisol/cortisone metabolites as seen in apparent mineralocorticoid excess (Stewart et al. 1990), the hypertensive condition caused by defective 11β-HSD2 activity. CBX has also been shown to increase hepatic insulin sensitivity, consistent with a fall in intra-hepatic glucocorticoid activation following inhibition of hepatic 11 oxo-reductase activity (Walker et al. 1995).

The experiments with T₃ revealed a discrepant action on rat and human 11β-HSD1, with an increase in oxo-reductase activity in rat hepatocytes, but not in human hepatocytes. Previous experiments with T₃ were carried out prior to the knowledge of two discrete 11β-HSD isoymes, and invariably studied only dehydrogenase activity. 11β-HSD dehydrogenase activity was decreased in rats treated with thyroid hormone in vivo, but T₃ had no effect on activity when added directly to homogenates in vitro (Koerner & Hellman 1964, Whorwood et al. 1993b), suggesting an indirect effect. In man, there is compelling data from urinary steroid measurements and plasma cortisol half-life studies that T₃ does alter 11β-HSD1 activity (increased reductase activity) (Hellman et al. 1961, Zumoff et al. 1983), but we could not demonstrate this in our culture system. It is possible that a more prolonged exposure to T₃ is required in man, or that the effect of T₃ is dependent upon secondary ‘circulating’ factors, as suggested in earlier publications (Whorwood et al. 1993a).

This species-specific regulation was also true for progesterone which inhibited human, but not rat 11 oxo-reductase activity. The minimal effective dose was in the micromolar range, a concentration which is clearly seen in stimulated human ovarian cycles, and compares favourably with doses used to evaluate 11β-HSD regulation in human granulosa-lutein cells (Clarke et al. 1995). Progesterone is known to act as a glucocorticoid agonist, and it is possible that its inhibition of 11β-HSD oxo-reductase activity within hepatocytes actually prevents tissue glucocorticoid excess at times of high circulating concentrations. The explanation for the differences between rat and human systems, however, is unclear. It is also of interest to note that progesterone markedly induces expression of both the type 1 and type 2 isozymes of 17β-HSD (Casey et al. 1994, Poutanen et al. 1995), one of the closest ‘relatives’ to 11β-HSD in the short-chain alcohol dehydrogenase superfamily (Krozowski 1992).

11β-HSD1 mRNA levels were detectable in RNA from hepatocyte cultures, though there is reduced expression compared with whole human liver. The specific activity data showed abundant oxo-reductase activity within cultured hepatocytes, but no dehydrogenase activity was detectable. This is very much in contrast to activity in liver homogenates where there is much less oxo-reductase activity, and more dehydrogenase activity, but it does emphasise the point made by others that in an intact cell system 11β-HSD1 is a reductase (Jamieson et al. 1995). In homogenates in vitro the enzyme can be driven in either direction with addition of co-factor, but for physiological regulation studies we would argue that intact cell systems should be used.

Notwithstanding this there appeared to be a discrepancy between the levels of 11 oxo-reductase activity and 11β-HSD1 mRNA levels in cultured hepatocytes compared with whole liver. Thus, despite impressive oxo-reductase activity in cultured hepatocytes, the converse was seen for 11β-HSD1 mRNA levels. One explanation for this discrepancy could be that hepatocytes in culture no longer perform de novo synthesis of 11β-HSD1 and the mRNA and/or protein present is that which is present when the hepatocytes were first isolated. This seems unlikely as we can demonstrate high levels of oxo-reductase activity for up to 14 days in primary culture. A further explanation is that the 11β-HSD1 oxo-reductase activity is highly unstable in homogenates in vitro. One

Figure 3 (a) Effects of 10^{-7}, 10^{-11} M T₃, on 11oxo-reductase activity in rat hepatocytes. The upper panel represents pre-treatment for 4 h, and the lower panel represents pre-treatment for 16 h. Results are expressed as percentage conversion of A to B (11-dehydro-corticosterone to corticosterone). *P<0.05, **P<0.01 compared with control. (b) Northern blot showing the expression of type 1 11β-hydroxysteroid dehydrogenase mRNA in cultured rat hepatocytes treated with various doses of T₃ (10^{-7}–10^{-11} M). Hybridization to 18S rRNA is also shown as a control.
could also speculate that the discrepant activity/mRNA data reflects the presence of another 11β-HSD isozyme, an isozyme which acts in vivo as a pure reductase. In keeping with this suggestion, several patients have been described with a 'polycystic ovary syndrome'-like phenotype, who show a defect in the conversion of cortisone to cortisol (Phillipou & Higgins 1985) but who do not have a mutation in the 11β-HSD1 gene (Nikkila et al. 1993).

We conclude that the hepatic isozyme of 11β-HSD is not regulated by EGF, bFGF, HGF or TGFβ1. CBX

Figure 4 (a) Effects of 16 h pre-incubation with progesterone (10⁻⁹–2 x 10⁻⁵ M) on 11 oxo-reductase activity in human hepatocytes. Results are means ± s.e., n=3 and are expressed as percentage conversion of E to F (cortisone to cortisol). *P<0·05, **P<0·01 compared with controls. (b) Northern blot showing the expression of type 1 11β-hydroxysteroid dehydrogenase mRNA in cultured human hepatocytes treated for 16 h with various doses of progesterone (10⁻⁶–2 x 10⁻⁵ M). Hybridization to 18S rRNA is also shown as a control.
Table 3. Effects of carbenoxolone (10^{-4}–10^{-7} M) on 11-oxo-reductase activity in rat hepatocytes after 4 and 16 h pre-treatment. Results are means±s.e. (n=3) and are expressed as percentage conversion of A to B (11-dehydrocorticosterone to corticosterone) relative to control. Also shown is the effect of carbenoxolone (10^{-5}–10^{-8} M) on 11-oxo-reductase activity in human hepatocytes when incubated with 1 μM E (cortisone) for 4 h. Results are means±s.e. (n=3) and are expressed as percentage conversion of E to F (cortisone to cortisol) relative to control.

<table>
<thead>
<tr>
<th>CBX (M)</th>
<th>4 h</th>
<th>16 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100·00 ± 6·99</td>
<td>100·00 ± 2·20</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>26·65 ± 14·01**</td>
<td>22·61 ± 4·09**</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>61·40 ± 14·19*</td>
<td>84·33 ± 5·58</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>106·30 ± 9·57</td>
<td>104·70 ± 1·83</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>121·37 ± 0·12</td>
<td>105·13 ± 0·41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100·00 ± 1·06</td>
<td></td>
</tr>
<tr>
<td>10^{-5}</td>
<td>65·03 ± 1·87**</td>
<td></td>
</tr>
<tr>
<td>10^{-6}</td>
<td>84·72 ± 3·46*</td>
<td></td>
</tr>
<tr>
<td>10^{-7}</td>
<td>99·34 ± 4·63</td>
<td></td>
</tr>
<tr>
<td>10^{-8}</td>
<td>97·05 ± 0·28</td>
<td></td>
</tr>
</tbody>
</table>

*P<0·05, **P<0·01 compared with control.

inhibits 11-oxo-reductase activity within both rat and human hepatocytes. T_3 increases 11-oxo-reductase activity in rat hepatocytes but not in human hepatocytes. The reverse is true for progesterone, i.e. no effect is seen in rat hepatocytes but activity is significantly inhibited in human hepatocytes. Our studies suggest that these effects are not mediated at a pre-translational level. There is a marked discrepancy between 11-oxo-reductase activity and 11β-HSD1 mRNA expression in cultured hepatocytes versus whole liver, and whilst this may reflect another isozyme of 11β-HSD, this requires further investigation. These results suggest that there is clear species-specific regulation of this isozyme of 11β-HSD in hepatocytes.

Acknowledgements

The authors would like to thank Mr Adrian Koegh for help with human hepatocyte preparations, Miss Kaljit Bratch for assistance in rat hepatocyte preparations, and Mrs Małgorzata Wilczynska for assistance in typing the manuscript.

References

Monder C, Stewart PM, Lakshmi V, Valentino R, Burt D & Edwards
CRW 1989 Licorice inhibits corticosterone 11β-dehydrogenase of rat
kidney and liver: in vivo and in vitro studies. Endocrinology 125
1046–1053.

Monder C, Miroff Y, Marandici A & Hardy M 1994
11β-Hydroxysteroid dehydrogenase alleviates glucocorticoid-
mediated inhibition of steroidogenesis in rat Leydig cells.
Endocrinology 134 1199–1204.

Mune T, Rogerson FM, Nikkila H, Agarwal AK & White PC 1995
Human hypertension caused by mutations in the kidney isozyme of

Nikkila H, Tannin GM, New MI, Taylor NF, Kalaitzoglou G,
Monder C & White PC 1993 Defects in the HSD11 gene
encoding 11β-hydroxysteroid dehydrogenase are not found in
patients with apparent mineralocorticoid excess or 11-oxoerdosterone
deficiency. Journal of Clinical Endocrinology and Metabolism 77
687–691.

Pasquarette MM, Stewart PM, Ricketts ML, Imaishi K & Mason JI
1996 Regulation of 11β-hydroxysteroid dehydrogenase type 2
activity and mRNA in human choriocarcinoma cells. Journal of
Molecular Endocrinology 16 269–275.

Phillipou G & Higgins BA 1985 A new defect in the peripheral
conversion of cortisone to cortisol. Journal of Steroid Biochemistry 22
435–436.

Poutanen M, Isomaa V, Peltoketo H & Vikho R 1995 Role of
17β-hydroxysteroid dehydrogenase type 1 in endocrine and
intracrine estradiol biosynthesis. Journal of Steroid Biochemistry and
Molecular Biology 55 525–532.

Rajan V, Edwards CRW & Seckl JR 1996 11β-Hydroxysteroid
dehydrogenase in cultured hippocampal cells reactivates inert
11-dehydrocortisosterone, potentiating neurotoxicity. Journal of
Neuroscience 16 65–70.

Hyperandrogenism of polycystic ovary syndrome: evidence of
dysregulation of 11β-hydroxysteroid dehydrogenase. New England

Seglen PO 1976 Preparation of isolated rat liver cells. In Methods in

Shimojo M, Whorwood CB & Stewart PM 1996 11β-Hydroxysteroid
dehydrogenase in the rat adrenal. Journal of Molecular Endocrinology
17 121–130.

Stewart PM, Wallace AM, Atherden SM, Shearing CH & Edwards
CRW 1990 Mineralocorticoid activity of carbenoxolone: contrasting
effects of carbenoxolone and licorice activity in man. Clinical
Science 78 49–54.

Stewart PM, Burra P, Shackleton CHL, Sheppard MC & Elias E 1993
11β-Hydroxysteroid dehydrogenase deficiency and glucocorticoid
status in patients with alcoholic and non-alcoholic chronic liver

Stewart PM, Murry BA & Mason JI 1994 Human kidney
11β-hydroxysteroid dehydrogenase is a high affinity
NAD-dependent enzyme and differs from the cloned type 1

Stewart PM, Krozowski ZS, Gupta A, Milford DV, Howie AJ,
Sheppard MC & Whorwood CB 1996 Hypertension in the
syndrome of apparent mineralocorticoid excess due to mutation of
the 11β-hydroxysteroid dehydrogenase type 2 gene. Lancet 347
88–91.

Strain AJ, Ismail T, Tsoubouchi H, Hishida T, Kitamura N, Ubara Y
& McMaster P 1991 Native and recombinant human hepatocyte
growth factor are highly potent promoters of DNA synthesis in
both human and rat hepatocyte. Journal of Clinical Investigation 87
1853–1857.

Tannis GM, Agarwal AK, Monder C, New MI & White PC 1991
The human gene for 11β-hydroxysteroid dehydrogenase. Journal of
Biological Chemistry 266 16653–16658.

Tremblay Y & Beaudon C 1993 Regulation of 3β-hydroxysteroid
dehydrogenase and 17β-hydroxysteroid dehydrogenase messenger
ribonucleic acid levels by cyclic AMP and phosphatidyl inositol

Walker BR, Campbell JC, Fraser R, Stewart PM & Edwards CRW
1992 Mineralocorticoid excess and inhibition of 11β-hydroxysteroid
dehydrogenase in patients with ectopic ACTH syndrome. Clinical
Endocrinology 37 483–492.

Walker BR, Connacker AA, Lindsay RM, Webb DJ & Edwards
CRW 1995 Carbenoxolone increases hepatic insulin sensitivity in
man: a novel role for 11-oxosteroid reductase in enhancing
glucocorticoid receptor activation. Journal of Clinical Endocrinology
and Metabolism 80 3155–3159.

Whorwood CB, Sheppard MC & Stewart PM 1993a Licorice inhibits
11β-hydroxysteroid dehydrogenase messenger RNA levels and
potentiates glucocorticoid hormone action. Endocrinology 132
2287–2292.

Whorwood CB, Sheppard MC & Stewart PM 1993b Tissue specific
effects of thyroid hormone on 11β-hydroxysteroid dehydrogenase
gene expression. Journal of Steroid Biochemistry and Molecular Biology
46 539–547.

Whorwood CB, Mason JI, Ricketts ML, Howie AJ & Stewart PM
1995 Detection of human 11β-hydroxysteroid dehydrogenase
isofoms using reverse-transcriptase-polymerase chain reaction and
localization of the type 2 isofrom to renal collecting ducts. Molecular
and Cellular Endocrinology 110 R7–R12.

Wilson RC, Krozowski ZS, Li K, Obeyesekere VR, Razzagh-Azar
M, Harbison MD, Wei QJ, Shackleton CHL, Funder JW & New
MI 1995 A mutation in the HSD11B2 gene in a family with apparent
mineralocorticoid excess. Journal of Clinical Endocrinology and
Metabolism 80 2263-2266.

Zhou MY, Gomez-Sanchez EP, Cox DL, Cosby D & Gomez-
Sanchez CE 1995 Cloning, expression and tissue distribution of the
rat nicotinamide adenine dinucleotide-dependent 11β-

Zumoff B, Bradlow HL, Levin J & Fukushima DK 1983 Influence of
throid hormone on the in vivo cortisol–cortisone equilibrium in

Received 18 February 1997
Revised manuscript received 10 June 1997
Accepted 3 September 1997

Journal of Endocrinology (1998) 156, 159–168

Downloaded from Bioscientifica.com at 10/23/2018 06:51:25AM via free access