Cortisol increases growth hormone-receptor expression in human osteoblast-like cells

D Swolin-Eide, A Nilsson1 and C Ohlsson
Research Center for Endocrinology and Metabolism, Department of Internal Medicine and 1Department of Hand Surgery, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden

(Requests for offprints should be addressed to D Swolin-Eide, Research Center for Endocrinology and Metabolism, Department of Internal Medicine, Sahlgrenska Hospital, S-413 45 Göteborg, Sweden)

Abstract
It is well known that high levels of glucocorticoids cause osteoporosis and that physiologic levels of growth hormone (GH) are required for normal bone remodeling. It has been suggested that glucocorticoids regulate GH-responses via the regulation of GH-receptor expression. The aim of the present study was to investigate whether cortisol plays a role in the regulation of GH-receptor expression in cultured human osteoblasts.

The effect of serum starvation and cortisol on GH-receptor expression was tested in human osteoblast (hOB)-like cells. Serum starvation for 24 h resulted in an increase in GH-receptor mRNA levels (90 ± 1% over control culture). Cortisol increased GH-receptor mRNA levels in a dose-dependent manner with a maximal effect at 10^{-6} M. The stimulating effect of cortisol on GH-receptor mRNA levels was time-dependent, reaching a peak 12 h after the addition of cortisol (126 ± 29% over control culture) and remaining up to 12 h later. The increase in GH-receptor mRNA levels was accompanied by an increase in 125I-GH binding which reached a maximum at 24 h (196 ± 87% over control culture).

In conclusion, glucocorticoids increase GH-receptor expression in hOB-like cells. Further studies are needed to clarify whether glucocorticoid-induced regulation of the GH-receptor is important in human bone physiology.

Introduction
Bone metabolism is regulated by a balance between bone resorption, caused by osteoclasts, and bone formation caused by osteoblasts. Clinical and experimental studies have demonstrated that growth hormone (GH) is important in normal bone remodeling. Patients with GH-deficiency have a decreased bone mineral density (Rosén et al. 1993) which can be reversed by long-term treatment with GH (Saggesse et al. 1993, Rosén et al. 1994). Furthermore, GH enhances bone turnover in young healthy male volunteers as well as in osteopenic postmenopausal women (Brixen et al. 1990, 1995). The mechanism for the stimulating effect of GH on the amount of bone is not fully understood. We and others have demonstrated that human osteoblast (hOB)-like cells express functional GH-receptors and that GH exerts an anabolic effect on the osteoblasts (Kassem et al. 1993, Morel et al. 1993, Nilsson et al. 1995). This indicates a direct stimulating effect of GH on bone formation.

Experimental studies have demonstrated that high concentrations of glucocorticoids result in a decrease in bone cell replication and collagen synthesis in calvarial explants (Canalis 1983). The mechanism for this inhibitory effect is not fully understood. Children with growth failure due to chronic glucocorticoid therapy have normal GH levels indicating the possibility of some degree of end organ insensitivity to GH (Robinson et al. 1995). It has therefore been suggested that glucocorticoids influence bone metabolism via a modulation of different components of the GH/insulin-like growth factor-I (IGF-I) system. Glucocorticoids decrease IGF-I expression in rat (McCarthy et al. 1990) and human osteoblasts (Swolin et al. 1996). Furthermore, several IGF-binding proteins (IGFBPs) which are known to modulate the bioactivity of IGF-I, are regulated by glucocorticoids. IGFBPs -3, -4 and -5 are decreased (Okazaki et al. 1994) while IGFBP-6 (Gabbitas & Canalis 1996) is increased by glucocorticoids in osteoblast cultures.

Glucocorticoids may also interact with the GH/IGF-I axis via a regulation of GH-receptor expression. Conflicting in vivo as well as in vitro results have been presented regarding the effects of glucocorticoids on GH-receptor expression. Glucocorticoids increase GH-receptor mRNA levels in the liver and in the growth plate of rabbits (Heinrichs et al. 1994) while they decrease GH-receptor mRNA levels in rat liver (Gabrielsson et al. 1995, Bennett et al. 1996). Glucocorticoids also increase the GH-binding
capacity of cultured rat osteosarcoma cells (Salles et al. 1994), rat pancreatic islet cells (Moldrup et al. 1993) and rat hepatocytes (Niimi et al. 1991). In contrast, King & Carter-Su (1995) demonstrated that glucocorticoids decrease GH binding to a mouse fibroblast cell line.

The interaction of GH and glucocorticoids in the regulation of human bone metabolism has not yet been fully investigated. The present study was therefore undertaken to investigate the effects of glucocorticoids on GH-receptor expression in hOB-like cells.

Materials and Methods

Cell culture

Cultured hOB-cells were isolated from trabecular bone by orthopedic surgery as previously described (MacDonald et al. 1984, Nilsson et al. 1995). The bone explants were minced into small bone chips, washed extensively in Dulbecco’s modified Eagle’s medium (DMEM)/F12 1:1 (Gibco, Paisley, Scotland, UK) and then transferred into either 75 or 162 cm² culture flasks (Costar, Cambridge, MA, USA). Cells were cultured in DMEM/F12, 1:1 with 10% v/v fetal calf serum (FCS; Gibco), gentamycin sulfate (50mg/l; Sigma, St Louis, MO, USA), L-glutamine (2mmol/l; Gibco), t-ascorbic acid (100 mg/l; Merck, KGaA, Darmstadt, Germany), in a humidified 5% CO₂:95% O₂ atmosphere (500 µg/l; Gibco), and then further diluted in DMEM (without phenol red (Gibco)) with 0.5% dextran-coated charcoal–stripped FCS (kindly provided by M Slootweg, The Netherlands). Cortisol (hydrocortisone, H–0135, Lot 44H9402) was first diluted in 99.5% ethanol (RPA II kit, Ambion, Austin, TX, USA), 25µg total cellular RNA were hybridized at 45 °C overnight with an 35S-labeled hGH-receptor riboprobe and then digested with RNase. The RNA–RNA hybrids were precipitated, re-suspended and separated on a 6% TBE–urea gel (Novex, San Diego, CA, USA). Signals from protected fragments were quantified using a PhosphorImager (Molecular Dynamics, Sunnyvale, CA, USA).

Preparation of nucleic acid

Total nucleic acids (TNA) were prepared according to the protocol described by Durnam & Palmiter (1983). RNA was isolated according to the method described by Chomczynski & Sacchi (1987).

GH-receptor probe

A 500 bp fragment of exon 10 of the human GH (hGH)–receptor gene (Nilsson et al. 1995) was used for the measurement of GH-receptor mRNA levels in hOB-like cells. 35S-labeled hGH-receptor antisense RNA probe was generated with Sp6 polymerase from an EcoRI linearized PGEM–7Z(+) plasmid. The hGH-receptor sense RNA probe was generated with T7 polymerase from a BamHI linearized plasmid.

RNase protection solution hybridization assay

Total nucleic acids (TNA) were prepared by homogenizing harvested cells with a polytron in a buffer containing 1% (w/v) SDS, 20 mM Tris–HCl (pH 7.5) and 4 mM EDTA. The homogenized cells were digested by an overnight proteinase–K treatment and total nucleic acids were prepared by subsequent phenol–chloroform extraction, according to the method described by Durnam & Palmiter (1983). The RNase protection solution hybridization assay was carried out according to the protocol described by Mathews et al. (1986). Protected RNA–RNA hybrids were precipitated with trichloroacetic acid, collected on glass fiber filters and counted in a scintillation counter. The signal was compared with a standard curve obtained by hybridization to known amounts of GH-receptor mRNA. The intra-assay coefficient of variation for the hGH-receptor assays was less than 10% in the range of 50–2500 amol RNA standard. The results were correlated to the DNA content measured according to the method of Labarca & Paigen (1980).

RNase protection assay

For the RNase protection assay followed by gel separation (RPA II kit, Ambion, Austin, TX, USA), 25 µg total cellular RNA were hybridized at 45 °C overnight with an 125I-hGH (I–125–013, Batch: XS 4208, XS 4325, Euro-Diagnostica, Malmö, Sweden) was repurified by gel filtration on a Sephadex G75 column equilibrated and eluted with phosphate buffer (0.05 mol/l) and 1% (w/v) BSA (Sigma). The cells were starved in 24-well dishes (Costar) for 10 to 12 h before the addition of cortisol, and were then preincubated at room temperature for 1 h with PBS supplemented with 1% (w/v) BSA. The liquid was discarded and labeled tracer added (100 000 c.p.m./ml) in PBS supplemented with 0.1% (w/v) BSA, incubated for 4 h at 24 °C. The incubation was terminated by washing the cells three times in ice cold PBS at 4 °C. Cells were solubilized in 2 × 125 µl NaOH (1 M) and counted in a gammacounter (LKB 1277 Gammamaster, Sweden). All calculations were carried out in quadruplicate.

Statistical procedure

Values are given as means ± s.e.m. Statistical evaluations of the data were carried out using Student’s t-test for unpaired and paired samples.
Results

No obvious correlation between GH-receptor mRNA levels and age or sex was found in hOB-cell preparations from different patients (13 males between 0·5 and 75 years of age and 12 females between 12 and 86 years of age; data not shown). Serum starvation of hOB-cells resulted in an increase in GH-receptor mRNA levels (Table 1). The effect on GH-receptor mRNA levels of some substances, previously shown to increase GH-receptor expression in cultured cells from rodents, were tested in hOB-like cells. Cortisol (10-6 M) increased GH-receptor mRNA levels by 85·5% and in a dose-dependent manner, while no significant effect was observed with retinoic acid (10-6 M) or GH (5–100 ng/ml; Fig. 1). The maximum effect of cortisol was found at 10-6 M (Figs 2 and 3). The stimulating effect of cortisol on GH-receptor mRNA levels was time-dependent, reaching a peak 12 h after the addition of cortisol (control, 81 ± 5 fg/µg DNA, 12 h, 183 ± 22 fg/µg DNA) and remaining up to 12 h later (Fig. 4). To investigate the specificity of the GH-receptor probe used in the RNase-protection solution hybridization assay, RNase-protected probe fragments were analyzed on denaturing polyacrylamide gels. A protected fragment of expected size (500 bp) was detected in the mRNA from hOB-cells (Fig. 3).

Cortisol (10-6 M) was tested in binding studies using 125I-GH. The cortisol-induced increase in GH-receptor mRNA levels was accompanied by an increase in 125I-GH binding in a time-dependent manner. Cortisol-induced 125I-GH binding appeared after 14 h, reaching a maximum at 24 h (196 ± 87% over control) and remaining up to 17 h later (Fig. 5).

Discussion

Cushing (1932) showed that increased levels of glucocorticoids cause osteoporosis and increase the risk of bone fractures. Osteoblasts express receptors for glucocorticoids and high levels of glucocorticoids decrease the proliferation of hOB-cells, as shown by the increase in GH-receptor mRNA levels and GH binding after cortisol administration.

The present study investigated whether glucocorticoids interact with GH-receptor expression in hOB-like cells. Our results showing that serum starvation increases GH-receptor expression in hOB-like cells, are similar to those previously demonstrated in rat epiphyseal chondrocytes (Nilsson et al. 1990) and in osteosarcoma cells (Salles et al. 1994). GH and retinoic acid increase GH-receptor mRNA levels in cultured mouse and rat cells (Nilsson et al. 1990, Ohlsson et al. 1993, Slootweg et al. 1996). In contrast, in the present study using hOB-like cells, no significant effect of GH or retinoic acid was seen on GH-receptor mRNA levels, suggesting that regulation of the GH-receptor transcript may be species specific. It is also possible that the lack of any significant effect of GH on GH-receptor mRNA levels may be due to hOB-cells expressing fewer GH-receptors than in rat epiphyseal chondrocytes (Nilsson et al. 1990, Ohlsson et al. 1993, Slootweg et al. 1996), or that primary hOB-cells are a heterogenous population of cells and/or due to a variation in patient samples.

We have, for the first time, demonstrated the effects of glucocorticoids on GH-receptor expression in human cells. Similar to in vivo results on the GH-receptor mRNA levels in the liver and growth plate of rabbits (Heinrichs et al. 1994), an increase in the GH-receptor mRNA levels was seen in hOB-like cells after treatment with glucocorticoids. This finding is in contrast to earlier results in vivo in rats in which glucocorticoids decreased the GH-receptor mRNA levels (Gabrielsson et al. 1995), indicating a species
difference in the regulation of GH-receptor expression. This species difference in the expression and regulation of the GH-receptor and its soluble extracellular part (GHBP) is supported by the finding that GHBP in rabbits and humans is synthesized via a proteolytic cleavage of the extracellular part of the GH-receptor, while in rodents it is synthesized via alternative splicing from a separate mRNA transcript.

We and others have previously shown that glucocorticoids decrease IGF-I expression in osteoblasts.
Furthermore, IGF-I down-regulates the GH-receptor expression in a local negative feedback loop (Slootweg et al. 1995, Leung et al. 1996). Therefore, the cortisol-induced increase in GH-receptor expression may be due to a decrease in IGF-I expression leading to a reduced negative feedback on GH-receptor expression.

The conflicting effects of glucocorticoids on the GH-receptor mRNA levels may also be explained by the tissue-specific effects of glucocorticoids on GH-receptor expression. This possibility is supported by the finding that the first exon in the GH-receptor transcript is untranslated (5′UTR) and that there are several alternative exon 1 variants, which may be more-or-less tissue specific (Robinson et al. 1995). Thus, the different GH-receptor transcripts may be regulated in different ways. The hGH-receptor probe, used in the present study, recognizes a translated part of the GH-receptor mRNA corresponding to the intracellular part of the GH-receptor. This sequence of the GH-receptor is found in all known variants of mRNAs coding for the hGH-receptor. It is therefore interesting to see if glucocorticoids regulate GH-receptor expression in other human cells.

Whereas conflicting results have been presented regarding the effect of glucocorticoids on GH-receptor expression, more consistent results have been presented regarding the inhibitory effects of glucocorticoids on GH-induced cell proliferation and the activation of different components of the GH-receptor signaling cascade (Salles et al. 1994, King & Carter-Su 1995). Salles et al. (1994) found that cortisol increased GH-binding and reduced GH-induced cell proliferation in rat osteosarcoma cells. In contrast, King & Carter-Su (1995) found reduced GH-binding and decreased early events in GH-signaling in glucocorticoid-treated mouse fibroblasts. It has been suggested that the contrasting effects of glucocorticoids on GH-binding may be explained by methodological differences in the conditions of the GH-binding (King & Carter-Su 1995). In the study using rat osteosarcoma cells (Salles et al. 1994), binding studies were carried out with 125I-GH at room temperature for 24 h, while in the study using mouse fibroblasts, binding was performed overnight at 4 °C (King & Carter-Su 1995). A prolonged binding study at room temperature may lead to the internalization of some amount of tracer, making it difficult to distinguish whether binding to cell surface receptors or receptor turnover are being measured. In the present study, binding studies were performed with short duration (4 h) in order to minimize the amount of internalized tracer. However, binding studies were carried out at room temperature since GH-binding to human osteoblasts is difficult to measure at 4 °C. In summary, the conflicting results of the effect of glucocorticoids on GH-receptor mRNA levels and 125I-GH-binding in different studies may be explained by species and tissue differences and/or different methodologies.

It is generally believed that high levels of glucocorticoids cause osteoporosis and GH-insensitivity. Furthermore, GH exerts anabolic effects on osteoblasts (Slootweg et al. 1988, Nilsson et al. 1995). Thus, our finding that cortisol increases GH-receptor expression in osteoblasts could appear contradictory. However, cortisol may block GH effects at a post-receptor level, resulting in a secondary increase in GH-receptor expression. This hypothesis is supported by the finding that in rat osteosarcoma cells glucocorticoids increase GH-binding while GH-effects are decreased (Salles et al. 1994). Alternatively, it is possible that short-term stimulation with glucocorticoids in vitro is not an optimal model for studying the mechanism of action for glucocorticoid-induced GH-insensitivity in vivo.

In conclusion, glucocorticoids increase GH-receptor expression in hOB-like cells. Further studies are needed to clarify whether glucocorticoid-induced regulation of the GH-receptor is important in human bone physiology.

Acknowledgements

This work was supported by grants K95–19P–11328–01A and K96–19P1837–01A from the Swedish Medical Research Council, grants from Pharmacia Upjohn (Stockholm, Sweden) and Novo Nordisk Foundation (Bagsvaerd, Denmark), The Göteborg Medical Society, Swedish Society for Medical Research and the Lundberg Foundation. We wish to thank C Révérend and A Hansevi for excellent technical assistance. We would also like to thank the Department of Orthopedics, Sahlgrenska University Hospital.

References

Cortisol-induced GH-receptor expression · D SWOLIN-EIDE and others

MacDonald BR, Gallagher JA, Ahuelt-Ronne I, Beresford JD, Gowen M & Russel GG 1984 Effects of bovine parathyroid hormone and 1,25 dihydroxy vitamin D3 on the production of prostaglandins by cells derived from human bone. FEBS Letters 169 49–52.

Received 20 June 1997
Accepted 13 August 1997