Bovine adrenal glomerulosa cells express such a low level of functional B₂ receptors that bradykinin does not significantly increase their aldosterone production

L Chrétién, D E Richard, S N Poirier, M Poitras and G Guillemette

Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4

Abstract

It was recently demonstrated that bradykinin (BK) stimulates aldosterone secretion in bovine adrenal glomerulosa (BAG) cells. The aim of the present study was to characterize the mechanism of action of BK on these cells. Binding experiments with the radioligand ¹²⁵I-[Tyr⁸]BK revealed the presence of a relatively small amount (B_max = 180 ± 55 fmol/mg of protein) of high affinity (K_d = 0.65 ± 0.17 nM) binding sites. BK induced a time- and concentration-dependent increase of [³H]inositol trisphosphate ([³H]IP₃) in myo-[³H]inositol-labeled BAG cells. A maximal response was obtained with 10 nM BK and the EC₅₀ value was 1·0 ± 0·5 nM. ¹²⁵I-[Tyr⁸]BK binding and BK-induced IP₃ production were inhibited by the selective B₂ receptor antagonist Icatibant (1 µM) and unaffected by the selective B₁ receptor antagonist [DesArg⁹,Leu⁸]BK (1 µM). In fura-2 loaded BAG cells, BK (100 nM) induced a typical biphasic Ca²⁺ response composed of a rapid and transient increase of intracellular Ca²⁺ concentration [Ca²⁺]i which slowly declined to a level that remained above basal level for about 5 min. In the presence of EGTA (2 mM), the rapid and transient calcium increase was unaffected whereas the plateau phase was abolished. Angiotensin II (Ang II, 100 nM) also elicited a typical biphasic response in BAG cells. However the rapid and transient elevation of [Ca²⁺]i was followed by a sustained plateau phase which remained above the basal level for more than 10 min. Although BAG cells express functional B₂ receptors, no secretion of aldosterone was observed after stimulation with 100 nM BK for 120 min. Under the same conditions Ang II increased by about 10-fold the basal level of aldosterone. The lack of effect of BK is probably attributable to its very transient effect on IP₃ production. Pretreatment of BAG cells with 100 nM BK for 20 min reduced by 70 ± 10% their total binding capacity. These results suggest a rapid and very efficient desensitization process. We conclude that BAG cells express functional B₂ receptors. The weak production of second messengers and the rapid desensitization process could explain why BK fails to increase aldosterone production in these cells. Since functional B₂ receptors are expressed in BAG cells it is likely that under some specific physiological or pathological conditions these receptors may play a significant role in aldosterone secretion. However these conditions remain to be determined.

Introduction

The nonapeptide bradykinin (BK) has a wide range of biological effects on a number of different tissues and organs. BK is mostly known for its potent vasodilatory effect. BK is also involved in smooth muscle contraction, regulation of vascular permeability, pain transmission, cell proliferation and development of pathological states such as asthma and inflammation (Bhoola et al. 1992, Hall 1992).

BK is generated from kininogen by the proteolytic action of kallikreins which are present in many tissues. Two pharmacologically distinct types of kinin receptors (B₁ and B₂) have been identified (Regoli & Barabé 1980). The B₁ receptor is selectively activated by BK analogs lacking the C-terminal Arg ([DesArg⁹]BK) whereas the B₂ receptor is primarily recognized by intact BK. The recent cloning of cDNAs for B₁ (Menke et al. 1994) and B₂ receptors (McEachern et al. 1991, Eggerickx et al. 1992, Hess et al. 1992) provided data agreeing with the pharmacological classification of these receptors. Cloning experiments have also revealed that these two receptors belong to the superfamily of seven transmembrane-domain, G protein-coupled receptors (Dohlman et al. 1991, Strader et al. 1994). The activation of B₁ and B₂ receptors leads to the hydrolysis of polyphosphoinositides by phospholipase C (PLC) (Hong & Deykin 1980, Yano et al. 1984, Tilly...

It was shown by Staszewska-Barczak & Vane (1967) that the adrenal medulla could generate BK which could stimulate the release of catecholamines from chromaffin cells. More recently Scicli et al. (1991) identified, in canine adrenal cortex, a kallikrein-like kininogenase that was present at a concentration similar to that found in the adrenal medulla. Wang et al. (1996) demonstrated the presence of B₂ receptor mRNA in zona glomerulosa by in situ hybridization histochemistry. These studies suggested that BK could play a role in the adrenal cortex. Roslowsky & Campbell (1992) reported that BK stimulates the release of aldosterone from cultured bovine adrenal glomerulosa (BAG) cells. They proposed that BK could participate in the regulation of aldosterone secretion. In more recent studies, neither Rudichenko et al. (1993) nor Malendowicz et al. (1995) could find any physiological correlation to suggest that in the rat, BK regulates aldosterone secretion in vivo or in vitro. However Malendowicz et al. (1995) clearly observed a rise of intracellular Ca²⁺ in BK-stimulated rat adrenal glomerulosa cells.

The purpose of the present study was to characterize BK receptors of BAG cells and to examine their mechanism of action. We demonstrate that BAG cells express a B₂ receptor. Stimulation of this B₂ receptor leads to the activation of PLC which is responsible for the generation of IP₃ and the mobilization of Ca²⁺. Under our experimental conditions, BK did not induce any aldosterone secretion by BAG cells. This could be attributed to the weak production of second messengers and the rapid desensitization process that inactivates the low-abundant B₂ receptor population expressed by BAG cells.

Materials and Methods

Materials

Culture media and collagenase were from GIBCO BRL (Great Island, NY, USA). DNase I was from Sigma (St Louis, MO, USA). The Ca²⁺ fluorescent indicator fura-2 acetoxyethyl ester (fura-2 AM) was purchased from Calbiochem (San Diego, CA, USA). Myo-[³²P]inositol (83 Ci/mmol) was obtained from Amersham Radiochemical (Arlington Heights, IL, USA). Anion exchange resin AG 1-X8 (formate form) was from Bio-Rad (Richmond, CA, USA). BK, [Tyr⁸]BK, [DesArg⁹]BK, [DesArg⁹,Leu⁸]BK and Icatibant ([D-Arg⁶, Hyp³, β-(2-thienyl)-Ala³, ν-Tic⁷, Oic⁸]BK; HOE-140) were purchased from Bachem California (Torrance, CA, USA). Antibovine adrenal P450₁₄α antibodies were generously provided by Dr J G Lehoux (Université de Sherbrooke, Québec, Canada). Antialdosterone antibodies were generously provided by Dr Alain Bélanger (Centre Hospitalier de l’Université Laval, Québec, Canada). Sheep antirabbit IgG–fluorescein antibody F(ab')₂ fragment was from Boehringer Mannheim GmbH (Mannheim, Germany). All other reagents were from Sigma. [¹²⁵I]-[Tyr⁸]BK (1000 Ci/mmol) was prepared with Iodogen and purified by high performance liquid chromatography on a C18 column, as previously described (Boulay et al. 1994).

Cell culture

Bovine adrenal glands were obtained at a nearby slaughterhouse. BAG cells were prepared as described by Boulay et al. (1992). Briefly, outer 0.5 mm slices of bovine adrenal cortex were minced into 1 mm² fragments and digested with 2 mg/ml collagenase and 0.2 mg/ml DNase I, followed by a mechanical dispersion. This procedure was repeated five times. After two washes, BAG cells were purified on a Percoll gradient (20%). The gradient was prepared by centrifugation at 35,000 g for 30 min at 4 °C. BAG cells were poured on top of the Percoll gradient and centrifuged at 500 g for 15 min at 4 °C. BAG cells were resuspended in Dulbecco’s modified Eagle’s medium (DMEM) and washed by centrifugation at 3000 g for 10 min at 4 °C.

BAG cells were resuspended in DMEM supplemented with 10% fetal bovine serum, 1% GIBCO Insulin-Transferrin-Selenium-X (serum supplement containing insulin 1 g/l, transferrin 0.55 g/l and selenium 0.7 mg/l), 50 U/ml penicillin, 60 mg/ml streptomycin and 2 mM l-glutamine. Cells were plated at a density of 1.5 × 10⁵ cells per well (15 mm diameter wells) for binding assays and for phosphatidylinositol hydrolysis assays. They were plated at a density of 1 × 10⁶ cells per cover slip (13 × 22 mm) for Ca²⁺ measurements. Cells were cultured at 37 °C, in a CO₂ incubator (5% CO₂–95% air) and the medium was changed after 24 h. Cell viability before plating (trypan blue exclusion) was always superior to 80%. Most of the experiments described in this study were performed with cells grown to confluence in 24-well culture plates (about 6 × 10⁵ cells/well). At the end of each experiment, representative wells were trypsinized and cells were counted with a hemocytometer. Each experiment contained its own controls, so that no corrections were needed for variations in cell density from one experiment to another.

Immunofluorescence studies

BAG cells cultured on glass coverslips were washed twice with ice-cold PBS. Cells were then fixed and permeabilized with methanol for 10 min at −20 °C. After 10 min of rehydration with PBS at room temperature, non-specific binding sites were blocked with PBS containing 1% BSA for 30 min. Cytochrome P45011β was revealed with antiserum P45011β antibody (50 µg/ml). Incubation lasted for 1 h at room temperature and was followed by three successive washes with PBS. BAG cells were then incubated for 1 h with a sheep antirabbit IgG-fluorescein antibody (1:30). After three washes with PBS, coverslips were mounted on microscope slides and immunofluorescence was evaluated with a Leitz DM RBE microscope (Leica GmbH, Wetzlar, Germany) equipped for epifluorescence. Pictures were obtained with a Kodak TMX 100 film.

Flow cytometry

BAG cells were gently digested with trypsin-EDTA (0·05% trypsin, 0·53 mM EDTA) for 10 min at 37 °C. Cells were then washed and permeabilized with ice-cold PBS containing 0·05% saponin for 10 min at 4 °C. Afterwards, cells were incubated for 30 min at room temperature, in PBS, with antiserum P45011β antibodies (10 µg/ml), washed by centrifugation at 200 g and labeled for 30 min at room temperature, in PBS, with a 1:30 dilution of a sheep antirabbit IgG-fluorescein antibody. Cells were then analyzed with a Becton-Dickinson flow cytometer.

Binding assays and receptor autoradiography

BAG cells were incubated in binding buffer (25 mM Tris-HCl pH 7·0, 250 mM dextrose, 1 mM phenanthroline-1,10, 1 mM captopril, 140 µg/ml bacitracin, 1 mM dithiothreitol and 1 mg/ml BSA). Incubations were performed for 1 h (or as indicated) at 22 °C in a final volume of 500 µl, in the presence of 125I-[Tyr8]BK (0·2 nM or as indicated) and selected concentrations of unlabeled ligands. Non-specific binding was determined in the presence of 1 µM [Tyr8]BK. Incubations were terminated by two successive immersions of the plates in ice-cold washing buffer. Cell-associated radioactivity was then evaluated by γ counting following solubilization of the cells with 0·1 M NaOH. For receptor autoradiography studies, cell-associated radioactivity was evaluated with a Kodak BioMax MS film that was exposed for 8 h at −80 °C.

IP3 production

Cells were labeled for 20 h in inositol-free DMEM containing 20 µCi/ml myo-[3H]inositol. Cells were then stimulated with BK or angiotensin II (Ang II) and incubations were terminated at selected times by addition of ice-cold perchloric acid (5% v/v). After centrifugation at 15 000 g for 15 min, the supernatants, containing water-soluble inositol phosphates (IPs) were extracted with a mixture of 1,1,2-trichlorotrifluoroethane and tri-n-octylamine (1:1). The samples were vigorously mixed and centrifuged at 15 000 g for 1 min. The upper phase containing the IPs was applied to an AG 1–X8 resin column and IPs were sequentially eluted by addition of ammonium formate/formic acid mixtures of increasing ionic strength as described by Berridge et al. (1983).

Fluorometric monitoring of intracellular Ca2+

Measurement of intracellular Ca2+ ([Ca2+]i) variations in BAG cells was done according to the method of Morgan-Boyd et al. (1987) with some modifications. Briefly, cells grown on cover slips were washed with PBS containing 137 mM NaCl, 3·3 mM KCl, 0·9 mM CaCl2, 1 mM MgCl2, 3·5 mM NaH2PO4, 16·5 mM Na2HPO4 and 5·5 mM dextrose, pH 7·4 at room temperature. Cells were incubated with fura-2-AM (2 µM) for 45 min at 37 °C in Medium 199 (M199) containing 25 mM Hepes (pH 7·4) and 3 mg/ml BSA. After loading, excess fura-2-AM was removed by washing. The cover slips were immobilized and the cells were superfused with PBS at a rate of 2 ml/min. Fura-2 fluorescence (excitation at 340 nm and 380 nm and emission at 510 nm) was recorded in a Hitachi F-2000 spectrofluorimeter.

Aldosterone secretion

BAG cells were washed twice and incubated in M199 with 3·5 mM K+, 25 mM Hepes (pH 7·4), 1 mg/ml BSA, 0·1 mg/ml bacitracin, 1 mM phenanthroline-1,10, 1 mM captopril, 1 mM dithiothreitol and 100 nM BK or Ang II for different periods of time at 37 °C. The aldosterone content of the medium was measured by RIA (Connolly et al. 1980).

Desensitization experiments

BAG cells were washed twice with 500 µl PBS and incubated in 500 µl M199 containing 25 mM Hepes (pH 7·4), 1 mM phenanthroline-1,10, 1 mM captopril, 140 µg/ml bacitracin, 1 mM dithiothreitol and 1 mg/ml BSA. Incubations were performed at 37 °C with selected concentrations of BK. After different periods of time, BAG cells were washed twice with 500 µl PBS and incubated in 500 µl of an acid solution (150 mM NaCl, 50 mM glycine, 1 mM CaCl2 and 5·5 mM dextrose, pH 3·0) for 30 min at 4 °C. We controlled that this acid wash completely dissociated receptor-bound BK. Cells were then rinsed with
the washing buffer (25 mM Tris–HCl pH 7·0 and 250 mM dextrose) and binding studies were performed as described under ‘Binding assays’.

Data analysis

Experimental data resulting from representative experiments with different cell preparations are expressed as the mean ± standard deviation (s.d.) of triplicate values. When the error bar is not seen, the symbol is larger than the error. Binding data were analyzed by both the Scatchard plot method and by a curve-fitting program using weighted non-linear least squares to find the values for each parameter that minimized the weighted sum of the squares (SCAFIT). When needed, data were analyzed by Student’s t-test. P values of <0·05 were considered to be statistically significant.

Results

Characterization of BAG cells

In order to characterize our cell preparation we performed immunofluorescence studies with an antibody against adrenal P450\textsubscript{11B}, the enzyme responsible for the last step of aldosterone synthesis in BAG cells (Fig. 1a). The antibody labeled the whole cell population grown on the plate. The majority of cytochromes P450\textsubscript{11B} detected were mostly confined within the cells, as deduced from the intensely stained structures. To evaluate non-specific fluorescence, cells were incubated exclusively with the sheep antirabbit IgG–fluorescein antibody (Fig. 1b). Under these conditions, no specific labeling was observed. To further characterize our cell preparation, flow cytometry was used (Fig. 1c). Permeabilized cells showed an important shift of fluorescence intensity after labeling with the antiovine adrenal P450\textsubscript{11B} antibody, indicating their high level of expression of the steroidogenic enzyme. Non-permeabilized cells showed a lower level of fluorescence similar to that of permeabilized cells incubated exclusively with the secondary antibody. Measurement of the steroidogenic products revealed that these cells produce low levels of aldosterone under basal conditions and no detectable cortisol (data not shown). These results indicated that our cell preparation was highly enriched in BAG cells. In situ binding of 125I–[Tyr8]BK on BAG cells is illustrated in Fig. 1d. Specific binding was abundant and evenly distributed throughout the whole surface of the
plate indicating that the binding sites are expressed at the surface of most of the cells. 125I-[Tyr^8]BK binding was specific, as indicated by its strong inhibition in the presence of 1 μM $[Tyr^8]$BK.

Binding studies

Kinetic binding experiments were performed on BAG cells. Cells were incubated with 125I-[Tyr^8]BK (0–2 nM) for different periods of time at 22 °C. A time-dependent increase of specific binding was observed (Fig. 2). An apparent steady state was reached within 1 h. A slow dissociation of the bound ligand was observed following the addition of 1 μM unlabeled $[Tyr^8]$BK (Fig. 2). This slow dissociation rate indicates a high affinity interaction between BK and its receptor.

In saturation studies, incubation of cells with increasing concentrations of 125I-[Tyr^8]BK (Fig. 3, upper panel) resulted in the progressive saturation of the specific binding sites. Scatchard analysis of these binding data (Fig. 3, lower panel) was consistent with a single class of high affinity binding sites with a K_d of 0.65 ± 0.17 nM and a maximal binding capacity of 180 ± 55 fmol/mg protein.

The specificity of 125I-[Tyr^8]BK binding was analyzed in concentration-displacement experiments, shown in Fig. 4. Addition of increasing concentrations of unlabeled $[Tyr^8]$BK inhibited tracer binding in a concentration-dependent manner. The half-maximal effective concentration needed to inhibit the tracer binding (IC$_{50}$) was 2.00 ± 0.75 nM. BK was 10 times more potent than $[Tyr^8]$BK, with an IC$_{50}$ of 0.18 ± 0.07 nM. Icatibant (B2 receptor antagonist) was slightly less potent than BK with an IC$_{50}$ of 0.3 ± 0.2 nM. Finally, $[DesArg^9]$BK and

Figure 2 Kinetic analysis of 125I-[Tyr^8]BK binding to BAG cells. Association was initiated by incubating the cells for different periods of time with 125I-[Tyr^8]BK (0–2 nM, 150,000 c.p.m.) in a final volume of 500 µl at 22 °C (●). At the time indicated by the arrow, 1 μM $[Tyr^8]$BK was added to some aliquots to initiate dissociation (○). Values are percent of maximal specific binding (100% = 5000 c.p.m.). Non-specific binding was determined in the presence of 1 μM $[Tyr^8]$BK. Mean ± S.D. of triplicate determinations; representative of three similar experiments.

Figure 3 Saturation of 125I-[Tyr^8]BK binding sites on BAG cells. Cells were incubated at 22 °C for 1 h in the presence of increasing concentrations of 125I-[Tyr^8]BK (0.02–3 nM) (upper panel). Non-specific binding was determined in the presence of 1 μM $[Tyr^8]$BK. Each point represents the mean ± S.D. of triplicate values. Similar results were obtained in three separate experiments. Scatchard analysis of binding data is shown in the lower panel.
DesArg⁹,Leu⁸BK (B₁ receptor agonist and antagonist respectively) had no important inhibitory effect on ¹²⁵I-[Tyr⁸]BK binding, at a concentration as high as 1 µM.

Functional properties of BK receptors

The functional properties of BK receptors were evaluated by measuring IP₃ production, intracellular Ca²⁺ increase and aldosterone secretion. BAG cells incubated in the presence of BK (100 nM) for different periods of time, demonstrated a time-dependent increase of IP₃ production. A maximal IP₃ production was observed after 1–2 min but rapidly declined to a low level within 15 min of BK stimulation (Fig. 5). When cells were incubated for 2 min in the presence of increasing concentrations of BK, their IP₃ content increased progressively in a concentration-dependent manner (Fig. 6). The threshold concentration was around 0·1 nM and the maximal response was obtained with 10 nM BK. The half-maximal effective concentration (EC₅₀) for IP₃ production was 1·0 ± 0·5 nM. The specificity of BK effect on IP₃ production was also evaluated with different BK antagonists. As shown in Fig. 7, preincubation of BAG cells for 5 min in the presence of Icatibant (1 µM) abolished BK-induced IP₃ production whereas pretreatment for 5 min with [DesArg⁹,Leu⁸]BK (1 µM) caused no significant inhibitory effect on IP₃ production.

Figure 4 Competitive binding of ¹²⁵I-[Tyr⁸]BK to BAG cells. Cells were incubated for 1 h at 22 °C with ¹²⁵I-[Tyr⁸]BK (0·2 nM, 150 000 c.p.m.) and increasing concentrations of different ligands: [Tyr⁸]BK (□), BK (○), Icatibant (●), [DesArg⁹]BK (△) and [DesArg⁹,Leu⁸]BK (▲). Total binding was 8000 c.p.m. and non-specific binding was 3000 c.p.m. Non-specific binding was determined in the presence of 1 µM [Tyr⁸]BK. Values are percent of maximal specific binding (100%=5000 c.p.m.). Mean ± s.d. of triplicate values; representative of three similar experiments.

Figure 5 Time course of BK-induced [H]IP₃ production in BAG cells. Cells preloaded with myo-[H]inositol were incubated for different periods of time in the presence of 100 nM BK at 37 °C, in a final volume of 250 µl. At indicated times, incubations were stopped with perchloric acid and [H]inositol phosphates analyzed as indicated in Materials and Methods. A typical experiment, performed in triplicate (mean ± s.d.), representative of three similar experiments.

Figure 6 Concentration-response effect of BK on [H]IP₃ production by BAG cells. Cells preloaded with myo-[H]inositol were incubated for 2 min at 37 °C with increasing concentrations of BK (0·1–100 nM) in a final volume of 250 µl. The incubations were stopped with perchloric acid and [H]inositol phosphates analyzed as indicated in Materials and Methods. A typical dose–response curve, performed in triplicate (mean ± s.d.), representative of three similar experiments.
Figure 7 Specificity of BK-induced IP₃ formation in BAG cells. Cells preloaded with myo-[³H]inositol were preincubated for 5 min at 37 °C with vehicle, 1 µM [DesArg⁹,Leu⁸]BK (B₁ receptor antagonist) or icatibant (B₂ receptor antagonist) before stimulation for 2 min at 37 °C with 100 nM BK or [DesArg⁹]BK, as indicated. Incubations were stopped with perchloric acid and [³H]inositol phosphate analyzed as indicated in Materials and Methods. A typical experiment, performed in triplicate (mean ± S.D.), representative of two similar experiments.

Figure 8 Calcium mobilization in BAG cells. Cells grown on coverslips were loaded with 2 µM fura-2-AM and stimulated at 22 °C with 100 nM BK in the absence (a) or presence (b) of 2 mM EGTA or with 100 nM Ang II (c). [Ca²⁺]ᵢ, measurements are expressed as the ratio of fluorescence values obtained on dual wavelength excitation of 340 nm and 380 nm. Fluorescence intensity was measured at an emission wavelength of 500 nm. Typical experiments, representative of four similar experiments.

effect. Consistent with these results, [DesArg⁹]BK (100 nM) barely increased IP₃ level in BAG cells.

Figure 8a and b show that BK (100 nM) increased [Ca²⁺]ᵢ in BAG cells. A typical biphasic response was observed with a rapid and transient elevation of [Ca²⁺]ᵢ, followed by a slow decline of [Ca²⁺]ᵢ, which remained above the basal level for at least 5 min (Fig. 8a). In the absence of extracellular Ca²⁺, the rapid and transient elevation of [Ca²⁺]ᵢ was still observed upon stimulation with BK, but the slow decline phase was abolished (Fig. 8b). Actually under these conditions, [Ca²⁺]ᵢ rapidly declined to a level clearly below the basal level. As a control, Fig. 8c shows that Ang II (100 nM) could also increase [Ca²⁺]ᵢ in BAG cells. Ang II elicited a typical biphasic response with a rapid and transient elevation of [Ca²⁺]ᵢ, followed by a sustained plateau phase which remained above the basal level for more than 10 min (Fig. 8c).

The steroidogenic effect of BK was then evaluated. BAG cells were stimulated with a high concentration of BK (100 nM) for different periods of time at 37 °C. As shown in Fig. 9, BK did not significantly increase aldosterone secretion whereas Ang II (100 nM) elicited a robust (10-fold over basal) steroidogenic response. It is important to note that no significant increase of aldosterone production was observed within the first few minutes of
stimulation with Ang II. Co-stimulation of BAG cells with BK and Ang II did not potentiate the aldosterone secretion induced by Ang II alone (data not shown).

Concerned about the fact that B2 receptors on BAG cells fail to induce any significant increase of aldosterone secretion, we compared the effects of BK and Ang II on the activation of PLC. Figure 10 shows that Ang II elicited a much more important and sustained IP₃ production in BAG cells.

Desensitization of ¹²⁵I-[Tyr⁸]BK binding capacity

We verified whether the transient nature of BK-induced IP₃ production could be correlated with desensitization of B₂ receptors. BAG cells were pretreated with BK (100 nM) for different periods of time, and after an acid wash the subsequent ¹²⁵I-[Tyr⁸]BK binding activity was evaluated. Pretreatment with 100 nM BK caused a time-dependent decrease of ¹²⁵I-[Tyr⁸]BK binding (Fig. 11). Specific binding of ¹²⁵I-[Tyr⁸]BK decreased by about 70 ± 10% in 20 min. Longer pretreatment periods up to 1 h did not further attenuate ¹²⁵I-[Tyr⁸]BK binding capacity of BAG cells (Fig. 11). The concentration-dependent relationship of this desensitizing effect was studied. Pretreatment of BAG cells for 30 min with increasing concentrations of BK progressively decreased ¹²⁵I-[Tyr⁸]BK binding activity (Fig. 12). A maximal
BK receptors have been classified on the basis of their affinity for agonists and antagonists as B1 or B2 types (Regoli & Barabé 1980). The pharmacological profile of 125I-[Tyr8]BK binding sites on BAG cells is characteristic of a B2 receptor. This conclusion is based on the ability of BK (a selective B2 receptor agonist) and Icatibant (a selective B3 receptor antagonist) to inhibit the specific binding of 125I-[Tyr8]BK with high apparent affinities and on the inability of [DesArg9]BK (a selective B1 receptor agonist) and [DesArg9,Leu8]BK (a selective B1 receptor antagonist) to inhibit 125I-[Tyr8]BK binding.

The present study also demonstrated that BK receptors on BAG cells are coupled to PLC. BK induced a rapid and concentration-dependent production of IP$_3$. A maximal production of IP$_3$ (3- to 5-fold above basal level) was obtained with 10 nM BK. As concluded from binding studies, the high efficiency of BK and the lack of activity of [DesArg9]BK indicate that PLC activation is mediated through a B2 receptor. This conclusion is also supported by the potent inhibitory effect of Icatibant and the lack of effect of [DesArg9,Leu8]BK on BK-induced PLC activation, as previously shown in other cell types (Ransom et al. 1992, Tatakis et al. 1992).

The functional activity of B2 receptors on BAG cells was also demonstrated by the typical biphasic [Ca$^{2+}$]i elevation induced by BK. As observed in many other systems (for review see Berridge 1993), an initial transient rise of Ca$^{2+}$ (probably due to IP$_3$-mediated Ca$^{2+}$ mobilization from intracellular stores) was followed by a more sustained phase (probably due to the entry of external Ca$^{2+}$ since it was abolished in the presence of 2 mM EGTA). Similar results were obtained by Malendowicz et al. (1995) who showed that BK could increase [Ca$^{2+}$]i, in rat zona glomerulosa cells. Altogether these results lead to the suggestion that BK could participate in the regulation of aldosterone secretion by BAG cells.

Although we clearly demonstrated the presence of functional B$_2$ receptors on BAG cells, no significant steroiogenic effect could be elicited by BK. Ang II, a well characterized steroiogenic agent (Fraser et al. 1979) elicited a robust 10-fold increase in aldosterone secretion by these cells. The reason why BK, contrary to Ang II, was unable to increase steroiogenesis is probably related to the mechanism of activation utilized by both types of receptors. Aldosterone, contrary to certain types of hormones, is not stored in cells. The major part of secreted aldosterone comes from de novo synthesis. As it has been demonstrated by Kojima et al. (1984), it takes at least 10 min (in our study almost 20 min) before a significant amount of aldosterone can be observed during cell stimulation with Ang II and this secretion involves different temporal activation of two distinct components of the pathway. The transient rise of [Ca$^{2+}$i], which activates calmodulin kinase is largely responsible for an initial transient aldosterone secretion. The subsequent activation of PKC by [Ca$^{2+}$i], and DAG is responsible for the sustained aldosterone secretion.

Figure 12 Concentration-dependent desensitization of 125I-[Tyr8]BK binding activity of BAG cells. Cells were pretreated for 30 min at 37°C with increasing concentrations of BK (0·01–1000 nM). After an acid wash (pH 3·0), cells were incubated for 1 h at 4°C with 125I-[Tyr8]BK (0·2 nM, 150 000 c.p.m.). The 100% represents specific 125I-[Tyr8]BK binding (7000 c.p.m.) to cells pretreated in the absence of BK. Non-specific binding was determined in the presence of 1 μM [Tyr8]BK. Each point represents the mean ± S.D. of triplicate values. A typical experiment, representative of three similar experiments.

In this study, we characterized a specific binding site for BK on BAG cells. The binding of 125I-[Tyr8]BK was time-dependent, reversible and saturable. Scatchard analysis revealed a relatively small population (180 ± 55 fmol/mg protein) of high affinity (0·65 ± 0·17 nM) binding sites. BK receptors, most especially B$_2$ receptors, have been characterized in a number of tissues. Binding studies have revealed a variable density (~50–400 fmol/mg protein) of high affinity (~0·1–5 nM) receptors in different tissues including guinea-pig ileum, guinea-pig lung, rat mesangial cells, rat and bovine uterine myometrium, bovine aortic endothelial cells, human fibroblasts and NG 108–15 cells (reviewed by Hall 1992). Three different groups (Rosolowsky & Campbell 1992, Malendowicz et al. 1995, Wang et al. 1996) using approaches such as in situ hybridization histochemistry and biological assays have previously suggested that the adrenal cortex expresses BK receptors. To our knowledge our binding studies are the first to provide direct evidence of BK receptors expression on BAG cells.
secretion (Kojima et al. 1984). Therefore to produce a significant amount of aldosterone, the signaling mechanism must be activated for a certain period of time in order to maintain a significant production of the synergistic second messengers IP$_3$ and DAG.

We showed that a maximal concentration of BK elicited a 3- to 5-fold increase of IP$_3$ while under similar conditions Ang II elicited a more robust ~20-fold increase of IP$_3$, as previously shown by Balla et al. (1988) and Boulay et al. (1990). We also demonstrated that contrary to Ang II which exerts a long lasting effect on IP$_3$ production, the effect of BK is waning after 2 min and is considerably decreased after 5 min of stimulation (Fig. 10). A similar transient effect of BK on IP$_3$ production was also observed in other cell types (Lambert et al. 1986, Portilla & Morrison 1986, Fu et al. 1988, Bascands et al. 1991). Some authors suggested that it could be due to proteolytic degradation of BK. This suggestion cannot explain the transient effect of BK since readdition of BK (15 min after a first stimulation) failed to restore IP$_3$ production (data not shown). Measurements of [Ca$^{2+}$]$_i$ showed that although both BK and Ang II could elicit a typical biphasic response, Ang II produced a more sustained plateau phase which was maintained for at least 10 min after stimulation whereas the effect of BK was waning within 5 min. Taken together, these results suggest that BK-induced IP$_3$ production and [Ca$^{2+}$]$_i$ increase are not important enough to support aldosterone secretion. The weaker efficacy of BK is probably due in part to the low level of B$_2$ receptor expression on BAG cells. We have shown in the present study that BAG cells express about 10 000 B$_2$ receptors/cell, which is about 15-fold lower than the level of expression of AT$_1$ receptors, by these same cells, determined in our previous study (Boulay et al. 1990).

We showed that pretreatment of BAG cells with different concentrations of BK for different periods of time caused a rapid and efficient loss of B$_2$ receptor binding activity. These results strongly suggest that the loss of PLC activation following BK stimulation is due to receptor desensitization. Receptor desensitization is a well characterized phenomenon (Benovic et al. 1988, Lohse et al. 1990, Liggett 1991) that has been observed for different types of G protein-coupled receptors. It has been previously demonstrated that B$_2$ receptors undergo rapid internalization (Roscher et al. 1983, Wolsing & Rosenbaum 1991, Munoz & Leeb-Lunberg 1992, Praduade et al. 1995), a process which is considered to be one of the first steps in receptor desensitization (Lefkowitz et al. 1990). Further studies are necessary to better characterize the precise mechanisms involved in B$_2$ receptor desensitization in BAG cells. In that respect BAG cells should constitute a good model for such studies since we showed that they possess a very efficient mechanism of B$_2$ receptor desensitization.

In summary, our results demonstrate the presence of B$_2$ receptors on BAG cells. These receptors are coupled to PLC and thus increase the formation of IP$_3$ and the mobilization of intracellular Ca$^{2+}$. However BK could not induce a significant aldosterone production by BAG cells. This is probably due to the low level of B$_2$ receptor expression and to an efficient mechanism of B$_2$ receptor desensitization. These results could explain why we and other groups (Rudichenko et al. 1993, Malendowicz et al. 1995) did not observe any BK-induced aldosterone secretion. It has been previously suggested that BK could play a role in the regulation of aldosterone secretion (Kosolowsky & Campbell 1992). Since functional B$_2$ receptors are expressed in adrenal glomerulosa cells, it is likely that under some specific physiological or pathological conditions these receptors may play a significant role in aldosterone secretion. Further studies should attempt to identify such conditions.

Acknowledgements

The authors would like to thank respectively, Dr Alain Bélanger (Centre Hospitalier de l’Université Laval, Québec, Canada) and Dr Jean-Guy Lehoux (Université de Sherbrooke, Québec, Canada) for their generous gift of antialdosterone and antibovine adrenal P450$_{11\alpha}$ antibodies. This work is part of the PhD thesis of L C and was supported by grants from the Medical Research Council of Canada (MRCC) and the Heart and Stroke Foundation of Québec (HSFQ). L C and D E R are recipients of studentship awards from the Heart and Stroke Foundation of Canada (HSFCC). M P is a recipient of studentship awards from the MRCC. G G is an MRCC scientist.

References

Boulay G, Servant G, Luong TT, Escher E & Guillemette G 1992 Modulation of angiotensin II binding affinity by allosteric...

Leeb-Lunberg LM & Song XH 1993 Identification of p125, a component of a group of 120 kDa proteins that are phosphorylated on tyrosine residues in response to bradykinin and bombesin stimulation, in anti-ras-GTPase-activating protein immunoprecipitates of Swiss 3T3 cells. *Journal of Biological Chemistry* 268 8151–8157.

Received 13 February 1997
Revised manuscript received 6 May 1997
Final version received 8 August 1997
Accepted 9 October 1997