Sexual dimorphism of the somatotrophic axis

K L Gatford, A R Egan, I J Clarke and P C Owens

Department of Agriculture and Resource Management, University of Melbourne, Parkville, Victoria 3052, Australia, 1Prince Henry’s Institute of Medical Research, PO Box 52, Clayton, Victoria 3168, Australia and 2Department of Obstetrics and Gynaecology, University of Adelaide, Adelaide, South Australia 5005, Australia

(Requests for offprints should be addressed to K L Gatford, who is now at Department of Physiology, University of Adelaide, Adelaide, South Australia 5005, Australia)

Introduction

The somatotrophic axis is one of the major hormonal systems regulating postnatal growth in mammals. Several aspects of this axis are sexually dimorphic, which might account for some of the sex differences in growth rate and body composition. This review will discuss male–female differences in the hormone levels, receptor concentrations and binding protein levels of this system. We will summarise sex differences in growth phenotype and then discuss differences in temporal profiles of growth hormone (GH), responses to GH including plasma and tissue levels of insulin-like growth factors, factors that may affect GH responsiveness, and conclude by discussing sex differences in regulation of GH synthesis and secretion. The established and potential effects of gonadal steroids acting prenatally and postnatally on the somatotrophic axis will also be examined. Readers are also referred to previous reviews on sexual dimorphism and gonadal steroid effects on growth hormone secretion (Jansson et al. 1985, Devesa et al. 1991, Kerrigan & Rogol 1992, Wehrenberg & Giustina 1992, Chowen et al. 1996, Veldhuis 1996).

The somatotrophic axis

GH (also known as somatotrophin) is synthesised and secreted by the anterior pituitary gland in a pulsatile manner under the co-ordinate control of two hypothalamic neuropeptide hormones, GH-releasing factor (GRF) and somatostatin (somatotrophin release-inhibiting factor, SRIF). GH is a polypeptide hormone that exhibits sequence and structural homology between species and with the related hormones, prolactin and placental lactogen, all of which are proteins of 22–23 kDa (Goffin et al. 1996). Most GH circulates as a monomer, although oligomeric, glycosylated and phosphorylated forms and variants arising from alternate splicing during transcription are also found (Lewis 1992). The half-life of the hormone differs between species, with a half-life of 6 min reported for rats (Badger et al. 1991) and one of around 25 min in humans (Holl et al. 1993). GRF and SRIF are produced by neurones in the arcuate nucleus and anterior periventricular nucleus respectively, and are carried in the hypophysial portal circulation to the anterior pituitary. Two forms of GRF are synthesised, with 40 or 44 amino acids, and both monomers and dimers of the 14-amino acid SRIF are found in the circulation (Devesa et al. 1992). Adenylate cyclase activity in somatotrophs is increased after binding of GRF to its G, protein receptor, and decreased after binding of SRIF to its G, receptor. GRF therefore increases intracellular concentrations of cAMP, which stimulates GH secretion and synthesis in somatotrophs, whereas SRIF has the opposite effect (Bertherat et al. 1995). Alternating pulses of GRF and SRIF secretion into hypophysial portal blood were first demonstrated in vivo by Plotsky & Vale (1985) in male rats. A separate group of male rats that were sampled concurrently showed changes in GH secretion that were consistent with the observed GRF and SRIF concentrations. GH is secreted when the anterior pituitary is exposed to low concentrations of SRIF and high concentrations of GRF in hypophysial portal blood (Tannenbaum & Ling 1984, Hartman et al. 1993).

GH acts via its receptor to alter the metabolism of target tissues, such as liver and muscle (Carter–Su et al. 1996). Many of the growth responses to GH are believed to be the result of its stimulation of the synthesis of insulin-like growth factor-I (IGF-I), although growth hormone also has direct effects on cell growth and differentiation (Spagnoli & Rosenfeld 1996). IGF–I is produced in most tissues and acts in an endocrine or paracrine manner to affect tissue metabolism through either the type 1 IGF-receptor or the insulin receptor (Cohick & Clemmons 1993). This receptor cross-reactivity is the result of structural homology between IGF-I and insulin. IGF-II is also produced in many tissues, although its effects on metabolism are less well characterised. IGF-II binds to both the type 1 and type 2 IGF receptors, but not to the insulin receptor, and the type 1 IGF receptor is believed to mediate most of the biological actions of IGF-II (Cohick & Clemmons 1993). The IGF-binding proteins are a family of at least seven proteins that bind to IGF-I and IGF-II,
and which are found both in extracellular fluids and in association with cell surfaces or extracellular matrix (Clemmons 1996, Oh et al. 1996). Binding to IGF-binding proteins increases the half-life of IGFs and, because they have greater binding affinities for IGFs than the type 1 IGF receptor, they also alter the biological activity of the IGFs (Clemmons 1996). This review discusses changes in total plasma IGFs – that is, those occurring after separation of IGFs from IGF-binding proteins. IGF-binding protein-3 is the major IGF-binding protein in adult blood.

Sexual dimorphism of growth phenotype

Postnatal body weight and composition differ between males and females in a large number of mammalian species, but the ontogeny of these changes is species specific. In humans, other primates, rats and rabbits, height gain or rate of weight gain, or both, become sexually dimorphic around the time of puberty (reviewed by Tanner 1962, Edén 1979). However, in cattle and sheep, rates of growth are greater in males than in females from early postnatal life, such that differences in live weight develop before puberty (Brody et al. 1926, Fourie et al. 1970, Gatford et al. 1996). Sex differences in body composition also arise at puberty in humans, rats and rabbits, when males more rapidly gain muscle and bone and lose fat, whereas females have much smaller gains in muscle and bone and large gains in fat (reviewed by Tanner 1962). This results in a greater proportion of total body weight as fat in adult females. For example, in one population the body fat contents of 25-year-old men and women were estimated as 14% and 23% of total body weight respectively (Brozek 1967).

Adult males are generally heavier and leaner than adult females, but species differ in the age at which sex differences in the rate and composition of gain occur.

Sexual dimorphism in temporal profiles of circulating GH

Measurement of GH concentration in samples of blood serum or plasma collected at frequent intervals from cannulated subjects has shown that circulating concentrations of GH vary episodically (Fig. 1) (Davis et al. 1977, Edén 1979). Species differ both in the temporal profiles of circulating GH concentration and in how these profiles differ between sexes. Humans are unusual in that mean plasma GH concentrations and GH pulse amplitude are greater in adult females than in adult males (Zadik et al. 1985, Ho et al. 1987, Albertsson-Wikland & Rosberg 1988, Costin et al. 1989, Winer et al. 1990, Rose et al. 1991). In contrast, mean GH concentrations and GH pulse amplitude in blood are greater in adult males than in adult females in rats (Tannenbaum & Martin 1976, Edén 1979, Jansson et al. 1984, Gabriel et al. 1992, Leidy et al. 1993), mice (MacLeod et al. 1991), cattle (Plouzek & Trenkle 1991, Röpke et al. 1994), horses (Thompson et al. 1994) and chickens (Pampori & Shapiro 1994). Mean plasma GH concentrations are also greater in male than in female in late-gestation fetuses in sheep and pigs (Bassett & Gluckman 1986, Bauer & Parvizi 1996) and in prepubertal sheep (Gatford et al. 1996, 1997a). Several studies in pigs have also revealed greater mean plasma GH concentrations in males than in females (Dubreuil et al. 1987, Campbell & Taverner 1988, Louveau et al. 1991, Kraetzl et al. 1994), but this is not a universal observation (Owens et al. 1991, Buonomo & Klindt 1993). Interpulse plasma GH concentrations are greater in female rats than in males (Tannenbaum & Martin 1976, Edén 1979, Jansson et al. 1984, Gabriel et al. 1992, Leidy et al. 1993) and the same is true in mice (MacLeod et al. 1991) and humans (Winer et al. 1990). In contrast, interpulse plasma GH is greater in males than females in cattle (Plouzek & Trenkle 1991), chickens (Pampori & Shapiro 1994) and prepubertal sheep (Gatford et al. 1996, 1997a). Plasma GH pulse frequency does not differ between sexes in humans (Winer et al. 1990), chickens (Pampori & Shapiro 1994) or prepubertal sheep (Gatford et al. 1996, 1997a), whereas, in rodents, GH pulses are less frequent in males than in females (Tannenbaum & Martin 1976, Edén 1979, Jansson et al. 1984, MacLeod et al. 1991, Gabriel et al. 1992, Leidy et al. 1993). In cattle (Plouzek & Trenkle 1991) and in horses (Thompson et al. 1994) plasma GH pulses are more frequent in males than in females. In addition to differences in GH pulse frequency and amplitude, pulsatile GH secretion is less regular in female rats than in males (Edén 1979, Painson & Tannenbaum 1991, Pincus et al. 1996).

The timing of the onset of sex differences in circulating profiles of GH also varies between species. In humans (Zadik et al. 1985, Albertsson-Wikland & Rosberg 1988, Costin et al. 1989, Rose et al. 1991) and rats (Edén 1979, Jansson et al. 1984, Gabriel et al. 1992, Leidy et al. 1993), patterns and mean concentrations of circulating GH do not differ between the sexes before puberty but become apparent during the peripubertal period, comitant with the appearance of sex differences in growth rate. In sheep, however, both growth rate and temporal profiles of GH in plasma are sexually dimorphic before puberty (Gatford et al. 1996). Sex differences in the pulsatile profile of circulating GH, and in mean GH concentrations, are likely to contribute to sex differences in growth and other responses to GH. Infusion of GH in male rats at a constant rate produces smaller increases in growth rate and circulating concentrations of IGF-I, but is more effective at increasing hepatic GH receptor numbers and circulating GH–binding protein concentrations, than infusion of the same GH dose as a series of pulses (Maier et al. 1988, 1992, Bick et al. 1990, 1992). A recent study in rats has shown that growth responses are more sensitive to stimulation by the pulsatile component of a GH infusion, whereas hepatic GH receptor and plasma
GH-binding protein concentrations are sensitive to the continuous component (Gevers et al. 1996). Thus, in rats, the greater amplitude and lower frequency of GH pulses in males may be more effective in stimulating growth than the profile observed in females.

Oestrogen treatment also increases mean plasma GH concentrations in humans (Carlson et al. 1973, Wiedemann et al. 1976, Ho et al. 1996), castrate female macaques (Berthea 1991), intact female baboons (Copeland et al. 1984), sheep (Davis et al. 1977) and cattle (Breier et al. 1988). In primate species, endogenous oestrogens appear to be more important than endogenous androgens for regulation of circulating GH. Most studies in humans have reported positive correlations between GH pulse amplitude and serum concentrations of free oestradiol (Ho et al. 1987, Faria et al. 1992), but not between mean plasma GH and plasma testosterone concentrations (Thompson et al. 1972, Butenandt et al. 1976, Ho et al. 1987). However, Iranmanesh et al. (1991) reported that GH secretion, pulse frequency and pulse amplitude were negatively correlated with free testosterone and not related to serum oestradiol in healthy men. In non-primates, endogenous oestrogen status has less effect on circulating GH profiles than has the endogenous androgen status.

Ovariectomy of cows does not alter the temporal pattern of circulating GH (Plouzek & Trenkle 1991). In rats, circulating patterns of GH do not change with stage of the oestrous cycle (Clark et al. 1987), but ovariectomy produces a small increase in GH pulse amplitude (Jansson et al. 1984, Clark et al. 1987) and oestrogen treatment increases interpulse GH concentrations in males (Jansson et al. 1983). This suggests that sex differences in endogenous oestrogen production might contribute to the smaller GH pulse amplitude and greater interpulse GH concentrations in females compared with males in this species. Oestrogen receptor-mediated pathways have been proposed as a mechanism for the effects of both steroids on circulating GH (Devesa et al. 1991, Metzger et al. 1994). However, oestrogens and androgens have different effects on circulating patterns of GH in humans. Whereas androgens increase mean plasma GH by increasing GH pulse amplitude, without changing interpulse GH concentrations or GH pulse frequency, oestrogens increase mean plasma GH by increasing interpulse GH concentrations, GH pulse amplitude, pulse frequency, or combinations of these (Dawson-Hughes et al. 1986, Mauers et al. 1990).

In addition to the effects of steroids on circulating GH after puberty, androgens and oestrogens act before puberty to exert permanent effects on circulating patterns of GH in later life. In the rat, in which sexual differentiation of brain centres regulating growth occurs shortly after birth, neonatal, but not prepubertal, castration of male rats decreases their GH pulse amplitude and increases their interpulse GH concentrations as adults (Jansson & Frohman 1987, Jansson et al. 1984). Neonatal gonadectomy of female rats decreased their interpulse GH concentrations and increased their GH pulse amplitude as adults, resulting in a temporal pattern of GH in the circulation that was more like that of males and increased their growth rates in later life (Jansson et al. 1984). However, in female sheep and cattle, in which sexual differentiation of growth regulation occurs before birth, prenatal androgen exposure increased postnatal growth and plasma IGF-I, but did not alter circulating patterns of GH (Klindt et al. 1987, Aldrich et al.).

Figure 1 Temporal profile of circulating GH concentrations.
1996), implying that the IGF-I response to GH was increased.

In non-primate species, mean circulating GH concentrations are greater in males than in females, whereas in primate species, mean circulating GH concentrations are greater in females than in males. Sex differences in circulating GH profiles usually become apparent over the same period as sex differences in growth. Either androgen or oestrogen treatment increases mean circulating GH in most species, and androgen and oestrogen can also act before puberty to alter circulating profiles of GH permanently in later life.

Sexual dimorphism in responses to GH

Growth rate and body composition

Sexual dimorphism in growth rate and body composition have been discussed above. Sex differences in circulating GH profiles may be a mechanism by which steroid hormones produce these differences, at least in non-primates. However, studies in which exogenous GH has been administered have also produced evidence of sex differences in responsiveness to GH. In GH-deficient adults, GH treatment produced greater increases in plasma IGF-I and total body water in men than in women (Johannsson et al. 1996, Burman et al. 1997). Conversely, GH treatment of growing pigs produced greater increases in growth and protein deposition in females than in males (Campbell et al. 1990). Potential mechanisms for sex differences in growth and composition responses to GH are discussed below.

Insulin-like growth factor-I

The insulin-like growth factors are hormones that are believed to mediate many of the effects of GH on tissue growth and metabolism (Cohick & Clemmons 1993). If sexual dimorphism at the level of circulating GH is the mechanism responsible for sexually dimorphic patterns of growth, one would also expect sex differences at the level of the insulin-like growth factors and their binding proteins.

Androgens and oestrogens appear to affect plasma concentrations of IGFs via different mechanisms and their effects differ between species. Androgens are believed to affect circulating IGF-I indirectly, via increased circulating GH concentrations, as GH deficiency in rats and humans abolishes the increase in plasma IGF-I at puberty or after androgen treatment (Parker et al. 1984, Crawford et al. 1994). Androgen treatment does not affect the plasma IGF-I response to a GH challenge in prepubertal boys (Craft & Underwood 1984). The effects of oestrogens on circulating IGF-I and the mechanism for these effects may differ between sexes and species. In ovariectomised female rats, oestrogens increase circulating GH, but reduce circulating IGF-I concentrations by inhibiting the hepatic IGF-I synthetic response to GH (Murphy & Freisen 1988, Borski et al. 1996). Oestrogen treatment of male cattle increases plasma concentrations of both IGF-I and GH (Breier et al. 1988, Coxam et al. 1990). In humans, the reported effects of oestrogens on circulating IGF-I are extremely variable. Endogenous and administered oestrogen are variously reported to decrease (e.g. Wiedemann et al. 1976, Weissberger et al. 1991), have no effect (e.g. Wang et al. 1995) or increase (e.g. Weissberger et al. 1991, Juul et al. 1995a) plasma IGF-I in women and girls. The observed IGF-I response may depend on whether the oestrogen was endogenous or exogenous, the route of administration for exogenous oestrogen and the time course over which circulating IGF-I was monitored. In female chimpanzees, circulating IGF-I concentrations are less strongly correlated with plasma oestrogen than with plasma testosterone, whereas in males of this species plasma oestrogen and IGF-I concentrations are not correlated (Copeland et al. 1985).

Exposure to steroids during neonatal or prenatal life also modifies circulating concentrations of IGF-I in later
IGF-I concentrations were increased by 29% compared with those in control lambs (DeHaan et al. 1990a). Prenatal exposure to androgen consistently increases postnatal growth rates and circulating IGF-I and decreases fat deposition, in male and female cattle and sheep (Klindt et al. 1987, DeHaan et al. 1988, 1990a,b, Jenkins et al. 1988, Aldrich et al. 1996). However, prenatal exposure to androgen did not alter circulating patterns of GH in female cattle (Aldrich et al. 1996) and sheep (Klindt et al. 1987), implying that prenatal exposure to androgen does not increase circulating IGF-I by stimulating GH in these species. Although neonatal exposure to steroids permanently affects growth and growth hormone secretion in the rat (Jansson et al. 1984, Jansson & Frohman 1987), the effects of neonatal steroid status or administration on adult plasma IGF-I concentrations in this species have not been reported.

In non-primate species, plasma IGF-I concentrations are greater in males than in females, whereas, in primate species, plasma IGF-I concentrations are greater in females than in males. Androgens increase plasma IGF-I concentrations indirectly, through increasing plasma GH, but the effects of oestrogens are variable. Sex differences in IGF-I support the hypothesis that sex differences in growth may be partially the result of gonadal steroids acting to produce sexually dimorphic patterns of circulating GH. However, studies in cattle and sheep also suggest that steroids may affect circulating IGF-I independent of effects on GH.

Insulin-like growth factor-II

Plasma IGF-II concentrations are reported not to differ between sexes in children, adolescent or young adult humans (Merimee et al. 1987, Juul et al. 1995b). In prepubertal lambs, plasma IGF-II concentrations were similar in females and males at 12 weeks of age and greater in females than in males at 23 weeks of age (Gatford et al. 1996). Plasma IGF-II in prepubertal pigs was also greater in females than in males (Owens et al. 1993). In young meat-type chickens, sex differences in plasma IGF-II concentrations follow an ontogenic pattern similar to that of IGF-I, with greater IGF-II in females than males at 2 weeks of age, but not at later ages (Scanes et al. 1989, Decuyper et al. 1993). The effect of androgens on IGF-II differs between species. In neonatal rats, androgens decrease hepatic IGF-II mRNA concentrations (Martinoli & Pelletier 1991). Plasma concentrations of IGF-II are not affected by castration in male lambs (Gatford et al. 1996), but are increased by castration in male pigs (Owens et al. 1993).

Studies to date indicate that plasma IGF-II concentrations are either similar or greater in females compared with males. Androgens may inhibit IGF-II synthesis in some, although not necessarily all, species.

Insulin-like growth factor-binding proteins

Plasma concentrations of IGF-binding protein-3, the main carrier of IGFs in blood in postnatal life, are positively regulated by GH (Clemmons 1996). Consistent with differences in circulating GH, plasma IGF-binding protein-3 concentrations are greater in women than in men (Juul et al. 1995b, Harrela et al. 1996) and greater in male than in female growing lambs (Gatford et al. 1996). Circulating IGF-binding protein-1 concentrations are greater in female than in male fasted humans and rats, but these differences are reduced or abolished by feeding (Rutanen et al. 1982, Yeoh & Baxter 1988, Lewitt et al. 1994, Juul et al. 1995b). Plasma IGF-binding protein-2 concentrations do not differ between sexes in humans and pigs before or after puberty (Buonomo & Klindt 1993, Juul et al. 1995b).

Sex differences in circulating concentrations of IGF-binding protein-3 are consistent with differences in GH. Limited data suggest that androgens may increase circulating concentrations of IGF-binding protein-3 and -1, whereas oestrogens increase circulating concentrations of IGF-binding proteins-1 and -2 and decrease circulating concentrations of IGF-binding protein-3.

Sexual dimorphism in factors affecting GH responsiveness

GH receptor

The GH receptor is a member of the cytokine/haematopoietin receptor superfamily. Binding of GH to
the GH receptor induces receptor dimerisation and activation of the tyrosine kinase, JAK2, which in turn activate signalling molecules, including Stat transcription factors, Src homologous collagen protein (SCH) and insulin receptor substrates 1 and 2. Downstream events include release of second messengers, including diacylglycerol, calcium and nitric oxide, and activation of enzymes, including mitogen-activated protein kinase, protein kinase C, phospholipase A2 and phosphatidylinositol 3′-kinase, which affect the function of the target cell (Argetsinger & Carter-Su 1996). Genetic defects of the GH receptor in Laron syndrome cause GH resistance and result in dwarfism, obesity and low serum concentrations of IGF-I (Laron 1993). As a functional GH receptor is necessary for GH to produce responses in target tissues, sex differences in GH receptor numbers or affinity might produce differences in response to GH.

In the rat, hepatic GH binding capacity and receptor numbers are two-fold greater in males than in females after puberty (Kelly et al. 1974, Postel-Vinay 1976, Maes et al. 1983, Tiong & Herington 1991, Carmignac et al. 1993a, b). Despite this difference in GH binding activity, total hepatic GH receptor mRNA concentrations do not differ between sexes in the rat (Mathews et al. 1989, Carlsson et al. 1990a, Tiong & Herington 1991, Moldrup et al. 1993, Baumbach & Bingham 1995), although mRNA for a liver-specific receptor subtype, GHR1, is expressed at greater concentrations in female rats than in males (Baumbach & Bingham 1995). In the adult rabbit, the abundance of neither hepatic GH binding nor GH receptor mRNA differs between sexes (Kelly et al. 1974, Tiong et al. 1989).

In rats, testosterone treatment does not affect hepatic GH binding (Carmignac et al. 1993a), but oestrogen treatment induces GHR1 transcripts, resulting in increased hepatic GH binding (Carmignac et al. 1993a, Gabrielsson et al. 1995, Bennett et al. 1996). The effect of oestrogen on GH receptors differs between species. Physiological doses of oestrogen decrease GH receptor expression and GH binding in rabbit liver (Domene et al. 1994). Decreased plasma GH binding protein concentrations in humans treated with oestrogen probably also reflect decreased GH receptor numbers (Kobayashi et al. 1994, Tato et al. 1995).

Sex differences in hepatic GH binding and expression of the GH receptor gene vary between species. A liver-specific receptor subtype in rats, GHR1, is expressed at greater concentrations in females than in males and is upregulated by oestrogen. However, in other species, oestrogen appears to downregulate the GH receptor.

GH-binding protein

GH-binding protein is a truncated form of the GH receptor, corresponding to the extracellular ligand-binding domain (Leung et al. 1987). In rats and humans, high-affinity GH-binding proteins in plasma form complexes with some of the GH in blood and are proposed to function as a GH reservoir and to modulate the action of GH at its receptor (Amit et al. 1992, Baumann 1994, Herington et al. 1994, Bingham et al. 1994). In normal adult rats, circulating concentrations of GH-binding protein are two- or threefold greater in females than in males (Carmignac et al. 1992, Leung et al. 1994). Studies in humans have also shown greater concentrations of GH-binding protein in blood from females than in that from males (Ho et al. 1993, Rajkovic et al. 1994), although earlier studies did not find such differences, probably because of the use of less sensitive detection methods (Merimee et al. 1991, Mercado et al. 1993). In cattle and sheep, GH-binding protein is present in lower concentrations in plasma than are observed in rats or humans, and is not believed to have an important role in GH metabolism (Amit et al. 1992, Davis et al. 1992, Bingham et al. 1994). Sex differences have not been investigated in these species. In chickens, serum GH-binding protein concentrations do not differ between the sexes (Tobar-Dupres et al. 1993). In the rat, the lower concentrations of circulating GH-binding protein, combined with greater GH pulse amplitude, may produce more free circulating GH during GH-secretory episodes in male than in female rats, resulting in sex differences in the availability of GH (Leung et al. 1994).

Because the GH-binding protein is derived either by alternate splicing of GH receptor mRNA as in rats (Baumbach et al. 1993), or by proteolytic cleavage of the cell-surface GH receptor protein as in humans (Sotiropoulos et al. 1993), it is not surprising that gonadal steroids have similar effects both on GH-binding protein concentrations in blood and GH receptor numbers in liver. Physiological doses of androgens do not affect concentrations of GH-binding protein in rats (Carmignac et al. 1993a) or men (Ip et al. 1995). However, pharmacological doses of testosterone decrease serum GH-binding protein concentrations in hypogonadal men, independent of GH status (Ip et al. 1995). Oestrogens increase hepatic concentrations of GH-binding protein mRNA and circulating concentrations of GH-binding protein in rats (Carmignac et al. 1993a, Gabrielsson et al. 1995, Bennett et al. 1996). In humans, circulating GH-binding protein concentrations are generally negatively correlated with endogenous oestrogen concentrations and are reduced by physiological doses of oestrogen (Massa et al. 1993, Kobayashi et al. 1994, Tato et al. 1995), although Klein et al. (1996) did not find that plasma GH-binding protein concentrations differed with stage of the ovulatory cycle in women. Conversely, pharmacological doses of oestrogen increase plasma GH-binding protein concentrations (Weissberger et al. 1991, Kelly et al. 1993, Ho et al. 1993, Massa et al. 1993, Rajkovic et al. 1994).

Circulating concentrations of GH-binding protein are greater in females than in males in both rats and humans, and may

Journal of Endocrinology (1998) 157, 373–389
decrease the availability of circulating GH in females. The effects of gonadal steroids on GH-binding protein are species specific and differ between physiological and pharmacological doses.

Metabolic clearance rate of GH

Differences in responsiveness to either endogenous or exogenous GH may also be a result of differences in turnover of GH in blood. Rosenbaum & Gertner (1989) reported that the metabolic clearance rate of GH was 40% greater in adult men than in adult women, whereas differences in GH clearance were not apparent in prepubertal children. They calculated that the difference in GH clearance rate in adults might account for most of the observed difference in mean circulating GH concentrations. However, differences in metabolic clearance rate correspond to differences in GH half-life only if the distribution volume of GH does not differ between sexes, and this may not be the case, given sex differences in circulating concentrations of GH-binding protein. In humans, androgen treatment did not alter GH clearance in prepubertal boys, but endogenous steroids may affect GH clearance, as the half-life of GH in young men is negatively correlated with serum oestradiol concentrations (Iranmanesh et al. 1991) and positively correlated with serum testosterone (Iranmanesh et al. 1991). Conversely, in rats, the steady-state clearance of GH is decreased by oestrogen and increased by testosterone (Badger et al. 1991). In cattle, the metabolic clearance rate of GH did not differ between entire and castrate males and entire females (Plouzek & Trenkle 1991). The metabolic clearance rate of GH was increased by ovariectomy, but not altered by oestrogen treatment in castrate males (Gopinath & Kitts 1984, Plouzek & Trenkle 1991).

Sex differences in the clearance rate of GH differ between species, and require further investigation.

Sexual dimorphism in the regulation of GH secretion and synthesis

Sexual dimorphism in circulating patterns of GH could be due to differences in anterior pituitary synthesis and secretion of GH as a result of sex differences in either hypothalamic secretion of GRF and SRIF or the pituitary GH response to these hormones. Technical difficulties have prevented the simultaneous measurement of GH, GRF and SRIF in animals with normal feedback systems. The evidence for differences in hypothalamic GRF and SRIF secretion is therefore largely indirect. However, in vivo and in vitro evidence suggests there are sex differences in anterior pituitary responsiveness to GRF and SRIF.

Pituitary sensitivity to GRF and SRIF

In vivo GH responses to i.v. GRF are greater in males than females in rats (Wehrenberg et al. 1985, Arsenijevic et al. 1987), cattle (Plouzek & Trenkle 1991) and horses (Thompson et al. 1994). However, in vivo human studies have reported either greater pituitary sensitivity or greater pituitary responsiveness to GRF in females than in males (Gelato et al. 1984, Lang et al. 1987, Benito et al. 1991, Pietschmann et al. 1991). In rhesus monkeys, the increase in GH in response to increasing GRF dose rate did not differ between males and females (Styne 1991). In vitro studies suggest that sex differences in pituitary sensitivity to GRF are partially responsible for differences in the in vivo GH response to GRF. Basal and GRF-stimulated GH secretion rates in intact perfused anterior pituitaries, anterior pituitary cell preparations and individual somatotrophs are greater in those from male rats than in those from female rats (Cronin & Rogol 1984, Evans et al. 1985, Hoeffler & Frawley 1986, Critchlow et al. 1986, Ho et al. 1986, Kerrigan et al. 1989). The observation that GRF receptor expression in female rats was only 15% of that observed in male rats is consistent with these observations (Ono et al. 1995).

Sex differences in pituitary responsiveness to SRIF have also been reported. In the rat, GRF-stimulated GH secretion is inhibited by lower concentrations of SRIF in somatotrophs from females than from males (Critchlow et al. 1986, Kerrigan et al. 1989). This suggests that differences in pituitary responsiveness to GRF, and possibly also SRIF, are involved in producing sexually dimorphic profiles of GH.

Gonadal steroids have been shown to affect GH-secretory responses to GRF and SRIF. In vivo androgen treatment of rats increases the GH-secretory response to exogenous GRF measured in vivo (Wehrenberg et al. 1985) and in vitro (Evans et al. 1985, Wehrenberg et al. 1985, Ohlsson et al. 1987, Batson et al. 1989). In humans, androgens also increase GH secretion in response to GRF, measured in vivo, and this increase can be prevented by oestrogen receptor blockade (Lima et al. 1989). In rats, in vivo administration of oestrogen either decreases (Evans et al. 1985, Ohlsson et al. 1987, Shulman et al. 1987) or fails to affect (Wehrenberg et al. 1985, Painson et al. 1992) in vivo and in vitro GH release after GRF administration. The activity of adenylate cyclase in the anterior pituitary, which positively regulates GH synthesis and secretion, is also enhanced by in vivo administration of testosterone and inhibited by oestrogen in the rat (Gabriel et al. 1993). Whereas in vivo pituitary responses to steroid treatment may partially reflect changes in hypothalamic GRF and SRIF secretion, in vitro studies confirm that the pituitary is a site at which gonadal steroids exert effects on GH secretion, at least in the rat.

The reported in vitro effects of gonadal steroids on basal GH synthesis and secretion are contradictory. In vivo steroid treatment has been reported to have no effect on basal GH secretion by cultures of anterior pituitary cells.
from rats (Fukata & Martin 1986, Webb et al. 1983) and cattle (Hassan et al. 1992). Similar treatments have been reported to increase basal GH secretion in anterior pituitary cell cultures from female rats (Simard et al. 1986), whereas the reverse has been reported for male rats (Hertz et al. 1989). In macaques, in vitro oestrogen treatment increased basal GH secretion in cultures of pituitary cells from juvenile males, but not in anterior pituitary cell cultures from juvenile females or adult males and females (Bethea 1991). GH synthesis in anterior pituitary cells was decreased by in vitro testosterone or oestrogen treatment in male rat cells (Hertz et al. 1989), but increased by oestrogen treatment in female rat cells (Simard et al. 1986).

The in vitro effects of gonadal steroids on pituitary GH-secretory responses to GRF and SRIF have been demonstrated more consistently, and depend on the sex of the animal from which the anterior pituitary cells were derived. In anterior pituitary cells from male rats and calves, in vitro preincubation with androgens enhanced the GH-secretory response to GRF and the inhibition of GH secretion by SRIF (Hertz et al. 1989, Hassan et al. 1992). In vitro treatment of male anterior pituitary cells with oestrogens has been reported either not to affect (Hertz et al. 1989, Hassan et al. 1992) or to enhance the GH-secretory response to GRF (Webb et al. 1983). In female rat anterior pituitary cells, the GH-secretory response to GRF has been reported to be enhanced by in vitro addition of oestrogen, but not of testosterone (Simard et al. 1986, Hertz et al. 1989), although Fukata & Martin (1986) found no change in pituitary responsiveness to GRF or SRIF after oestrogen or testosterone pretreatment. In male rat anterior pituitary cells, oestrogens prevented SRIF suppression of basal, but not GRF-stimulated, GH secretion (Hertz et al. 1989).

Several studies suggest that, in addition to these direct actions of steroids at the pituitary, the sensitivity of the pituitary to GRF and SRIF may also be permanently reset by the actions of gonadal steroids before puberty. GH-secretory responses to GRF and SRIF were sexually dimorphic in anterior pituitary cells from adolescent rats that were gonadectomised prepubertally (Hertz et al. 1989). The in vitro GH-secretory response to GRF in adult male rats was suppressed more effectively by neonatal than prepubertal gonadectomy, and androgen treatment in adulthood was able to reverse this effect only after prepubertal gonadectomy (Ohlsson et al. 1987, Fishman et al. 1993). Similarly, neonatal administration of androgen, but not oestrogen, to female rats that were gonadectomised later in life enhanced their in vivo GH-secretory responses to i.v. GRF as adults (Aguilar & Lopez 1988).

Pituitary sensitivity to GRF appears to be greater in males than in females in non-primates, but greater in female than in male primates. Androgen administration enhances, and oestrogen administration inhibits, GH-secretory responses to GRF in vivo, but the effects of these steroids on the GH-secretory response to GRF in vitro depend on the sex of the animal from which the somatotrophs were obtained. In rats, exposure to androgens before puberty enhances GH-secretory responses to GRF in later life.

GH-releasing factor synthesis and secretion

Patterns of circulating GRF in hypothalamic–hypophyseal portal blood in males and females have not been reported for any species. However, in vivo studies in the rat have compared the effects of removal of GRF on circulating GH in males and females using either immunoneutralisation of endogenous GRF or suppression of GRF secretion by neonatal treatment with monosodium glutamate, which causes permanent lesions in the GRF-secreting regions of the hypothalamus. Both immunoneutralisation and GRF deficiency decrease GH pulse amplitude in blood in both sexes and decrease interpulse concentrations of circulating GH in females, but not in males. This implies that interpulse GH concentrations in the female rat are primarily regulated by GRF, not SRIF (Wehrenberg et al. 1982, Maiter et al. 1991a, Ono et al. 1991, Painson & Tannenbaum 1991). Lower interpulse GH concentrations in the male rat are postulated to be due to either greater SRIF secretion or lower GRF secretion between GH pulses than occurs in females. To date, the sheep is the only species in which GH and GRF have been measured concurrently and those studies show only partial concordance between GRF and GH pulses, possibly because of intermittent blockade of GH secretion by SRIF pulses (Frohman et al. 1990, Thomas et al. 1991, Fletcher et al. 1996).

Hypothalamic GRF content is greater in male than in female adult rats (Gabriel et al. 1989, 1993, Maiter et al. 1990, 1991a, Ono et al. 1995) and hypothalamic GRF mRNA concentrations are two to three times greater in males than in females (Argente et al. 1991, Maiter et al. 1991b, Mizobuchi et al. 1991, Hasegawa et al. 1992, Chowen et al. 1993). Similarly, in prepubertal lambs, the hypothalamic GRF content is approximately 50% greater in males than in females (Ono et al. 1995). Regulation of GRF synthesis and secretion also differs between sexes in rats. Release of GRF by slices of rat hypothalamic tissue in response to potassium administration is greater in males than in females (Ono et al. 1995, Ge et al. 1989). Hypothalamic GRF protein and mRNA are more sensitive to feedback inhibition by GH in male rats than in females (Maiter et al. 1990, 1991b).

Sex differences in GRF content may be the result of gonadal steroid action. Androgen treatment in vivo has been reported to increase hypothalamic GRF protein and mRNA content in adult rats of both sexes (Zeitler et al. 1990, Fernandez et al. 1992, Hasegawa et al. 1992, Chowen et al. 1993). However, others have reported no change in hypothalamic GRF mRNA or GRF content...
after gonadectomy or testosterone treatment of adult male or female rats (De Gennaro Colonna et al. 1991, Gabriel et al. 1989, Maiter et al. 1991b). The observation that hypophysectomy of adult rats blocks the increase in hypothalamic GRF mRNA after dihydrotestosterone treatment (Hasegawa et al. 1992) suggests that any increase in GRF mRNA is a response to altered circulating patterns of GH, implying that androgens do not affect hypothalamic GRF synthesis directly. Most, but not all (Gabriel et al. 1989), studies in rats suggest that oestrogen either suppresses (Fernandez et al. 1989, Martinoli et al. 1991, Hasegawa et al. 1992, Maiter et al. 1993) or does not affect (Maiter et al. 1991b) GRF synthesis and secretion. In addition to the direct effects of gonadal steroids at the hypothalamus, exposure to steroids during neonatal or prenatal life may have permanent effects on subsequent GRF production. Treatment of male and female rats with testosterone on their day of birth increased and neonatal castration decreased the number of GRF neurones in the hypothalamus, although not the hypothalamic GRF mRNA content (Chowen et al. 1993).

Hypothalamic GRF and GRF mRNA contents are greater in male than in female rats and prepubertal sheep, and are either increased or unchanged by androgens, and decreased or unchanged by oestrogens. Exposure to androgens during neonatal life in rats increases numbers of GRF neurones in the hypothalamus and might therefore increase the capacity for GRF secretion in adulthood.

SRIF synthesis and secretion

The evidence for sexually dimorphic in vivo secretion of SRIF is also largely indirect. GH secretion by male rats shows an alternating pattern of responsive and refractory periods when GRF is repeatedly administered i.v. at intervals of less than 3-hourly, whilst female rats respond consistently to repeated GRF stimulus (Clark & Robinson 1985, Painson & Tannenbaum 1991). This implies that SRIF secretion from the hypothalamus in males is in concentrations sufficient to block the GH secretion response to GRF, except during troughs in SRIF secretion approximately every 3 h, and that SRIF secretion is lower in females. Administration of anti-SRIF serum i.v. in male rats increases plasma interpulse GH concentrations, but does not alter peak GH concentrations (Terry & Martin 1981, Eikelboom & Tannenbaum 1983, Painson & Tannenbaum 1991). In female rats, administration of anti-SRIF serum or lesioning of SRIF-producing regions in the hypothalamus increases both interpulse and peak circulating GH concentrations (Urman et al. 1985, Painson & Tannenbaum 1991). This implies that SRIF secretion is pulsatile in the male, but relatively constant in the female rat.

Although this indirect evidence suggests that SRIF secretion is sexually dimorphic in rats, most studies have failed to find sex differences in hypothalamic or median eminence SRIF content or in vitro release in the rat (Gross 1980, Critchlow et al. 1986, Ge et al. 1989, Maiter et al. 1990, Leidy et al. 1993). However, Gabriel et al. (1993) reported a greater SRIF content in the median eminence of male rats compared with female rats. In sheep receiving food ad libitum, the median eminence content of SRIF did not differ between sexes (Gatford et al. 1997a). SRIF mRNA expression in the periventricular nucleus, a major site of SRIF synthesis, has been found to be greater in male than in female rats in most studies (Chowen-Breed et al. 1989, Argente et al. 1990, Martinoli et al. 1991, Hasegawa et al. 1992, Chowen et al. 1993), although one study did not observe sex differences (Zorilla et al. 1990). Sex differences have also been observed in the regulation of SRIF secretion in rats. Inhibition of the GH secretion response to GRF and the increase in hypothalamic SRIF content after exposure to increased plasma GH is greater in males than in females (Clark & Robinson 1985, Carlsson et al. 1990b, Maiter et al. 1990, Bercu et al. 1991, Painson & Tannenbaum 1991).

In the rat, castration of males near puberty decreases hypothalamic SRIF mRNA content and androgen treatment of castrate and intact males and intact females increases hypothalamic SRIF mRNA content (Baldino et al. 1988, Werner et al. 1988, Chowen-Breed et al. 1989, Argente et al. 1990, Zorilla et al. 1990, Chowen et al. 1993). Androgen status during the neonatal period also has permanent non-reversible effects on hypothalamic SRIF content. Neonatal castration of male rats reduces, and neonatal testosterone treatment of male or female rats increases, hypothalamic SRIF mRNA content in adulthood (Chowen et al. 1993). In contrast to the effect on GRF-synthesising neurones (Chowen et al. 1993), castration or testosterone treatment during the neonatal period does not alter the number of SRIF-synthesising neurones in the rat (Hasegawa et al. 1992). Although androgens stimulate SRIF mRNA in vivo, one study has reported that in vitro treatment of adult rat hypothalamic cell cultures with testosterone decreased SRIF synthesis and secretion (Fernandez et al. 1992), implying that the stimulatory effects of androgens on hypothalamic SRIF are not due to direct actions of testosterone at the hypothalamus. Consensus has not been reached regarding the effects of oestrogen on SRIF synthesis and secretion. In rats, in vivo oestrogen treatment increases hypothalamic content of SRIF protein and mRNA (Baldino et al. 1988, Werner et al. 1988, Gabriel et al. 1989, Zorilla et al. 1990, Senaris et al. 1992, Bennett et al. 1996) and addition of oestrogen to rat hypothalamic cell cultures inhibits SRIF secretion, but not synthesis (Fernandez et al. 1992). In women, oestrogen treatment reduces the proportion who are refractory to stimulation of GH secretion by GRF, suggesting that SRIF secretion may be decreased by oestrogen (Devesa et al. 1991).

Indirect evidence suggests that SRIF release from the hypothalamus is pulsatile in male rats, but relatively constant in female
rats, which may cause the low interpulse GH concentrations observed in male rats. Consistent with this, SRIF mRNA expression in the periventricular nucleus is usually greater in male than in female rats. Hypothalamic SRIF and SRIF mRNA content in adult rats are increased by androgen treatment or prenatal androgen exposure, but the effects of oestrogens on SRIF are less clear.

Conclusions

Although aspects of the somatotrophic axis such as temporal profiles of circulating GH differ between males and females in all species investigated to date, the patterns of differences and the developmental stage at which sex differences become apparent are not the same for all species. In most species, sex differences in circulating IGF-I and IGF-binding protein-3 correspond to sex differences in the temporal profile and mean circulating concentrations of GH. In non-primate species, mean circulating GH, IGF-I and IGF-binding protein-3 concentrations are generally greater in males than in females and probably cause faster growth rates in males than in females. In contrast, mean circulating concentrations of GH and total IGF-I in primates are greater in females than in males, implying either that the somatotrophic axis is less important for postnatal growth regulation in primates than it is in other species, or that growth is related to other aspects of the axis, for example free hormone concentrations, rather than total concentrations. For example, in girls treated for central precocious puberty, IGF-I remains stable, but circulating IGF-binding protein-3 increases and growth rate decreases (Juul et al. 1995a).

Sex differences in the somatotrophic axis probably originate at the anterior pituitary, and possibly the hypothalamus. There is good in vivo and in vitro evidence that gonadal steroids affect pituitary GH responsiveness to GRF and SRIF. Although indirect evidence suggests that GRF and SRIF secretion may differ between sexes in the pituitary-intact animal, it has not yet been possible to characterise portal plasma concentrations of GRF and SRIF in animals in which GH secretion is undisturbed. Development of a model in which this is possible is necessary to separate the direct effects of gonadal steroids at the pituitary and hypothalamus. In addition to direct effects at the pituitary and hypothalamus, gonadal steroids may act during development to modify subsequent secretion of GRF or SRIF, or both, for example by affecting numbers of hormone-secreting neurones. Figure 2 summarises the actions of steroid hormones on the somatotrophic axis.

Sex differences in the somatotrophic axis probably originate at the anterior pituitary, and possibly the hypothalamus. There is good in vivo and in vitro evidence that gonadal steroids affect pituitary GH responsiveness to GRF and SRIF. Although indirect evidence suggests that GRF and SRIF secretion may differ between sexes in the pituitary-intact animal, it has not yet been possible to characterise portal plasma concentrations of GRF and SRIF in animals in which GH secretion is undisturbed. Development of a model in which this is possible is necessary to separate the direct effects of gonadal steroids at the pituitary and hypothalamus. In addition to direct effects at the pituitary and hypothalamus, gonadal steroids may act during development to modify subsequent secretion of GRF or SRIF, or both, for example by affecting numbers of hormone-secreting neurones. Figure 2 summarises the actions of steroid hormones on the somatotrophic axis.

The actions of gonadal steroids may account for sex differences in the somatotrophic axis before, during or after puberty, depending on species, and may include changes in hormone receptor numbers or function in addition to changes in the secretion of hypothalamic or pituitary
hormones, or both, and altered responsiveness of target tissues to somatotropic axis hormones. Thus the somatotropic axis may be a major pathway through which steroids act to produce sex differences in growth and body composition.

References

Argente J, Chowen-Breed JA, Steiner RA & Clifton DK 1990 Somatostatin messenger mRNA is increased by testosterone through activation of androgen receptors and not by aromatization to estradiol. Neuroendocrinology 52 342–349.

Baumbach WR & Bingham B 1995 One class of growth hormone (GH) receptor and binding protein messenger ribonucleic acid in liver, GHR1, is sexually dimorphic and regulated by GH. Endocrinology 136 749–760.

Baumbach WR, Horner DL & Logan JS 1993 The growth hormone-binding protein in rat serum is an alternatively spliced form of the rat growth hormone receptor. Genes and Development 3 1199–1205.

Bethel CA 1991 Estrogen action on growth hormone in pituitary cell cultures from adult and juvenile macaques. Endocrinology 129 2110–2118.

Carlsson LMS, Clark RG & Robinson ICAF 1990b Sex difference in growth hormone feedback in the rat. *Journal of Endocrinology* 126 27–35.

DeHaan KC, Berger LL, Kesler DJ, McKeith FK, Faulkner DB & Cmarik GF & Favero RJ 1990b Effects of prenatal testosterone...

Fischman A, Hertz P & Hochberg Z 1993 Ontogenesis of the sexual dimorphism of the somatotrophic axis · K L GATFORD and others 385

Fischman A, Hertz P & Hochberg Z 1993 Ontogenesis of the sexual dimorphism of the somatotrophic axis · K L GATFORD and others 385

Hoefler JP & Frawley LS 1986 Capacity of individual somatotrophs to release growth hormone (GH) varies according to sex: analysis by reverse hemolytic plaque assay. *Endocrinology* 119 1037–1041.

Juul A, Scheie T, Nielsen CT, Krabbe S, Müller J & Skakkebøe NE 1995a Serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 levels are increased in central precocious puberty: effects of two different treatment regimens with gonadotropin-releasing hormone agonists, without or in combination with an antiandrogen (cyproterone acetate). *Journal of Clinical Endocrinology and Metabolism* 80 3059–3067.

Downloaded from Bioscientifica.com at 08/05/2019 05:57:43AM via free access

Styne DM 1991 The growth hormone secretory response to growth hormone releasing factor in the developing rhesus monkey. *Journal of Medical Primatology* 20 338–344.

Tiong TS, Freed KA & Herington AC 1989 Identification and tissue distribution of messenger RNA for the growth hormone receptor in the rabbit. *Biochemical and Biophysical Research Communications* 158 141–148.

Ulloa-Aguirre A, Blizzard RM, Garcia-Rubi E, Rogol AD, Link K, Christie CM, Johnson ML & Veldhuis JD 1990 Testosterone and oxandrolone, a nonaromatizable androgen, specifically amplify the mass and rate of growth hormone (GH) secreted per burst without altering GH secretory burst duration or frequency or the GH half-life. *Journal of Clinical Endocrinology and Metabolism* 71 846–854.

Received 10 November 1997
Accepted 23 January 1998