Factors regulating the rat insulin-like growth factor-binding protein-1 response to octreotide

M S Lewitt, D Cameron-Smith, N M Clarke, H Saunders and J L Phuyal
Department of Endocrinology, Royal Prince Alfred Hospital and the University of Sydney, Sydney, New South Wales 2006, Australia

Abstract
Insulin-like growth factor-binding protein-1 (IGFBP-1) production is increased by somatostatin and its analogues. In order to determine the time course and identify possible mechanisms of this increase in vivo we administered octreotide to rats and determined IGFBP-1 concentrations by RIA. After 60 min of anaesthesia, the mean baseline IGFBP-1 concentrations were 166 (95% confidence interval 123 to 225) ng/ml and increased in saline-infused animals to 729 (488 to 1086) ng/ml after 180 min. IGFBP-1 was stimulated transiently in response to octreotide, with circulating IGFBP-1 concentrations peaking at 1605 (1220 to 2111) ng/ml at 105 min during a continuous infusion of octreotide (100 µg/kg per h). In conscious chronically cannulated rats, baseline IGFBP-1 concentrations were 22 (18 to 28) ng/ml, 8-fold less than in the anaesthetised state, and were stimulated in the short term after administration of an octreotide bolus (100 µg/kg s.c.) to reach 88 (62 to 126) ng/ml at 60 min. A similar response was seen after i.v. administration to conscious rats. Intravenous bolus of octreotide (100 µg/kg) in rats anaesthetised for 3 h resulted in an increase in IGFBP-1 to peak at 1556 (1268 to 1910) ng/ml at 60 min. The IGFBP-1 response to octreotide was diminished in high-fat fed hyperinsulinaemic rats. The pattern of disappearance of iodinated IGFBP-1 from the circulation was not influenced by octreotide. The changes in GH, insulin and glucose concentrations alone did not sufficiently account for the patterns of response observed. We conclude that, in rats, octreotide stimulates IGFBP-1 acutely and this response is potentiated by factors related to anaesthesia.

Introduction
Circulating concentrations of insulin-like growth factor-binding protein-1 (IGFBP-1) are dynamically regulated in a manner that suggests that it has an acute physiological role (Lee et al. 1993, Lewitt 1994). Since IGFBP-1 blocks the availability of insulin-like growth factors (IGF) for insulin-like actions in vivo and can increase blood glucose levels (Lewitt et al. 1991, 1993), we have proposed that this role is to counter-regulate IGF availability for glucose homeostasis (Lewitt 1994). Although in many circumstances circulating concentrations of IGFBP-1 and insulin are closely inversely correlated (Brisma et al. 1988, Holly et al. 1988, Suikkari et al. 1988), there are exceptions to this relationship (Rutanen et al. 1993, Hopkins et al. 1994, Hilding et al. 1995). It is now recognised that multiple regulatory pathways other than insulin determine IGFBP-1 production in vivo, including stimulation by other counter-regulatory hormones, such as glucocorticoids (Conover et al. 1993), glucagon (Hilding et al. 1993) and catecholamines (Hooper et al. 1994).

Somatostatin has been implicated in the regulation of IGFBP-1 (Ørskov et al. 1994). Octreotide is a long-acting somatostatin analogue, which has been used therapeutically to attenuate secretion of polypeptide hormones, including growth hormone (GH) and insulin (Cai et al. 1986). In humans it stimulates IGFBP-1 regardless of GH status and changes in insulin levels (Ezzat et al. 1991, 1992). The stimulatory effect on IGFBP-1 of lanreotide, another somatostatin octapeptide analogue, also appears to be independent of changes in circulating insulin concentrations (Wolthers et al. 1994). However, one study has shown that the stimulatory effect of a somatostatin infusion is abolished by a euglycaemic–hyperinsulinaemic clamp (Ørskov et al. 1994). In support of an independent effect on IGFBP-1, octreotide has been shown to stimulate IGFBP-1 mRNA expression and protein production by the human hepatoma cell line HepG2 (Ren et al. 1992).

Rat IGFBP-1 mRNA expression is increased 1 h after administration of octreotide in vivo, apparently independently of glucose and insulin concentrations (Flyvbjer et al. 1995). We have established the rat as a model for
studies of the regulatory mechanisms of IGFBP-1 (Lewitt et al. 1992, 1994) and have developed a sensitive RIA (Lewitt et al. 1994). The aim of this study was to determine the effect of octreotide on circulating IGFBP-1 levels and to determine the time course and possible mechanisms of the response in vivo.

Materials and Methods

Materials

Octreotide was kindly donated by Sandoz Australia (North Ryde, NSW, Australia) and was diluted in 0·15 mol/l NaCl for i.v. infusion or s.c. administration. For the pharmacokinetic studies, human (h) IGFBP-1, purified from amniotic fluid, was iodinated by the chloramine T method as previously described (Baxter et al. 1987) and detected by immunoprecipitation with antibody, A2 (Baxter et al. 1987).

Animals

Male Wistar rats were used for experiments which were conducted with the approval of the Animal Experimentation Ethics Committees, Royal Prince Alfred Hospital and the University of Sydney. Insulin resistance was induced by feeding a diet in which fat (Safflower oil) comprised 59% of the calories for 4 weeks before experiments. The diet was isocaloric with normal rat chow, in which carbohydrate comprised 69% of calories. High-fat fed animals weighed 341±8 g (n=26), significantly more than littermates fed on a diet high in carbohydrate (304±8 g; n=32; P<0·001).

Experiments were conducted from 0800 h, 16 h after removal of food. In experiments carried out under anaesthesia, pentobarbital (30 mg/kg) and ketamine (50 mg/kg) were administered i.p. and the animals were kept on warming pads to maintain body temperature at 37 °C. Groups of three or four animals were anaesthetised, cannulated via one jugular vein for infusion of 0·15 mol/l NaCl or octreotide at a rate of 1 ml/h and via the contralateral carotid artery for blood sampling. The time from induction of anaesthesia until the start of octreotide or saline administration was approximately 1 h. In preliminary experiments, xylazine (10 mg/kg i.p.) and ketamine (100 mg/kg i.p.) were used for anaesthesia, and similar IGFBP-1 responses were observed. In experiments carried out in the conscious state, a cannula was inserted into the jugular vein under anaesthesia and exteriorised through the skin at the base of the skull. Animals were allowed to recover and experiments were conducted 72 h later in unrestrained animals. Octreotide was given by s.c. or i.v. bolus. In each series of experiments, a baseline sample was taken, and blood samples (250 µl) drawn at the times indicated. The cells were separated and resuspended to a final volume of 250 µl in 0·15 mol/l NaCl and replaced after the subsequent sample to prevent volume depletion. Cannulae were kept patent with 50 U/ml sodium heparin. Plasma was stored at −20 °C for later assay.

Assays

Rat IGFBP-1 concentrations were measured by specific RIA with a sensitivity of 1 ng/ml as previously described (Lewitt et al. 1994). In brief, a specific antiserum, designated B3 was used at a final dilution of 1:10 000. The between-assay imprecision was 4·5% measured at 0·82 ng/assay tube. The within-assay imprecision was 11·8% at 0·16 ng, 3·7% at 0·82 ng and 5·4% at 7·6 ng/assay tube. Plasma insulin was measured by RIA using a guinea-pig anti-rat insulin antibody against a rat standard (Linco Res Inc, St Louis, MO, USA). The sensitivity was 35 pmol/l. The between-assay imprecision was 12% and the within-assay imprecision was 8·5% measured at 165 pmol/l. Plasma glucose concentrations were measured by a glucose oxidase/peroxidase method with between-assay and within-assay imprecisions of <5%. Rat GH concentrations were measured by a commercially available RIA (Amersham International, Amersham, Bucks, UK) with a sensitivity of 3·2 ng/ml. The between-assay imprecision was 8·3% and the within-assay imprecision was 3·0% measured at 1·3 ng/assay tube. For each measurement all of the samples from a single animal were run in the same assay.

Pharmacokinetic studies

Studies of IGFBP-1 disposal were carried out in anaesthetised rats. Two hours after the induction of anaesthesia, radioiodinated hIGFBP-1 (10×10⁶ c.p.m.) was injected via the jugular venous cannula. Blood samples (250 µl) were drawn at the times indicated and the cells separated, resuspended and returned as described above. Duplicate aliquots of 25 or 50 µl were precipitated with 5 volumes of 10% trichloroacetic acid (TCA) or with rabbit anti-hIGFBP-1 antibody (A2) at a final dilution of 1:1000. After an overnight incubation at 4 °C, immunoprecipitated counts were separated with goat anti-rabbit serum and polyethylene glycol as previously described (Baxter et al. 1987). Total, TCA-precipitated and immunoprecipitated counts were determined in a γ-counter. Pharmacokinetic analyses were performed using standard equations (Gibaldi 1982).

Statistics

In each experiment, animals were randomised to each treatment group. The number of animals per group appears in the figure legends. IGFBP-1, insulin and GH concentrations were log-transformed to achieve a normal distribution before data analysis. IGFBP-1, insulin and GH
results are expressed in the text as the mean and 95% confidence interval, constructed from the transformed data and then back-transformed to the original scale of measurement. The results are expressed in the figures as the mean ± s.e. The changes in IGFBP-1, insulin and glucose concentrations and between-group effects were compared by ANOVA for repeated measures (Super-ANOVA, Abacus Concepts, Berkeley, CA, USA). GH levels were compared by ANOVA. Significant differences were identified using the Fisher’s PLSD post-hoc test. Statistical significance was set at *P*<0.05.

Results

Experiment 1

In this experiment rats were randomised to a normal-fat diet or a high-fat diet and then further randomised to receive saline or octreotide infusion. Figure 1A shows the effect of a continuous infusion of octreotide 100 µg/kg per h on circulating IGFBP-1 concentrations in anaesthetised rats fed on a normal-fat diet. One hour of anaesthesia was required for cannulating the carotid and jugular vessels in groups of three or four rats before commencement of the infusions. Baseline IGFBP-1 concentrations were 166 (95% confidence interval 123 to 225) ng/ml and increased in the saline-infused animals to a plateau at 120 min. At 180 min, IGFBP-1 concentrations were 729 (488 to 1086) ng/ml. The increase in IGFBP-1 was greater in the octreotide-infused rats but was transient, reaching peak levels of 1605 (1220 to 2111) ng/ml 105 min after commencement of the infusion. The changes in IGFBP-1 concentration were analysed by ANOVA corrected for repeated measures. Overall, the increase in IGFBP-1 levels with time was significant (*P*<0.001), and the increase in concentration was significantly greater in octreotide-infused animals (*P*<0.001). We measured circulating insulin concentrations in these animals and these are shown in Fig. 1B. There appeared to be an initial fall in insulin concentration followed by an increase. This change in insulin concentration with time was statistically significant (*P*<0.001) and there was a significant difference in the insulin profiles between saline- and octreotide-infused animals (*P*<0.05). Glucose concentration (Fig. 1C) appeared to increase with time in both groups. This change was statistically significant, but there was no significant difference in the glucose values between the saline and octreotide infusions.

In order to determine the importance of insulin in the IGFBP-1 response to octreotide, we used rats fed on a diet high in fat. Figure 2A demonstrates the IGFBP-1 responses in these animals to continuous infusions of saline or octreotide. Baseline IGFBP-1 concentrations, measured 1 h after the induction of anaesthesia, were 46 (25 to 83) ng/ml, approximately 4-fold lower than the levels in normal-fat fed rats. IGFBP-1 concentrations increased in the saline-infused animals to 780 (503 to 1208) ng/ml at 180 min. The increase in IGFBP-1 was greater in the octreotide-infused rats, and this difference appeared to be transient, reaching peak levels of 1120 (792 to 1586) ng/ml 135 min after commencement of the infusion. The change in IGFBP-1 was greater in the octreotide-infused rats, and this difference appeared to be transient, reaching peak levels of 1120 (792 to 1586) ng/ml 135 min after commencement of the infusion. The change in IGFBP-1 levels with time was significant (*P*<0.001), and the increase in concentration was greater in octreotide-infused animals (*P*<0.05). When compared with the littermates fed on a normal-fat diet, the IGFBP-1 levels were lower in the high-fat fed animals (*P*<0.001) and the effect of octreotide was less (*P*<0.02). Insulin...
concentrations were higher in high-fat fed animals than in normal-fat fed animals ($P < 0.001$), and there was no difference in insulin response between saline and octreotide infusions (Fig. 2B). In the high-fat fed animals there was no significant difference in glucose levels between saline and octreotide infusions (Fig. 2C).

GH concentrations were measured in samples taken at 0, 15 and 180 min ($n=6$ in each group). Baseline GH concentrations showed considerable interindividual variation, but overall did not vary significantly between groups and fell in all animals during anaesthesia. In the animals given octreotide, a greater early decline in GH concentration was observed, so that in normal-fat fed rats at 15 min concentrations were 25·5 (17·0 to 39·0) ng/ml in saline-treated normal rats and 12·9 (9·4 to 16·6) ng/ml after octreotide ($P < 0.05$). In the high-fat fed animals, GH concentrations were 38·8 (25·1 to 71·3) and 14·6 (7·2 to 24·2) ng/ml 15 min after commencement of saline and octreotide infusions respectively ($P < 0.02$).

Experiment 2

IGFBP-1 increases during anaesthesia in the rat by complex mechanisms (Lewitt et al. 1992), which may have influenced the response to octreotide. We therefore repeated the experiments in the conscious chronically cannulated state. IGFBP-1 levels, shown in Fig. 3, were at least 8-fold lower in the conscious animals than in the anaesthetised rats. IGFBP-1 levels increased during the 3 h sampling period in all four groups ($P < 0.001$). The greatest increase was seen in the normal-fat fed conscious rats given octreotide ($P < 0.02$), and in this group IGFBP-1 concentrations rose from 22 (18 to 28) to 88 (62 to 126) ng/ml within 60 min. In the high-fat fed animals, basal IGFBP-1 concentrations were 7·4 (5·0 to 10·8) ng/ml and were significantly less than in conscious normal-fat fed rats throughout the sampling period ($P < 0.01$). In the high-fat fed animals, there was also a greater increase in IGFBP-1 in response to s.c. administration of octreotide compared with saline ($P < 0.05$), but this increase was less than that in the normal-fat fed animals ($P < 0.05$).

Figure 4A shows insulin concentrations in the conscious normal-fat fed rats. Initial concentrations were 96 (76 to 122) pM, approximately half the values in anaesthetised animals. Overall there was a significant change in insulin concentration with time during the study ($P < 0.001$), with no statistically significant difference between the saline and octreotide treatment groups. Although there was a statistically significant variation in glucose concentration with time ($P < 0.01$; Fig. 4B), there was no significant difference in response to the saline and octreotide infusions. In the high-fat fed rats, insulin concentrations were 364 (272 to 486) pM. In the high-fat fed animals there was no significant difference in insulin or glucose levels between animals given octreotide or saline (data not shown).

Experiment 3

We examined whether the pattern of IGFBP-1 response related to the mode of delivery of octreotide. In a group of conscious normal-fat fed animals, a similar IGFBP-1 response to 100 µg/kg s.c. was seen in four rats given an i.v. bolus of 100 µg/kg octreotide and in four animals given 200 µg/kg s.c. (data not shown). The effect of a 100 µg/kg i.v. bolus of octreotide was determined. If the
null
study, changes in GH concentration in response to octreotide did not appear to account for the IGFBP-1 responses observed. GH concentrations were suppressed by octreotide to a similar extent in normal and hyper-

insulinaemic rats, but the IGFBP-1 response was clearly greater in the normal animals. We cannot exclude, however, the possibility that GH suppression might be a prerequisite for a response to other factors. Low GH concentrations may also have contributed to the increasing IGFBP-1 concentrations seen in rats infused with saline.

Figure 4 Effect of an s.c. bolus of octreotide on insulin (A) and glucose (B) in conscious chronically cannulated rats. Insulin and glucose concentrations were measured in eight rats after octreotide 100 μg/kg (■) and were compared with values in seven control animals (□). There was a significant difference in the insulin levels between octreotide- and saline-treated animals (P<0.05; ANOVA, corrected for repeated measures). Values represent the mean ± S.E.

Figure 5 Effect of an intravenous bolus of octreotide on IGFBP-1 levels in anaesthetised rats. Octreotide stimulated IGFBP-1 concentrations in three animals given octreotide 100 μg/kg per h at 120 min (■) compared with three animals infused with saline alone (□) (P<0.05; ANOVA, corrected for repeated measures). Values represent the mean ± S.E.

Figure 6 Disappearance of an i.v. bolus of radioiodinated hIGFBP-1 (hIGFBP-1*) from the circulation of anaesthetised rats. Two hours after the induction of anaesthesia, hIGFBP-1 tracer (10 × 10⁶ c.p.m.) was injected alone (A; n=3) or with 100 μg/kg octreotide (B; n=3) via a jugular cannula, and blood samples were taken for 2 h. The disappearance curves for total radioactivity (■), TCA-precipitable counts (□) and radioactivity immunoprecipitable with antibody to hIGFBP-1 (●) are shown.
alone under anaesthesia. Circulating insulin concentration is an important determinant of circulating IGFBP-1 levels in the rat (Unterman et al. 1990, Lewitt et al. 1994). In this study, high-fat feeding resulted in some weight gain and an insulin-resistant state characterised by hyperinsulinaemia and normal fasting glucose values. Insulin sensitivity was preserved with respect to basal IGFBP-1 production and the increase in IGFBP-1 in response to octreotide was impaired in animals with hyperinsulinaemia. Hyperinsulinaemia has also been observed to abolish the IGFBP-1 response to somatostatin infusion in humans (Orskov et al. 1994). Although these observations support a role for insulin in determining the IGFBP-1 response to octreotide, the prevailing insulin concentration is not likely to be solely responsible for the observed effects. An IGFBP-1 response to octreotide was observed in the hyperinsulinaemic animals, even though the changes in insulin levels were not significantly different from the saline infusion. Furthermore, the effect of octreotide was most marked during anaesthesia in the face of rising insulin concentrations during the sampling period and higher insulin concentrations than in the conscious rat. In support of an insulin-independent stimulation of IGFBP-1, one study in normal awake humans showed dose-dependent increases in IGFBP-1 in response to lanreotide, despite identical initial suppression of serum insulin at each dose (Wolthers et al. 1994).

The most notable difference between the experimental groups was the marked elevation of plasma IGFBP-1 concentrations in the anaesthetised rats compared with those in conscious animals. Anaesthesia is associated with reduced basal and insulin-suppressed hepatic glucose output in the rat (Clark et al. 1990). It is therefore possible that the high IGFBP-1 concentration during anaesthesia is related to hepatic resistance with respect to the inhibition of IGFBP-1 by insulin. In keeping with this concept, it has been observed that IGFBP-1 responses to insulin diminish with age (Rutan et al. 1993). However, in humans with insulin resistance associated with obesity (Conover et al. 1992) and fasting (Cotterill et al. 1993), insulin sensitivity with regard to IGFBP-1 production is preserved.

It has been suggested that the stimulatory effect of octreotide is a direct hepatic effect. It can stimulate IGFBP-1 expression in HepG2 human hepatoma cells (Ren et al. 1992), but the direct stimulatory effect required incubation for at least 12 h. Flyvbjerg et al. (1995) showed that IGFBP-1 hepatic mRNA expression was stimulated 1 h after octreotide administration to rats, with no concomitant changes in glucose or insulin. However, in their study the possibility of an early transient effect on insulin secretion, as suggested in our experiments, could not be excluded. In view of the relatively rapid response of IGFBP-1 to a bolus of octreotide, we considered and excluded the possibility that octreotide had an effect on IGFBP-1 clearance in addition to stimulating specific mRNA levels (Flyvbjerg et al. 1995).

The increase in IGFBP-1 caused by octreotide was greater during anaesthesia than in the conscious state. This could be explained by the presence of factors that are able to potentiate IGFBP-1 stimulation by octreotide and which increase during anaesthesia. There are several possible mediators of this effect. Glucocorticoids increase circulating IGFBP-1 concentrations in the rat (Luo et al. 1990), but we have previously demonstrated that the increases in IGFBP-1 during the stress of anaesthesia and insulin-induced hypoglycaemia are not reflected by changes in corticosterone levels alone (Lewitt et al. 1992). Glucagon stimulates hIGFBP-1 in vivo (Hilding et al. 1993) and in vitro (Lewitt & Baxter 1989). We did not measure glucagon concentrations in our study, but these are more likely to have been inhibited by octreotide (Cai et al. 1986). Catecholamines are also candidates, since they increase during anaesthesia and stimulate IGFBP-1 in sheep (Hooper et al. 1994). Catecholamine concentrations were not measured in these experiments.

In summary, we have shown in the rat that octreotide administration leads to a rapid increase in circulating IGFBP-1 concentrations. The data support a contributory role of insulin inhibition in determining this response, but neither the changes in insulin nor the changes in GH concentration could entirely account for the changes in circulating IGFBP-1 levels. Furthermore, there was a marked increase in circulating IGFBP-1 concentrations during anaesthesia and a greater IGFBP-1 response to octreotide in this state. These experiments indicate the complexity of the response, and further studies are under way to further define the multiple factors responsible for stimulating IGFBP-1.

Acknowledgements

The authors are grateful to Professor Stewart Dunn for statistical advice and to Julie Filipovic for technical assistance. This work was supported by the National Health and Medical Research Council of Australia.

References

Received 6 February 1997

Revised manuscript received 15 July 1997

Final version received 27 January 1998

Accepted 16 February 1998