Insulin-like growth factor I reduces thyroid hormone receptors in the rat liver. Evidence for a feed-back loop regulating the peripheral thyroid hormone action

C G Pellizas, A H Coleoni, M E Costamagna, M Di Fulvio and A M Masini-Repiso

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina

Abstract

Tri-iodothyronine (T₃) is known to be involved in the regulation of the growth hormone (GH)–insulin-like growth factor I (IGF-I) axis. In previous studies we demonstrated that IGF-I and GH reduced the metabolic response to T₃ measured as the activity of two T₃-dependent enzymes, mitochondrial α-glycerophosphate dehydrogenase (α-GPD) and cytosolic malic enzyme (ME) in cultured rat liver cells. In this study we analysed in vivo the effect of IGF-I administered to rats on the activity of α-GPD and ME. IGF-I (240 µg/100 g body weight (BW) every 12 h for 48 h) significantly diminished α-GPD (P<0.01) and ME (P<0.05) activities. Serum basal glucose concentration was not significantly modified 12 h after the administration of recombinant human IGF-I (240 and 480 µg/100 g BW every 12 h for 48 h). Under similar conditions, no significant change in serum total thyroxine (TT₄) concentration was observed, although free thyroxine (FT₄) was diminished (P<0.02) and total T₃ (TT₃) was increased (P<0.03). To explore the participation of the nuclear thyroid hormone receptor (THR) in the mechanism of IGF-I action we measured the maximal binding capacity and the affinity constant (Kᵢ) of THR by Scatchard analysis, and concentrations of messenger RNAs (mRNAs) that code for the isoforms of THR present in the liver (β₁, α₁ and α₂) by Northern blot. IGF-I (240 µg/100 g BW every 12 h for 48 h) significantly reduced maximal binding capacity to 37% of the control value (P<0.01) without changes in the Kᵢ: β₁, α₁ and α₂ THR mRNAs were significantly reduced (P<0.01) by 120–480 µg/100 g BW IGF-I administration every 12 h for 48 h. Time-course studies indicated that this effect was obtained 12 h after the administration of 240 µg/100 g BW IGF-I (P<0.05). These results indicate that IGF-I administration to rats diminishes the metabolic thyroid hormone action in the liver by a mechanism that involves, at least in part, a reduction in the number of THRs and in their level of expression.

Journal of Endocrinology (1998) 158, 87–95

Introduction

The participation of 3,5,3’-tri-iodothyronine (T₃) in the regulation of the growth hormone (GH)–insulin-like growth factor I (IGF-I) axis is well established (Rodriguez-Arnao et al. 1993). T₃ is required for normal GH gene expression and thyroid hormone responsive elements have been identified in the GH gene promoter (Koenig et al. 1987, DeGroot et al. 1988, Williams & Brent 1995). Pituitary GH secretion and GH mRNA level are reduced in hypothyroid rats and restored to normal after treatment with T₃ (Hervas et al. 1975, Nyborg et al. 1985). In primary culture of pituitary cells, IGF-I, the major mediator of growth promoting effects of GH, inhibits T₃ induction of GH mRNA and GH release (Melmed & Yamashita 1986). In contrast, in the perfused rat liver, physiological doses of T₃ stimulate the synthesis and release of IGF-I (Ikeda et al. 1991). In hypothyroid rats, serum IGF-I concentration and IGF-I gene expression in liver are reduced (Harakawa et al. 1990).

The introduction of recombinant GH and IGF-I for the treatment of growth disorders has renewed interest in the study of the effect of GH and IGF-I on thyroid function. The impact of administration of GH to normal and GH-deficient patients on thyroid function has yielded conflicting results. Diverse reports have described a decrease in thyroid uptake of iodine-125, serum thyrotrophin (TSH) and serum thyroxine (T₄) and an increase in serum T₃ after administration of GH (Grunfeld et al. 1988, Jorgensen et al. 1989, 1994), whereas IGF-I administered to Laron-type dwarfs and healthy individuals induces a decrease in TSH and free T₄, with no change in the T₃ serum concentration (Klinger et al. 1992).
However, the impact of GH and IGF-I on specific metabolic responses to T₃ in target tissues has received scant attention. In previous studies (Pellizas et al. 1996), we demonstrated that IGF-I and GH incorporated to cultured rat liver cells induced a time- and dose-dependent reduction in the activity of mitochondrial α-glycerophosphate dehydrogenase (α-GPD) and cytosolic malic enzyme (ME), two specific tissue markers of thyroid hormone action (Oppenheimer et al. 1995). Evidence that the GH effect was mediated by IGF-I was also obtained (Pellizas et al. 1996).

Although T₃ may exert its effects via different cellular loci, its major effect is the transcriptional regulation of target genes mediated by nuclear thyroid hormone receptors (THR) (Yen & Chin 1994). The liver represents an important target tissue for thyroid hormone action, with ligand binding studies suggesting abundant expression of high affinity receptors for T₃ (Brent 1994). The cloning of specific THR complementary DNA (cDNA) led to evidence of the expression of α₁, α₂ and β₁ THR, messenger ribonucleic acids (mRNAs) in rat liver, although concentrations of these mRNAs were low compared with those present in other tissues (Schwartz et al. 1992). More recently, the development of specific antibodies has provided evidence for abundant expression of α₁, α₂ and β₁ THR proteins in the rat liver (Chamba et al. 1996).

Because THR are decisive in the initial steps of thyroid hormone action, we investigated putative modifications at the THR level that could explain the diminished metabolic response to T₃ induced by IGF-I. Results from our previous work provided evidence that the effect of IGF-I could be mediated by a reduction in the number of THR, as the maximal α-GPD and ME activities attained after addition of T₃ to the liver cell culture in a concentration high enough to saturate the THR fully, were significantly lower in the group pre-exposed to IGF-I (Pellizas et al. 1996).

In the present study using an in vivo model, we were able to induce a reduction of liver α-GPD and ME activities by the administration of IGF-I to normal rats. We also explored the mechanism of IGF-I action on the specific metabolic response to T₃ by measuring the effect of IGF-I on the maximal binding capacity and the affinity constant (Kₐ) of THR, in addition to the levels of the mRNAs that code for the THR isoforms in the liver.

Materials and Methods

Materials

Recombinant human IGF-I (rhIGF-I) was from Genentech Inc, San Francisco, CA, USA, [¹²⁵I]T₃ and [α³²P]ATP from Du Pont NEN (Boston, MA, USA). Nylon membranes (charge modified, 0·45 µm pore size) were from Sigma Chemical Co., St Louis, MO, USA, hybridization bags and EcoRI from Gibco BRL, Gaithersburg, MD, USA. The DNA labelling kit (Prema-gene Labeling System) was from Promega Corp., Madison, WI, USA. The radiographic films were from Eastman Kodak, Rochester, NY, USA and the intensifying screens from Amersham International plc, Amersham, Buckinghamshire, UK. The plasmid Bluescript SK+ TRB1 (pBSK+β1) was generously donated by R. Koenig, Department of Internal Medicine, Endocrinology and Metabolism Division, The University of Michigan Medical Center, Ann Arbor, MI, USA. All chemicals were of reagent grade.

Animals and rhIGF-I treatment

Adult male Wistar rats (250 ± 50 g) were given free access to a balanced diet and tap water, and maintained under a 12 h light : 12 h darkness cycle. Rats were injected s.c. with vehicle (0·15 M NaCl) or rhIGF-I every 12 h for different periods of time. Rats were lightly anaesthetized, killed by cervical dislocation, and the liver removed and processed for different purposes. Animal procedures were in compliance with the Guidelines on the Handling and Training of Laboratory Animals published by the Universities Federation for Animal Welfare, and the local Institutional Animal Care Committee.

The doses of rhIGF-I (60–480 µg/100 g BW every 12 h) were selected on the basis of previous reports indicating that a dose of 320 µg/100 g BW per day was able to induce IGF-I-dependent effects (Hinton et al. 1995, Lo et al. 1995).

Isolation of mitochondrial, cytosolic and nuclear fractions

The procedure was similar to that described previously, with slight modifications (Bernal et al. 1978a). In brief, liver tissue (1 g) homogenized in 0·32 M sucrose–1 mM MgCl₂ with a Teflon–glass motor-driven tissue grinder was centrifuged at 700 g to obtain the crude nuclear pellet. The supernatant was centrifuged at 8500 g for 10 min for the preparation of the mitochondrial fraction. The 8500 g pellet was washed once with 0·125 M potassium phosphate buffer (KBP), pH 7·5. The pellet containing the mitochondrial fraction was resuspended in 3 ml KBP. The initial 8500 g supernatant was centrifuged at 105 000 g to obtain the cytosolic fraction.

The crude nuclear pellet was resuspended in 2·3 M sucrose–1 mM MgCl₂–2 mM dithiothreitol (DTT)–0·1 mM phenylmethylsulphonyl fluoride and centrifuged at 114 000 g for 30 min in a Beckman 50-1 SW rotor. The pellet was resuspended in 0·32 M sucrose–1 mM MgCl₂–1 mM CaCl₂–20 mM Tris–2 mM DTT, pH 7·85 (SMCT) and 0·5% Triton X-100. After 1 min at 0 °C, the tube was centrifuged at 250 g for 3 min. The pellet was washed once with SMCT. The final pellet containing the purified nuclear fraction was resuspended in 10 ml 0·32 M sucrose–1 mM MgCl₂–20 mM Tris, pH 7·85 (SMT).
Enzyme activity assays

α-Glycerophosphate dehydrogenase [EC 1.1.99.5; sn-glycerol-3-phosphate: (acceptor) oxidoreductase] was assayed in the mitochondrial fraction by the method of Lee & Lardy (1965) and expressed as Δ A/min per mg DNA. Malic enzyme [EC 1.1.1.40; α-malate-NADP+ oxidoreductase (decarboxylating)] was assayed in the cytosolic fraction by the method of Hsu & Lardy (1969) and expressed as U/mg DNA. One unit (U) was defined as the amount of the enzyme needed to catalyse the reduction of 1 nmol NADP/min using an extinction coefficient for NADPH of ε\textsubscript{340} = 6.2 (Mariani et al. 1980).

The DNA content was evaluated in the total cellular homogenate and in the purified nuclear fraction by the method of Burton (1956).

$[^{125}I]T_3$-binding studies

The maximal binding capacity and the K_d of THR were measured in isolated nuclei as described previously (Bernal et al. 1978b). Briefly, nuclei (200–300 μg DNA/tube) were incubated in SMT with 7.8 × 10⁻¹¹–2.5 × 10⁻⁹ M $[^{125}I]T_3$ (202 Ci/mmol) for 2 h at 20 °C. The nuclei were ice-cold and centrifuged at 1000 g for 10 min. The nuclear pellets were washed twice in SMCT plus 0.5% Triton X-100 and to the supernatants (resin test). To assess non-specific binding, tubes containing 2.9 × 10⁻⁷ M T_3 were run in parallel. After 2 h incubation at 20 ± 2 °C, the nuclei were resuspended in 1000 g for 10 min. The nuclear pellets were washed twice in SMCT plus 0.5% Triton X-100 and to the supernatants (resin test). Total T_3 binding was calculated by Scatchard analysis (Scatchard 1949) from the $[^{125}I]T_3$ bound to the nuclear pellet and to the supernatants (resin test).

Total RNA extraction

Total RNA was prepared by the one-step acid-guanidinium method described by Chomczynski & Sacchi (1987). In brief, 0.5 g liver was homogenized in 5 ml denaturing solution (4 M guanidinium isothiocyanate, 25 mM sodium citrate pH 7.0, 0.5% Na-lauroyl sarcosine and 0.1% β-mercaptoethanol). After phenol–chloroform–isoamyl alcohol (50 : 49 : 1) extraction, RNA was precipitated in isopropanol, recovered by centrifugation and washed in 75% ethanol. After a further extraction, precipitation and wash, the RNA was dissolved in diethyl pyrocarbonate-treated water and quantified and checked for purity by spectrophotometry at 260 and 280 nm.

Northern blot

Forty micrograms total RNA were electrophoresed in 1% agarose gel containing 0.66 M formaldehyde (Fournier et al. 1988). This agarose concentration allowed a good separation of the three THR mRNA species: β₁, 6.0 kb; α₁, 5.0 kb; α₂, 2.6 kb (Strait et al. 1990). The gel was stained with ethidium bromide to visualize ribosomal RNA (rRNA). After electrophoresis, RNAs were transferred to a nylon membrane.

The membranes were incubated in prehybridization solution containing 30% deionized formamide–5 × Denhart’s solution (0.1% Ficoll type 400–0.1% polyvinylpyrrolidone (PVP)–5 × SSPE (0.75 M NaCl–0.05 M NaH₂PO₄–5 mM EDTA)–1% SDS–200 μg/ml DNA from herring testes, for 5 h at 42 °C in hybridization bags. Hybridizations with the probe were performed for 48 h at the same temperature. The entire pBSK+ β₁ THR cDNA (Koenig et al. 1988) linearized with EcoRI was used as hybridization probe for Northern blots. The entire cDNA was as approximately 1.4 kb, and includes the full coding sequence. As the DNA and ligand binding domain are very similar in THRα and THRβ, this cDNA has been used as a common probe for all THR isoforms (Koenig et al. 1988). To ensure an even loading, the same blots were hybridized using the entire pBR 322 with an 18S rRNA genomic probe. The probes were labelled by the random primer technique with [α-32P]deoxy-ATP (3000 Ci/mmol). The specific activity of the labelled probes ranged from 2 × 10⁶–3.9 × 10⁸ d.p.m./μg DNA. After hybridization, blots were washed in 2 × SSC (0.3 M NaCl–0.015 M sodium citrate)–1% SDS for 20 min at room temperature, followed by 2 × SSC–1% SDS for 20 min at 55 °C, 1 × SSC–1% SDS for 20 min at 55 °C and 0.2 × SSC–1% SDS for 20 min at 55 °C. The membranes were exposed to Kodak X-Omat film at −70 °C with intensifying screens, for 20 days in the case of the THR probe, and for 6 h in the case of the 18S rRNA probe. The bands were quantified densitometrically (Shimadzu Dual-Wavelength Chromato Scanner CS-930) at 500 nm and the levels of THR mRNA expressed as the absorbance of the THR signals normalized with that of the 18S rRNA in the same lane.

Glucose determination

The serum glucose concentration was evaluated in samples collected 12 h after the last rhIGF-I dose (48 h treatment), using a commercial kit (Enzymatic glycaemia, Wiener lab, Rosario, Argentina).

Serum thyroid hormone concentrations

Serum concentration of total T_4 (TT₄), free T_4 (FT₄) and total T_3 (TT₃) were measured in samples collected 12 h after the last rhIGF-I dose (48 h treatment) by radio-immunoassay using commercial kits (Diagnostic Products Corporation, Los Angeles, CA, USA). Each sample was assayed in duplicate. Intra- and interassay coefficients of variation were 3-3% and 8.1% for TT₄, 5% and 8% for FT₄, and 6.1% and 9.5% for TT₃.
Statistical analysis

Analysis of multiple intergroup differences in each experiment was conducted by one-way analysis of variance (ANOVA) followed by the Student–Newman–Keuls test. Comparisons between two groups were made using the Student’s t-test. P<0·05 was considered statistically significant.

Results

α-GPD and ME activities

Figure 1 shows the effect of increasing doses of rhIGF-I, administered to rats during 48 h, on the activity of α-GPD and ME. A reduction in ME activity was observed after 120 µg/100 g BW rhIGF-I (P<0·05). A similar effect on α-GPD activity was obtained by the administration of 240 µg/100 g BW (P<0·01).

Serum glucose concentration

Recombinant human IGF-I treatment every 12 h for 48 h did not induce significant changes in basal serum glucose concentration 12 h after the last IGF-I injection (mean ± s.d. values (mM): control 6·78 ± 1·56; rhIGF-I (240 µg/100 g BW) 6·72 ± 0·61; rhIGF-I (480 µg/100 g BW) 7·17 ± 0·72; n=6 in each group, Student’s t-test).

Serum thyroid hormone concentrations

The changes in circulating iodothyronines after rhIGF-I administration every 12 h for 48 h are shown in Table 1. TT₄ concentrations tended to decrease with rhIGF-I treatment, but this failed to reach statistical significance (P=0·09). In contrast, rhIGF-I treatment induced a reduction in FT₄ to 70% of the control value (P<0·02), whereas there was a 22% increase in TT₃ compared with the control value (P<0·03).

Table 1 Effect of administration of rhIGF-I on serum thyroid hormone concentrations in rats. rhIGF-I (240 µg/100 g BW) was administered s.c. every 12 h for 48 h. Results are expressed as means ± s.d. for duplicate determinations. Data are from a representative experiment from a total of three with similar results.

<table>
<thead>
<tr>
<th></th>
<th>TT₄ (µg/dl)</th>
<th>FT₄ (ng/dl)</th>
<th>TT₃ (ng/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5·6 ± 1·3</td>
<td>1·59 ± 0·32</td>
<td>59 ± 8</td>
</tr>
<tr>
<td>(n=9)</td>
<td>(n=8)</td>
<td>(n=7)</td>
<td></td>
</tr>
<tr>
<td>rhIGF-I</td>
<td>4·6 ± 1·1</td>
<td>1·12 ± 0·35*</td>
<td>72 ± 9**</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=8)</td>
<td>(n=5)</td>
<td></td>
</tr>
</tbody>
</table>

*P<0·02, **P<0·03 compared with control group (Student’s t-test).

[^125I]T₃ binding

The effect of rhIGF-I on the THR is shown in Fig. 2 and Table 2. The administration of rhIGF-I (240 µg/100 g BW) every 12 h for 48 h induced a significant reduction in the maximal binding capacity of THR (37% of control), whereas no significant changes were detected in the Kₐ.

As previously reported (Bernal et al. 1978b), in both groups (control and rhIGF-I treated), the Kₐ of THR was greater in the supernatant from the ‘resin test’ than in the nuclear pellet (supernatant/nuclear pellet ratio, control: 1·4, rhIGF-I treated: 1·6). However the maximal binding capacity of THR was greater in the nuclear pellet than in the supernatant (nuclear pellet/supernatant ratio, control: 1·4, rhIGF-I treated: 1·5).

The shape of the Scatchard plot from the control group did not indicate the presence of two different sets of sites for T₃ binding (high and low affinity), as the Hill coefficient (De Lean & Rodbard 1979) was 1·4 for this group.

THR mRNAs

The levels of liver THR mRNA isoforms (β₁, α₁ and α₂) after administration of rhIGF-I (120–480 µg/100 g BW for 48 h) are shown in Fig. 3. A significant reduction in β₁, α₁ and α₂ THR mRNAs was observed after the injection of 120 µg/100 g BW rhIGF-I. THR mRNAs were at the lowest level of detection after 240 and 480 µg/100 g BW rhIGF-I.
Results of time-course studies of the effect of rhIGF-I (240 µg/100 g BW) on THR mRNAs are indicated in Fig. 4. A significant reduction in α_1, α_2 and β_1 THR mRNAs concentrations was registered after 12 h of rhIGF-I treatment and the values were at the lowest level of detection after 24 h.

The difference between the absorbance ratio for α_1 THR mRNA from control animals in Fig. 3 (zero dose of rhIGF-I) and Fig. 4 (zero time) is not of significance, because a wide range of β_1 THR mRNA/α_1 THR mRNA ratios has been reported previously (Strait et al. 1990).

Discussion

The present study demonstrated that the administration of rhIGF-I to normal rats resulted in a diminished metabolic response to T$_3$ in the liver, evaluated as the activity of α-GPD and ME, two T$_3$-responsive enzymes (Oppenheimer et al. 1995). This finding is in accordance with our previous results obtained in an in vitro system of cultured rat liver cells (Pellizas et al. 1996).

The doses of rhIGF-I that we used in this study were substantially greater than the substitute doses used in growth disorders in children (Klinger et al. 1992). However, serum IGF-I concentration in adult normal rats is about eightfold greater than that in human beings (Yamamoto et al. 1991, Nanto-Salonen et al. 1993). Moreover, the lack of effect of IGF-I on the animals’ behaviour or on glucose concentrations, suggests that the doses administered to rats may be considered to be in a physiological rather than a pharmacological range (Jones & Clemmons 1995).

The mechanism by which IGF-I reduced α-GPD and ME activities seems to be mediated by the type I IGF receptor. Although a lack of functional type I IGF receptors has been reported in rat hepatocytes (Massague & Czech 1982, Jaeggi-Groisman et al. 1990), other authors have reported their presence in male (Gruppuso et al. 1991) and female (Venkatesan & Davidson 1990) adult rat liver. Moreover, mRNA coding for IGF-I receptors has been reported recently (Lemmey et al. 1997). Other IGF-I-mediated effects have also been reported in the rat liver (Gosteli-Peter et al. 1994, Raper et al. 1995). In contrast, a possible crossreaction of infused IGF-I with the structurally similar liver insulin receptor would be expected to enhance, rather than suppress, the activity of α-GPD and ME (Wilson & McMurray 1981). In addition, although IGF-I is able to reduce insulin serum concentrations (Kolaczynski & Caro 1994), it seems not to be an explanation for the diminished liver T$_3$ response, as this effect was also observed in rat liver cells cultured in a medium containing a fixed concentration of insulin (Pellizas et al. 1996). The involvement of IGF-II/mannose-6-phosphate receptors in the effect of IGF-I is highly unlikely, as the affinity of these receptors for IGF-I is very low (Jones & Clemmons 1995).

The changes in serum thyroid hormone concentrations induced by IGF-I administration are in accordance with previous results obtained after administration of GH to normal and GH-deficient human beings (Grunfeld et al. 1988, Jorgensen et al. 1994). The reduction in FT$_4$ concentrations with a concomitant increase in TT$_3$ induced by IGF-I treatment, suggests an enhanced conversion of T$_4$ to T$_3$. However, short-term administration of IGF-I to normal adults and Laron-type dwarfs resulted in a reduction in FT$_4$ but failed to augment TT$_3$ concentrations (Klinger et al. 1992). Nevertheless, the changes in serum thyroid hormone concentrations induced by IGF-I are very low (Jones & Clemmons 1995).

Figure 2 Scatchard plot of specific liver nuclear [125I]T$_3$ binding in control rats or rats treated with rhIGF-I (240 µg/100 g BW every 12 h for 48 h). Plots were drawn by least squares computation. B, bound T$_3$ (fmol/100 µg DNA); B/F, ratio of bound T$_3$ to free T$_3$. Data are from a representative experiment from a total of two with similar results. Results are expressed as means ± S.D. Seven samples were analysed from each individual animal in each group. Maximal binding capacity and K_a values are given in Table 2.

Table 2 Effect of administration of rhIGF-I on the maximal binding capacity (MBC) and affinity constant (K_a) of liver nuclear thyroid hormone receptors in rats. rhIGF-I (240 µg/100 g BW) was administered s.c. every 12 h for 48 h. Values were obtained from Fig. 2 and expressed as means ± S.D. Seven samples were analysed from individual animals in each group.

<table>
<thead>
<tr>
<th></th>
<th>MBC (fmol T$_3$/100 µg DNA)</th>
<th>K_a (nM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>73·12 ± 14·07</td>
<td>2·50 ± 0·77</td>
</tr>
<tr>
<td>rhIGF-I</td>
<td>27·30 ± 2·50*</td>
<td>2·19 ± 0·74</td>
</tr>
</tbody>
</table>

*P<0·01 compared with the control group (Student’s t-test).
Figure 3 (A) Northern blot of liver β₁, α₁, and α₂ THR mRNAs after administration of rhIGF-I: lane 1, control; lane 2, 120 µg; lane 3, 240 µg; lane 4, 480 µg/100 g BW every 12 h for 48 h. Forty micrograms total RNA were applied to each lane. Blots were hybridized with THR (upper panel) and 18S rRNA probes (lower panel). Arrow indicates the 28S rRNA marker. (B) Densitometric analysis of Northern blots. Data are given as the ratio between the absorbance of each THR-specific signal and the absorbance of the 18S rRNA signal in the same lane. Data are from a representative experiment from a total of three with similar results. Results are expressed as means ± s.D. Three samples were analysed from each individual animal in each group. *P<0.01 compared with the control group by one-way ANOVA followed by the Student–Newman–Keuls test.

Figure 4 (A) Northern blot of rat liver β₁, α₁, and α₂ THR mRNAs after treatment with rhIGF-I (240 µg/100 g BW) for 6, 12 and 24 h. Lanes 1 and 2: control; lanes 3 and 4: 6 h; lanes 5 and 6: 12 h; lanes 7 and 8: 24 h. Forty micrograms of total RNA were applied to each lane. Blots were hybridized with THR (upper panel) and 18S rRNA probes (lower panel). Arrow indicates the 28S rRNA marker. (B) Densitometric analysis of Northern blots. Data are given as the ratio between the absorbance of each specific THR signal and the absorbance of the 18S rRNA signal in the same lane. Data are from a representative experiment from a total of three with similar results. Results are expressed as means ± s.D. Three samples were analysed from each individual animal in each group. *P<0.05, **P<0.01 compared with the control group by one-way ANOVA followed by the Student–Newman–Keuls test.

Journal of Endocrinology (1998) 158, 87–95
could not explain the inhibitory effect on the enzyme activities, because this effect was also seen in vitro in rat liver cells cultured with a fixed concentration of T₃ (1·0 nM) (Pellizas et al. 1996). Moreover, when cells were incubated with 1 μM T₃, a concentration large enough to saturate THRs fully (Mariash & Oppenheimer 1983), the failure to reach the maximal α-GPD and ME activities in the group pre-exposed to IGF-I (Pellizas et al. 1996) suggested that the effect of IGF-I might not be related to alterations in nuclear occupancy by T₃. Instead, such a response could involve a diminished number of functionally active nuclear T₃ binding sites (Sato & Robins 1981, Pellizas et al. 1996).

The magnitude of the cellular response to thyroid hormone depends on the abundance of nuclear receptors for T₃. It is therefore possible that physiologically or pharmacologically induced alterations in receptor numbers may be able to modify the tissue response to T₃ (Hodin et al. 1990). Previous reports indicate that, under several experimental conditions (DeGroot et al. 1977, Dillmann et al. 1978, Dillmann & Oppenheimer 1979, Recúpero et al. 1983, 1986, Kaji & Hinkle 1987), modifications in the number of THRs paralleled changes in the tissue response to thyroid hormone. Consequently, the diminished number of THRs induced by IGF-I treatment would explain, at least in part, the reduction in the metabolic response to T₃. However, in spite of the lack of known direct effects of IGF-I on α-GPD or ME, this possibility cannot be ruled out.

Although the amount of a specific protein cannot always be predicted on the basis of its mRNA level (Oppenheimer et al. 1995), the reduction in the concentrations of THR mRNAs after the administration of rhIGF-I (240 μg/100 g BW for 12 h) may account for the reduction in the expression of THR proteins. Regarding the failure to detect THR mRNAs after the administration of 240 and 480 μg rhIGF-I/100 g BW for 48 h, and 240 μg/100 g BW for 24 h, it may be that the use of intermediate doses and times of exposure would produce progressive detectable reductions in THR mRNAs. The diminished amounts of liver mRNA coding for the β₁, α₁ and α₂ THRs suggest that the mechanism of IGF-I action could involve either a reduction in the rate of transcription of genes coding for the THR isoforms, or an increase in the rate of disappearance of the THR mRNAs. Moreover, an effect of IGF-I that is mediated by a reduction in stimulatory transcriptional factors or by enhanced inhibitory transcriptional factors of THR-coding genes should also be considered.

The possibility that the mechanism of action of IGF-I involves an increase in the α₂ THR mRNA coding for a THR protein that lacks the ability to bind T₃ and is known to inhibit the active THRs (Koenig et al. 1989) was disregarded, as α₂ THR mRNA was concomitantly reduced.

The present results indicate that, in the rat liver, IGF-I modulates thyroid hormone action by a mechanism that involves, at least in part, an effect at the level of THR expression. Therefore, it is possible that IGF-I feeds back to limit the stimulatory action of T₃ on IGF-I synthesis in liver cells (Ikeda et al. 1991), through THR downregulation.

Even though these effects of IGF-I were observed in experimental animals, our findings may have relevance to a possible impact on thyroid function in patients receiving GH or IGF-I treatment.

Acknowledgements

The authors are grateful to Dr Mirta Miras for kindly providing the recombinant human IGF-I and to Dr Liliana Franchioni-Muñoz for her excellent assistance with these studies.

Part of these studies was presented at the XI International Thyroid Congress, Toronto, Canada 1995 (Abstract 339) and the VII Latin America Thyroid Society Congress, Viña del Mar, Chile 1997 (abstract 19). This work was supported by grants from the Consejo de Investigaciones Científicas y Tecnológicas de la Provincia de Córdoba (CONICOR), Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. C G P is a Fellow at CONICET.

References

Bernal J & DeGroot LJ 1977 Thyroid hormone receptors: release of receptor to the medium during in vitro incubation of isolated rat liver nuclei. Endocrinology 100 648–655.

Bernal J, Coleoni AH & DeGroot LJ 1978b Thyroid hormone receptors from liver nuclei: characteristics of receptor from normal, thyroidecтомized, and triiodothyronine-treated rats; measurement of occupied and unoccupied receptors, and chromatin binding of receptors. Endocrinology 103 403–413.

Dillmann WH & Oppenheimer JH 1979 Glucagon influences the expression of thyroid hormone action: discrepancy between nuclear triiodothyronine receptor number and enzyme responses. *Endocrinology* **105** 74–79.

Koenig RJ, Brent GA, Warne RL, Larsen PR & Moore DD 1987 Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone. *Proceedings of the National Academy of Sciences of the USA* **84** 5670–5674.

Recuépero AR, Coleoni AH, Cherubini O & Oviedo A 1983
Selective alterations in hepatic nuclear T3-receptors and enzyme
responses by glucocorticoid deficit or excess. *Acta Endocrinologica* **104**
485–489.
Recuépero AR, Coleoni AH, Cherubini O & Oviedo A 1986
Relationship between the increase in liver nuclear triiodothyronine-
receptor sites and malic enzyme activation by dexamethasone. *Acta
Physiologica et Pharmacologica Latinoamericana* **36** 93–103.
Rodriguez-Arnao J, Miell JP & Ross RJM 1993 Influence of thyroid
hormones on the GH–IGF-I axis. *Trends in Endocrinology and
Metabolism* **4** 169–173.
Sato K & Robbins J 1981 Thyroid hormone metabolism in primary
cultured rat hepatocytes. Effect of glucose, glucagon, and insulin.
Scatchard G 1949 The attraction of proteins for small molecules and
Schwartz HL, Strait KA, Ling NC & Oppenheimer JH 1992
Quantitation of rat tissue thyroid hormone binding receptor
isoforms by immunoprecipitation of nuclear triiodothyronine
binding capacity. *Journal of Biological Chemistry* **267**
11794–11799.
Strait KA, Schwartz HL, Perez-Castillo A & Oppenheimer JH 1990
Relationship of c-erb A mRNA content to tissue triiodothyronine
nuclear binding capacity and function in developing and adult rats.
Venkatesan N & Davidson MB 1990 Insulin-like growth factor I
receptors in adult rat liver: characterization and *in vivo* regulation.
Williams GR & Brent GA 1995 Thyroid hormone response elements.
In *Molecular Endocrinology: basic concepts and clinical correlations*,
Wilson EJ & McMurray WC 1981 Regulation of malic enzyme and
mitochondrial α-glycerophosphate dehydrogenase by thyroid
hormones, insulin and glucocorticoids in cultured hepatocytes.
Journal of Biological Chemistry **256** 11657–11662.
Yamamoto H, Sohmiya M, Oka N & Kato Y 1991 Effects of aging
and sex on plasma insulin-like growth factor I (IGF-I) levels in
Yen P & Chin W 1994 New advances in understanding the
molecular mechanisms of thyroid hormone action. *Trends in

Received 2 October 1997
Revised manuscript received 16 December 1997
Accepted 16 February 1998