Regulation of gonadotrophin secretion by inhibin, testosterone and gonadotrophin-releasing hormone in pituitary cell cultures of male monkeys

U Fingscheidt, G F Weinbauer1, H L Fehm and E Nieschlag1

Medical Clinic I, Medical University of Lübeck, D-23538 Lübeck, Germany and 1Institute of Reproductive Medicine of the University, D-48129 Münster, Germany

Abstract

The effects of bovine inhibin, testosterone and GnRH on gonadotrophin secretion by primate pituitary cells were characterized in vitro using pituitaries from six male rhesus monkeys and one male cynomolgus monkey. The effect of inhibin on basal secretion of FSH and LH was investigated. Dose–response curves in monkeys and rats were compared. GnRH dose–response curves in the presence and absence of testosterone were also examined in monkeys.

In monkey pituitary cells, testosterone at a concentration of 10^{-7} M had no effect on LH or FSH secretion. Inhibin suppressed FSH secretion to 50.8% of that of controls with no effect on LH. In rats, FSH secretion was suppressed to 45.0% of that of controls with a median effective dose (ED_{50}, 95% range) of 1.298 (1.064–1.584) U/ml, compared with 1.024 (0.7204–1.455) U/ml in monkeys. In monkey pituitary cells, LH release was stimulated 9.9-fold and FSH 3.3-fold by GnRH. Testosterone had no effect on basal or GnRH-stimulated gonadotrophin release. These results support the view that the pituitary is not the target organ for the negative feedback action of testosterone in the male. In vitro, inhibin is the major regulator of FSH secretion at the pituitary level.

Journal of Endocrinology (1998) 159, 103–110

Introduction

According to the classical inhibin hypothesis, secretion of follicle-stimulating hormone (FSH) is regulated by a dual feedback system of two testicular hormones: inhibin and testosterone. The main biological action of inhibin is the suppression of gonadotrophins, predominantly FSH, at the pituitary level. Since inhibin has become available in purified or recombinant preparations (Mason et al. 1985a,b, Forage et al. 1986, Mayo et al. 1986), this effect on FSH has been proved in different in vitro systems of cultured pituitary cells of rats (Scott et al. 1980, Farnworth et al. 1988) and sheep (Tsonis et al. 1986). Later, inhibin was administered in vivo to rats (Rivier et al. 1991), sheep (Merrner et al. 1987) and monkeys (Stouffer et al. 1994) and the suppressive action on FSH confirmed. A recent study based on the experimental model of the hypophysiotropic clamp, which eliminates feedback effects other than those at the pituitary site, suggested that suppression of FSH is mediated by inhibin in monkeys and that testosterone has no effect on the pituitary gland (Majumdar et al. 1995). Although there is little doubt about the effect of inhibin on FSH, direct proof that it acts at the pituitary cell in primates is lacking. We therefore established a cell culture system for monkey cells to characterize the effect of inhibin on pituitary cells in vitro. Furthermore, we repeated the experiment with rat pituitary cells to define possible interspecies differences between rats and monkeys with regard to the action of inhibin.

The control of FSH by inhibin is supplemented by the negative feedback action of testosterone on FSH. The degree to which either the hypothalamus or pituitary contribute to the effect of testosterone has not been defined thoroughly. Studies in different experimental models and different species have led to conflicting results. Dubey et al. (1987) showed that neither testosterone nor oestradiol had any negative feedback action at the pituitary in monkeys in vivo. In vitro, on the other hand, a suppressive effect of testosterone on luteinizing hormone (LH) secretion of pituitary cells could be demonstrated in rats (Kamel et al. 1987). Studies in men with hypothalamic hypogonadism treated with pulsatile gonadotrophin-releasing hormone (GnRH) confirmed this suppressive effect of testosterone on LH and FSH at the pituitary site (Bagatell et al. 1994). In another model of hypothalamus–pituitary–disconnected rams, both testosterone and inhibin decreased FSH in the serum under stimulation with GnRH (Tilbrook et al. 1993).

Our cell culture system was also used to characterize the effects of testosterone on basal and GnRH-stimulated
gonadotrophin secretion of primate pituitary cells in vitro.

Materials and Methods

Animals

Six intact adult male rhesus monkeys (Macaca mulatta) and one adult male cynomolgus monkey (Macaca fascicularis) were used for this study. The mean ± s.d. body weight of the rhesus monkeys was 12.6 ± 1.6 kg and the weight of the cynomolgus monkey was 4.7 kg. The animals were maintained in a controlled environment, with a 12 h light/12 h darkness photoperiod as described previously (Weinbauer et al. 1984). Pelleted monkey diet supplemented with fresh fruit was provided twice daily, and tap water was available ad libitum. Testosterone and bioactive LH as well as testicular volume, body weight and general health of the animals were normal.

A total of 60 adult male Wistar rats weighing 180–220 g were housed in cages (five animals/cage) under controlled temperature (23°C) and lighting conditions (12 h light/12 h darkness) with free access to pelleted food and tap water.

Maintenance and handling of monkeys and rats complied with the German Federal Law for Care and Use of Laboratory Animals.

Preparation of pituitaries

In monkeys, five independent preparations of pituitaries were carried out. The first three were from individual animals, one cynomolgus and two rhesus monkeys. In each of the other two experiments, pituitary cells from two rhesus monkeys were pooled to increase the number of wells for different doses of substances tested. In addition, three independent experiments in rats with 20 rats per preparation of pituitary cells were carried out. The experiments described required two rats per experiment. To minimize the interexperimental variation, 20 rats were used in every preparation. Remaining cells were used for calibration of inhibin standards and for a study on the effect of basal GnRH on gonadotrophins (results not shown). Monkeys were anaesthetized with ketamine hydrochloride (20 mg/kg; Ketavet; Parke-Davis, München, Germany) and killed with CO₂. Rats were killed with CO₂ and decapitated. Pituitaries were removed immediately after death and transported at 37°C in sterile PBS containing 100 × 10⁻³ U/l penicillin (Serva, Heidelberg, Germany), 100 mg/l streptomycin (Serva), 2.7 g/l glucose and 0.3% BSA (Behring, Marburg, Germany). A period of 15 min elapsed between the death of the animals and the beginning of cell preparation under a laminar flow hood.

Cell culture

Cells were prepared under sterile conditions as described previously (Hyde et al. 1982), with modifications. Briefly, pituitaries were rinsed in PBS and cut into approximately 1 mm³ pieces using a scalpel. Incubation with trypsin (Type III; 1.5 g/l, Sigma, München, Germany) and DNase (Type I; 100 mg/l, Sigma) in PBS was carried out for 30 min at 37°C, followed by a further incubation with DNase (200 mg/ml) in PBS for 4 min and EDTA (2 × 10⁻³ M) in PBS without Ca²⁺ and Mg²⁺ and for 5 min. Pituitary cells were then dispersed mechanically by repeated aspiration with a Pasteur pipette in DNase (100 mg/l) in PBS without Ca²⁺ and Mg²⁺. This process was repeated 7 times for rat cells and 20 times for monkey cells. The dispersion was followed by centrifugation at 200 g for 10 min and resuspension in Dulbecco’s modified Eagle’s medium (DMEM) containing 100 × 10⁻³ U/l penicillin, 100 mg/l streptomycin, 1-2 g/l NaHCO₃, 10 ml non-essential amino acid solution (Serva), 1 × 10⁻³ M l-glutamine (Serva) and 10% fetal calf serum (Sigma) which had been pretreated with charcoal and dextran to remove steroids. Cells were counted, and viability was determined by measuring trypan blue exclusion. The cell suspension was diluted to 100 × 10⁶ cells/l and distributed on 24-well culture plates (Costar, Cambridge, MA, USA) with 50 × 10³ cells/well. The culture medium volume was 500 μl/well. Hormone levels were multiplied by a factor of 20 to convert units from ng/50 × 10³ cells to ng/10⁶ cells. Cell preparation was followed by a preincubation for 48 h at 37°C, 98% humidity, 5% CO₂ in air. After 48 h the medium was changed, and, in six wells, the cells were detached by incubation with EDTA in PBS without Ca²⁺ and Mg²⁺, and stained with trypan blue to determine viability. The same procedure was carried out after collection of medium at the end of the experiments. In addition, media collected from six dishes were centrifuged at 200 g for 10 min and resuspended in PBS without Ca²⁺ and Mg²⁺, and stained with trypan blue and examined microscopically. Media were collected and stored at −20°C until determination of FSH and LH by RIA.

Experimental protocol

Effect of inhibin on FSH and LH secretion in monkeys and rats The effect of incubation with inhibin in increasing doses on basal FSH and LH release was studied during an incubation period of 48 h. Highly purified bovine inhibin with a molecular mass of 31 kDa (D M de Kretser, Clayton, Vic, Australia) was dissolved via free access

Downloaded from Bioscientifica.com at 01/03/2019 06:49:34AM
Effects of testosterone on basal and GnRH-stimulated secretion of FSH and LH in monkeys

The aim of this experiment was to determine the effects of testosterone on GnRH-stimulated secretion of gonadotrophins. After the preincubation of 48 h, culture medium was removed and replaced with warm fresh medium containing either 0.2% ethanol or testosterone (10⁻⁷ M; Sigma) in 0.2% ethanol. In three aliquots taken at the end of the experiment, testosterone was measured by luminescence assay and found to be 0.98 × 10⁻⁷ M. After a further 44 h, medium was replaced with one of the same composition (testosterone in ethanol or ethanol alone), and graded doses of GnRH (0, 10⁻¹¹, 10⁻⁹, 10⁻⁷ and 10⁻⁶ M; Relefact LHRH; Hoechst, Frankfurt, Germany) were added in 10 µl PBS. After 4 h incubation with GnRH, medium was collected and stored for assay of hormones. This experiment was performed in triplicate and repeated twice.

Hormone analysis

Inhibin in the serum was measured in a double-antibody RIA validated for cynomolgus monkey, rat, human and bovine serum and follicular fluid (Fingscheidt et al. 1989). This RIA detected the 59 and 31 kDa forms of dimeric inhibin and also reacted with the α-subunit precursor protein pro-α C. Serial dilutions of rhesus monkey serum with a maximum volume of 100 µl serum/tube were parallel to those of cynomolgus monkey serum. Samples were assayed in duplicate using 50 µl serum/tube. The minimum detectable dose was 0.2 U/ml; the intra-assay coefficient of variation was 5.5% at 0.35 U/ml.

Monkey FSH in the medium was measured by a human FSH (NIAMDD hFSH-2):anti-ovine-FSH (H 31, NICHD) RIA system that employs a purified cynomolgus FSH preparation (WP-XV-104 C) as standard as described previously (Khan & Diczfalusy 1983). The detection limit of the assay was 8.2% and the intra-assay coefficients of variation were 7.2% (rFSH) and 6.1% (rLH), and intra-assay coefficients of variation were 4.3% (rFSH) and 5.1% (rLH).

Testosterone was measured by a luminescence immunoassay developed in our institute (Kreyxing & Nieschlag 1987). The detection limit of the assay was 0.27 mM, and intra-assay variation was 5.3%.

Statistical analysis

Each dose in the cell culture experiments was tested in triplicate, and medians of triplicate doses were calculated. For graphic representation of the data, means and standard deviation were computed from the three medians obtained from independent experiments.

Dose–response curves were fitted for the calculated medians of each of three identical experiments using the GraphPad Prism program to obtain values for median effective dose (ED₅₀), maximal suppression or stimulation (bottom or top) and 95% ranges. Curves were compared using two-way multivariate analysis of variance (MANOVA) using the SPSS for Windows computer program. Differences between basal gonadotrophin secretion before stimulation with GnRH in testosterone-treated cell cultures of cynomolgus monkeys compared with controls were analysed using the t-test for independent samples (SPSS for Windows).

Results

Monkey pituitary cells were separated by an intensified mechanical method of dispersion. The yield of cells/pituitary for rhesus monkeys was (4.5 ± 1.2) × 10⁶ cells (mean ± s.e.m., n=6); viability was 92 ± 4% (mean ± s.e.m.). In the cynomolgus monkey pituitary cell culture, 3.6 × 10⁶ cells/pituitary with a viability of 92% were obtained. For rats, (3.2 ± 0.2) × 10⁶ cells/pituitary (mean ± s.e.m.) with a viability of 96 ± 2% (mean ± s.e.m.) were obtained. Controls for cultures treated with testosterone, inhibin and/or GnRH at the end of one experiment showed no significant decrease in cell count or viability (at the beginning of the experiment (105.2 ± 10) × 10³ cells/ml and 99 ± 1% viable cells; after 48 h incubation with DMEM and change of medium at 44 h (101.6 ± 16) × 10³ cells/ml and 98 ± 1% viable cells; after 48 h incubation with inhibin (103.2 ± 9) × 10³ cells/ml and 97 ± 2% viable cells; after incubation with testosterone and GnRH and one change of medium at 44 h (98.6 ± 12) × 10³ cells and 97 ± 3% viable cells). Medium from the preincubation phase contained debris in small amounts but no cells, and medium obtained during the experiment contained no debris or cells. FSH levels (triplicate wells in three independent experiments were measured using double-antibody RIAs based on reagents supplied by NIDDK rFSH:rFSH-S-9 and rLH:rLH-S-9, standards: RP-2, anti-rabbit globulin (donkey) second antibody RD-17 (Wellcome, Dartford, Kent, UK), by the method of Solano et al. (1979). The minimum detectable doses were 3 ng/ml (FSH) and 1 ng/ml (LH), interassay coefficients of variation were 7.2% (rFSH) and 6.1% (rLH), and intra-assay coefficients of variation were 4.3% (rFSH) and 5.1% (rLH).
Inhibin suppressed FSH secretion in rhesus monkey pituitary cell cultures in a dose-dependent manner to 50.8% (95% range 44.7–56.9) of controls (Fig. 1, bottom). The dose–response curve was of sigmoid shape, and the ED₅₀ was 1.024 U/ml (95% range 0.7204 to 1.455). The cell content of FSH and total FSH in the cell culture system at the end of the incubation were likewise decreased (Fig. 2). Levels of inhibin in the serum of normal male rhesus monkeys were determined as described previously (Fingscheidt et al. 1989) in eight animals and were 2.8 (0.7–4.9) U/ml (mean, 95% range). Cell cultures of cynomolgus monkey pituitary cells showed comparable secretion of FSH with similar suppression (data not shown). No significant effect of inhibin on LH secretion in rhesus monkey pituitary cells could be detected (P > 0.05; ANOVA, followed by Tukey’s test; Fig. 1, bottom). We observed no difference between the effect of inhibin on FSH and LH in monkey cell cultures and that in rat pituitary cell cultures (Fig. 1, top). In rats, FSH secretion was suppressed to 45.0% (95% range 40.3–49.6) of controls. The ED₅₀ was 1.298 U/ml (95% range 1.064 to 1.584). Inhibin in the serum of male rats was determined in 49 rats in previous studies (Fingscheidt et al. 1990, Chandolia et al. 1991) and found to be 1.0 (0.7–1.2) U/ml (mean, 95% range).

Effects of testosterone on basal gonadotrophin secretion and cell content in monkeys and rats

Testosterone at a concentration of 10⁻⁷ M had no significant effect on basal secretion of FSH or LH during the second preincubation phase of 44 h (Fig. 3), which followed the initial preincubation of 48 h (P > 0.05, t-test). GnRH in graded doses, added during the final 4 h of this experiment, stimulated secretion of FSH to maximally 332.7%, and LH to 991.3% of basal secretion. Testosterone at a concentration of 10⁻⁷ M had no significant effect on GnRH-stimulated gonadotrophin secretion (P > 0.05, ANOVA, followed by Tukey’s test; Fig. 1, bottom).
With no interaction, GnRH had a significant effect on FSH and LH (P<0.001, MANOVA). The ED$_{50}$, (95% range) for stimulation of FSH by GnRH was 6.5 × 10$^{-11}$ (1.7 × 10$^{-11}$ - 2.5 × 10$^{-10}$) M. The corresponding ED$_{50}$ for stimulation of LH by GnRH was higher: 1.6 × 10$^{-10}$ (7.6 × 10$^{-11}$ - 3.2 × 10$^{-10}$) M. Changing the culture medium after 44 h increased the basal LH-release rate from 3.1 to 21.8 ng/106 cells per 4 h and FSH secretion rose from 13.6 to 39.7 ng/106 cells per 4 h.

Discussion

We have established and characterized an in vitro cell culture model for studying gonadotrophin secretion by pituitaries of non-human primates. With this model we have demonstrated the effects of GnRH, inhibin and testosterone on isolated primate pituitary cells for the first time. To date, only a few reports have appeared on hormone secretion by the pituitary of non-human primates. With this model we have been able to show for the first time that inhibin suppresses FSH secretion by pituitary cells of primates in vitro. The effect is the same as that in rat pituitary cells, as demonstrated in our study by pharmacological data from fitted dose–response curves. The ED$_{50}$ values for suppression of FSH by inhibin in vitro were within the 95% range for inhibin in the serum of normal rhesus monkeys and rats as determined in previous studies (Fingscheidt et al. 1989, 1990, Chandolia et al. 1991). The dose–response curves for inhibin were of sigmoid shape, with the steepest part of the curve within the normal range of serum concentrations. Normal secretion of FSH may therefore be under constant suppression by inhibin. However, it must be taken into account that the RIA used for determination of inhibin in the serum of male monkeys reacts not only with the 31 kDa form of inhibin, which was used in the in vitro experiments, but also with 59 kDa inhibin and the a-subunit precursor protein pro-a C. In our in vitro system, inhibin is a potent regulator of FSH at the pituitary.

Previous in vitro studies on the mode of action of inhibin at the pituitary were based on rat (Farnworth et al. 1988) and sheep (Clarke et al. 1993) pituitary cell cultures. In contrast with the rat, Muttukrishna & Knight (1991) described a stimulating action of inhibin on LH in sheep, whereas the effects on FSH were similar in these two species with a greater sensitivity of the sheep pituitary cells to inhibin (Tsonis et al. 1986). The similarity of the effects of inhibin on FSH and LH as characterized by our rat and monkey pituitary cell culture systems underline the value of normal pituitaries are of limited value for investigating gonadotrophin secretion as uncontrollable hormone release results from central necrosis during long-term culture. Gonadotrophin secretion may also be altered in tissue or cells derived from pituitary adenomas. For these reasons our model of dispersed cells from normal pituitaries is probably the best in vitro system for studying gonadotrophin secretion.

Figure 3 Effect of testosterone (solid bars) at a concentration of 10$^{-7}$ M on basal secretion of FSH (left) and LH (right) in rhesus monkey pituitary cell cultures during the preincubation period of 44 h compared with controls (open bars). After the preincubation phase, the medium was changed and GnRH was added. The curves on the right represent the effect of testosterone (10$^{-7}$ M, ●) on GnRH-stimulated release of FSH (left) and LH (right) during the following 4 h of incubation compared with controls (○). GnRH was added in graded doses from 0 to 10$^{-6}$ M.
of the rat model for understanding the physiology of the primate pituitary.

Previous in vivo experiments in male rhesus monkeys were based on a preparation known as the hypophysiotropic clamp. Hypothalami of these animals were lesioned and replaced with an invariant intermittent GnRH pump, thus eliminating components of the feedback system acting at the hypothalamic site. In this setting, immunoneutralization of inhibin led to selective hypersecretion of FSH with no effect on LH (Medhamurthy et al. 1990). Inhibin affected only FSH in rats, but had no effect on basal secretion of LH. This result is in contrast with a previous finding that both gonadotrophins were suppressed by inhibin in rats in vitro (Farnworth et al. 1988). This difference between two similar static culture systems in different laboratories remains unexplained. In dynamic in vitro models of superfused cells, however, a suppressive effect of inhibin could only be demonstrated for GnRH-stimulated secretion of LH, but not for basal release of LH (Kotsuji et al. 1988). These data support our results, since we only examined basal gonadotrophin release for effects of inhibin. In monkey pituitary cells, LH was not influenced by inhibin either, which is comparable with our data for rats.

Since only a limited number of pituitary cells was available for experiments, we decided to study dose–responses for two hormones, GnRH and inhibin. Testosterone was only applied in one dose, known to be maximally effective in rat pituitary cell cultures (Kitahara et al. 1991). The concentration chosen for testosterone is equivalent to double the upper normal range in normal male monkeys (Weinbauer et al. 1986, Winters et al. 1992). In contrast with the reported stimulating action of testosterone on FSH in rat pituitary cell cultures (Kitahara et al. 1991, Winters et al. 1992), we found no effect of testosterone at the dose of 10^{-7} M on basal or GnRH-stimulated secretion of FSH in monkeys. In vivo data in monkeys provide increasing evidence for the view that testosterone has no effect on FSH at the pituitary (Dubey et al. 1987, Abeyawardene & Plant 1989, Medhamurthy et al. 1991, Majumdar et al. 1995) and that inhibin is the testicular hormone responsible for regulation of FSH at the pituitary site.

No significant effect of testosterone on either basal or GnRH-stimulated release of LH could be demonstrated in our monkey pituitary cell culture system. This result parallels the observations of others on rat pituitary cell cultures (Gharib et al. 1990, Winters et al. 1992), although some authors were able to demonstrate an inhibitory effect of testosterone on GnRH-stimulated LH release in rats (Liang et al. 1984). Again, in vivo data for monkeys support our in vitro data. After castration, only a slight increase in LH was seen in monkeys with a hypophysiotropic clamp, instead of the dramatic postcastration hypersecretion of LH in animals with intact hypothalami (Plant & Dubey 1984). Adams et al. (1988) demonstrated, in contrast with our findings, that testosterone increases GnRH-stimulated LH release in prepubertal male monkeys. They suggested that the pituitary might be a target for the feedback action of testosterone on LH. Winters et al. (1992) found contradictory results when measuring production of mRNA for subunits of gonadotrophins. Both suppressing and stimulating effects of testosterone were found. In a more recent study, GnRH-stimulated FSH mRNA levels were found to be suppressed by testosterone in mouse pituitary cell cultures and transgenic hypogonadal mice (Kumar & Low 1995).

The hypothalamus is supposed to be one site for the feedback action of testosterone in human males (Kerrigan et al. 1994). However, an additional site of action of testosterone at the pituitary was proposed by Finkelstein et al. (1991) and by Sheckter et al. (1989). These in vivo studies are limited by a possible effect of testosterone on remaining endogenous GnRH and do not represent an ideal model for studying effects at the pituitary level.

The dose–response characteristics of the action of GnRH on the release of gonadotrophins in our monkey pituitary cell culture system revealed that LH and FSH were stimulated by GnRH in the same manner, with equal mean effective doses, but the extent to which secretion could be stimulated beyond basal values differed greatly. LH could be stimulated tenfold whereas FSH was only stimulated threefold. In addition, a supply of fresh medium after 44 h increased the secretion rate for LH sevenfold compared with threefold for FSH. The in vitro secretion of FSH appears to occur more independently of culture conditions and GnRH stimulation than that of LH. This underlines the relative importance of inhibin as the major feedback hormone for FSH.

We conclude that the pituitary is the target organ for inhibin in selectively controlling FSH in non-human primates. Comparing dose–response curves for inhibin with the inhibin concentration in the serum of monkeys suggests that the physiological secretion of FSH may be constantly suppressed by inhibin. Testosterone had no effect in our in vitro system and therefore the feedback mechanism of this steroid may be mediated exclusively via the hypothalamus.

Acknowledgements

The authors thank Professor D M de Kretser (Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia) and Dr D M Robertson (Prince Henry’s Institute of Medical Research, Monash Medical Centre, Clayton, Victoria, Australia) for supplying purified inhibin. We are most thankful to R Sandhowe, M Heuermann and G Stelke for their excellent technical assistance. Parts of this work were presented at the Second Pituitary Congress, Palm Springs, CA, USA in 1989. The study was supported in part by the Deutsche...
References

Clarke IJ, Rao A, Fallet C & Shupnik MA 1993 Transcription rate of the follicle stimulating hormone (FSH) beta subunit gene is reduced by inhibin in sheep but this does not fully explain the decrease in mRNA. *Molecular and Cellular Endocrinology* **91** 211–216.

Dubey AK, Zeleznik AJ & Plant TM 1987 In the rhesus monkey (Macaca mulatta), the negative feedback regulation of follicle-stimulating hormone secretion by an action of testicular hormone directly at the level of the anterior pituitary gland cannot be accounted for by either testosterone or estradiol. *Endocrinology* **121** 2229–2237.

Kohler PO, Bridson WE & Rayford PL 1968 Cortisol stimulation of growth hormone production by monkey adenohypophysis in tissue culture. *Biochemical and Biophysical Research Communications* **33** 834–840.

Liang T, Brady EJ, Cheung A & Saperstein R 1984 Inhibition of growth hormone production by monkey adenohypophysis in tissue culture. *Biochemical and Biophysical Research Communications* **33** 834–840.

Plant TM & Dubey AK 1984 Evidence from the rhesus monkey (Macaca mulatta) for the view that negative feedback control of luteinizing hormone secretion by the testis is mediated by a deceleration of hypothalamic gonadotropin-releasing hormone pulse frequency. Endocrinology 115 2145–2153.

Received 29 January 1998
Accepted 26 May 1998