Dissection of the metabolic actions of insulin in adipocytes from early growth-retarded male rats

S E Ozanne, C L Wang, M W Dorling and C J Petry
Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, UK
(Requests for offprints should be addressed to S E Ozanne)

Abstract
Numerous studies have shown a relationship between early growth restriction and Type 2 diabetes. Studies have shown that offspring of rats fed a low protein (LP) diet during pregnancy and lactation have a worse glucose tolerance in late adult life compared with controls. In contrast, in young adult life LP offspring have a better glucose tolerance which is associated with increased insulin-stimulated glucose uptake into skeletal muscle. The aim of the present study was to compare the regulation of glucose uptake and lipolysis in adipocytes by insulin in control and LP offspring. LP adipocytes had increased basal and insulin-stimulated glucose uptake compared with controls. There was no difference in basal rates of lipolysis. Isoproterenol stimulated lipolysis in both groups, but it was more effective on LP adipocytes. Insulin reduced lipolytic rates in controls to basal levels but had a reduced effect in LP adipocytes. Protein kinase B activity matched glucose uptake, with LP adipocytes having elevated activities. These results suggest that early growth retardation has long-term effects on adipocyte metabolism. In addition, they show selective resistance to different metabolic actions of insulin and provide insight into the mechanisms by which insulin regulates glucose uptake and lipolysis.

Journal of Endocrinology (1999) 162, 313–319

Introduction
A number of studies have shown that there is a relationship between poor early growth and the subsequent development of Type 2 diabetes mellitus in adulthood (Philps & Hales 1996). A possible mechanism underlying this relationship is proposed in the ‘thrifty phenotype hypothesis’ (Hales & Barker 1992). This suggests that during times of nutritional deprivation a growing foetus will undergo metabolic adaptations which are beneficial under conditions of poor postnatal nutrition. This so-called ‘programming’ will therefore aid survival if the organism is born into conditions of limited nutrition. However, if the offspring are well or over-nourished then this may conflict with the earlier programming and Type 2 diabetes may occur.

A key feature of the thrifty phenotype hypothesis is the proposal that early growth retardation will lead to programmed changes in insulin sensitivity (insulin resistance being an important feature of Type 2 diabetes). This possibility has been investigated in a rat model of early growth retardation in which pregnant and lactating rats are fed either a control (20%) or a low (8%) protein (LP) diet (Dahri et al. 1991, Desai et al. 1996). Low protein offspring even when weaned onto a control (20%) protein diet are permanently growth retarded (Desai et al. 1996). In late adult life the low protein offspring have a significantly worse glucose tolerance compared with control offspring (Hales et al. 1996). In contrast, at three months of age low protein offspring have a significantly better glucose tolerance than controls which is associated with increased glucose uptake into skeletal muscle (Ozanne et al. 1996) and adipocytes (Ozanne et al. 1997) in male offspring. In contrast, an in vivo study of female low protein offspring found no increased skeletal muscle glucose uptake (Holness 1996). Both skeletal muscle and adipocytes from male low protein offspring have increased levels of insulin receptors (Ozanne et al. 1996, 1997). Consistent with the elevated levels of insulin receptors, adipocytes from these low protein offspring also have increased basal and insulin-stimulated levels of insulin receptor substrate-1 (IRS-1)-associated phosphatidyl inositol (PI) 3-kinase activity (Ozanne et al. 1997). PI 3-kinase is a hetero-dimeric enzyme which consists of a regulatory and a catalytic subunit (reviewed by Shepherd et al. 1998). Activation of PI 3-kinase by interaction of the regulatory subunit with phosphorylated IRS-1 is required for insulin to stimulate glucose uptake. At least two insulin-regulated isoforms of the catalytic subunit exist in adipocytes; they are termed p110α and p110β (Hiles et al. 1992, Hu et al. 1993). The precise role of these two subunits and the relative activity of each is not clear. However, it has been shown previously that adipocytes from low protein offspring have a
striking reduction in the levels of the p110β catalytic subunit of phosphatidyl PI 3-kinase compared with controls (Ozanne et al. 1997).

In addition to stimulating glucose uptake via translocation of glucose transporter 4 (GLUT 4) vesicles to the plasma membrane, insulin has an array of other metabolic actions. In adipocytes, insulin is a key enzyme downstream of PI 3-kinase in the insulin signalling cascade.

Materials and Methods

Analytical grade biochemicals were obtained from Sigma Chemical Co. or BDH Biochemicals (both of Poole, Dorset, UK), unless stated otherwise. Monocomponent porcine insulin was prepared from insulin zinc suspension B.B. (80 i.u./ml; Monotard, Novo Nordisk A/S, Bagsvaerd, Denmark) as outlined by Christensen et al. (1985). D-[U-14C] glucose and [32P]ATP were obtained from Amersham International, Amersham, Bucks, UK. Linco rat insulin radioimmunoassay kits were purchased from Biogenesis Ltd (Poole, Dorset, UK).

Animals

All procedures involving animals were conducted under the British Home Office Animals Act 1986. Virgin female Wistar rats (initial weight 240–260 g) used for the study were housed individually and were maintained at 22 °C on a 12 h light/12 h dark cycle. They were mated and day 0 of gestation was taken as the day on which vaginal plugs were expelled. The rats were fed a diet containing 20% protein or an isocalorific diet containing 8% protein (LP) throughout pregnancy and lactation. The composition and source of the diets was as described by Snoeck et al. (1990). It should be noted that as the diets are isocalorific, the decrease in protein is substituted with carbohydrate. Hence the diet could be described as a low protein/high carbohydrate diet and any effects observed may result from either the low protein, the elevated carbohydrate or a combination of the two.

Spontaneous delivery took place on day 22 of pregnancy after which at 3 days of age litters were reduced randomly to 8 pups, thus ensuring a standard litter size per mother. At 21 days of age all pups were weaned onto a 20% protein diet. For simplicity the two groups of offspring are termed ‘control’ and ‘low protein’, however it is emphasised that only the mothers undergo dietary manipulation. All rats studied were three-month-old males and were starved overnight prior to commencement of procedures.

Adipocyte isolation

Adipocytes were isolated from epididymal fat pads by collagenase (1 mg/ml) digestion as described previously (Cushman 1970). Following isolation, adipocytes were washed twice with Krebs–Ringer–Hepes (30 mM) buffer (pH 7.4) containing 2.5% bovine serum albumin (BSA) (fraction V). For PKB expression analysis, cells were washed 3 times in BSA-free Krebs–Ringer–Hepes (30 mM) buffer (pH 7.4).

Glucose uptake studies

Cells (12% suspension) were incubated at 37 °C with constant shaking in an 8% suspension by volume, in Krebs–Ringer–Hepes (30 mM) buffer (pH 7.4) with 2.5% BSA (fraction V), 200 nM adenosine either without (basal) or with (insulin-stimulated) 80 nM insulin. Following an initial 30-min incubation period with or without insulin, [U-14C] glucose (3 µM) was added for 60 min and the reaction was terminated by separating cells from media by spinning the suspension through dinonyl phthalate oil (Shepherd et al. 1993).

Lipolysis studies

Cells (12% suspension) were incubated at 22 °C in an 8% suspension by volume, in Krebs–Ringer–Hepes (30 mM) buffer (pH 7.4) with 2.5% BSA (fraction V). In the dose-response studies 0–1.6 µM isoproterenol was included. For the anti-lipolytic experiments adipocytes were incubated either without additions (basal) or with 0.1 µM isoproterenol (stimulated) containing either 0, 1, 10 or 100 nM insulin. After 1 h media were removed and glycerol release was measured using a kit purchased from Sigma Chemical Co.

PKB assay

Cells were incubated for 5 min at 37 °C in Krebs–Ringer–Hepes in the absence or presence of 100 nM insulin. Reactions were stopped by the addition of 27 µl stop solution (74 mM EDTA, 37 mM EGTA, 0.037 mM microcystin, 3-7% 2-mercaptoethanol and 37 mM sodium orthovanadate) and then snap-frozen in liquid nitrogen and stored at −80 °C prior to analysis. Protein kinase B
activity was determined as described previously (Walker et al. 1998). In brief, samples were thawed, centrifuged at 20 000 $\times g$ for 5 min and the infranatant collected. PKBβ and PKBα were immunoprecipitated as described (Walker et al. 1998) and assayed for PKB activity using Crosstide (Cross et al. 1995).

Western blot analysis of PKB expression

PKBα and PKBβ expression were determined by Western blot analysis as described previously (Walker et al. 1998). Blots were scanned and quantified using the NIH Image Analyser program.

Protein and insulin assay

Protein content was determined in 12% adipocyte suspensions in Krebs–Ringer–Hepes without BSA by a modification of the Lowry method (Schacterle & Pollack 1973). Plasma insulin was measured by radioimmunoassay according to the manufacturer’s protocol (Biogenesis).

Statistical analyses

All statistical calculations were carried out using Statworks statistical software (Cricket Software Computer Associates, Slough, Berkshire, UK). For all data sets it was first determined that the data were normally distributed and where comparisons were to be made, that there was no significant difference in the variances of the two groups. These conditions were met in all cases and the significance of any difference between groups was examined by the Students t-test. Results in all cases are given as means ± S.E.M., together with the absolute probability (P) value where appropriate.

Results

Basic animal data

Low protein offspring had significantly lower body weights compared with controls (501 ± 13 g compared with 398 ± 13 g, $P<0.001$). In addition epididymal fat pads were reduced in weight (9.7 ± 0.9 g compared with 4.5 ± 0.4 g, $P<0.001$). There was no difference in fasting plasma glucose levels (5.2 ± 0.2 mM in controls and 5.2 ± 0.1 mM in low protein offspring). In addition fasting plasma insulin levels were similar in the two groups (310 ± 51 pM in controls and 293 ± 54 pM in low protein offspring).

Glucose uptake

Adipocytes from low protein offspring had a significantly ($P<0.01$) higher basal glucose uptake compared with controls (Fig. 1). In addition they had a significantly ($P<0.05$) elevated insulin-stimulated glucose uptake compared with controls (Fig. 1).

Lipolysis

Basal rates of lipolysis were similar in control and LP adipocytes (Fig. 2 and Table 1). The dose–response data show that isoproterenol stimulated ($P<0.001$) lipolysis in both groups; however it had a significantly greater effect on LP adipocytes at every concentration tested (Table 1). Insulin (at maximal concentrations) reduced ($P<0.001$) lipolytic rates (from a submaximal level) in controls to basal levels but had a markedly reduced effect in LP adipocytes ($P<0.001$ compared with control) (Fig. 2). A submaximal concentration of insulin reduced glycerol release from control adipocytes ($P<0.01$) but had no effect on the low protein group ($P>0.1$) but had no effect on the low protein group (Fig. 2).

PKB activity

Adipocytes from low protein offspring had a significantly ($P<0.05$) higher basal PKBβ activity compared with controls (Fig. 3a). In both groups insulin stimulated PKBβ activity. Low protein offspring adipocytes tended ($P=0.10$) to have a higher insulin-stimulated PKBβ activity compared with controls; however this did not reach statistical significance in the number of animals studied. PKBα activity was also detected in adipocyte extracts from
Results are expressed as means ± S.E.M of 5 separate sets of control and low protein experiments, each performed in triplicate. In each group the 5 bars are arranged in the following order: (1) basal, (2) isoproterenol stimulated, (3) +1 nM insulin, (4) +10 nM insulin, (5) +100 nM insulin. **P<0.01 compared with controls.

Figure 2 The effect of isoproterenol and insulin on lipolysis in freshly isolated adipocytes. Adipocytes were incubated with a modified Krebs–Ringer buffer in the absence or presence of isoproterenol (0-1 μM) and insulin (1 nM, 10 nM or 100 nM). Glycerol release was measured as described in the Materials and Methods section. Results are expressed as means ± S.E.M of 5 separate sets of control and low protein experiments, each performed in triplicate. In each group the 5 bars are arranged in the following order: (1) basal, (2) isoproterenol stimulated, (3) +1 nM insulin, (4) +10 nM insulin, (5) +100 nM insulin. **P<0.01 compared with controls.

PKB expression
There were no detectable differences in PKBα (189 ± 6 arbitrary units for controls and 178 ± 9 arbitrary units for low protein group) (Fig. 4a) or PKBβ (206 ± 10 arbitrary units for controls and 198 ± 9 arbitrary units for low protein group) (Fig. 4b) expression between experimental groups.

Discussion
The present study was designed to address the possibility that early growth retardation could have a number of effects on the metabolic actions of insulin on adipocytes. Consistent with previous findings, adipocytes from maternally malnourished rats had increased basal and insulin-stimulated glucose uptakes. This enhanced glucose uptake is associated with increased insulin receptors and IRS-1-associated PI 3-kinase activity (Ozanne et al. 1997).

Isoproterenol (a synthetic catecholamine) stimulated lipolysis in both control and low protein adipocytes. However, it had a greater stimulatory effect in the low protein group. This suggests that low protein adipocytes are more sensitive to catecholamines. At present the molecular basis of this apparent enhanced sensitivity is unclear. It is possible that, like insulin receptors, there are increased levels of adrenergic receptors on adipocyte membranes from low protein offspring. It is noteworthy that a similar increased response to catecholamines is observed in adipocytes isolated from pregnant rats who are currently being fed a low protein diet (Holness et al. 1998).

In contrast to the enhanced sensitivity of low protein adipocytes to insulin’s ability to stimulate glucose uptake, these adipocytes had an apparent resistance to the anti-lipolytic action of insulin. This finding is surprising in light of the findings that low protein adipocytes have elevated levels of insulin receptors and parallel increases in basal and insulin-stimulated IRS-1-associated PI 3-kinase activity (Ozanne et al. 1997). It has been shown previously that the anti-lipolytic action of insulin is sensitive to wortmannin, a potent inhibitor of PI 3-kinase (Okada et al. 1994). This would suggest that PI 3-kinase is necessary for the anti-lipolytic action of insulin. However, the current data suggest PI 3-kinase activity alone is not sufficient to mediate the anti-lipolytic action of insulin.

There are a number of possible explanations for the current findings. First, the isoform of the catalytic subunit of PI 3-kinase which is activated may be important. The low protein adipocytes have relatively low levels of p110β compared with controls but have similar levels of p110α (Ozanne et al. 1997). Thus, in low protein adipocytes most catalytic activity will be that of p110α. One possibility is, therefore, that activation of p110α is necessary for the stimulation of glucose uptake by insulin; indeed over-expression of p110α has been shown to enhance glucose uptake into 3T3-L1 adipocytes (Katagiri et al. 1996). In contrast, p110β activation may be required for the anti-lipolytic action of insulin. It is difficult, at first, to see how, given that their products are identical, the two isoforms could regulate distinct pathways. It is possible that they differ in their subcellular location. There is evidence

Table 1 Dose–response of isoproterenol-stimulated glycerol release

<table>
<thead>
<tr>
<th>Isoproterenol (μM)</th>
<th>Control</th>
<th>Low protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.3 ± 0.2</td>
<td>2.6 ± 0.2</td>
</tr>
<tr>
<td>0.05</td>
<td>2.7 ± 0.2</td>
<td>3.8 ± 0.2**</td>
</tr>
<tr>
<td>0.1</td>
<td>4.7 ± 0.3</td>
<td>7.8 ± 0.2***</td>
</tr>
<tr>
<td>0.2</td>
<td>9.5 ± 0.6</td>
<td>17.6 ± 1.1***</td>
</tr>
<tr>
<td>0.4</td>
<td>13.0 ± 1.2</td>
<td>25.5 ± 1.8***</td>
</tr>
<tr>
<td>0.8</td>
<td>14.6 ± 1.5</td>
<td>37.0 ± 2.6***</td>
</tr>
<tr>
<td>1.6</td>
<td>14.9 ± 1.7</td>
<td>35.6 ± 5.7**</td>
</tr>
</tbody>
</table>

P<0.01, *P<0.001 compared with controls.
that PI 3-kinase activity can be differentially increased in different subcellular locations which provides a mechanism by which different hormones could activate PI 3-kinase signalling cascades and achieve different signalling outcomes (Nave et al. 1996). Both insulin and platelet-derived growth factor (PDGF) activate PI 3-kinase activity in 3T3-L1 adipocytes (Nave et al. 1996). However, insulin stimulates glucose transport into these cells whereas PDGF has no effect on glucose transport. Treatment of 3T3-L1 adipocytes with insulin has been shown to activate PI 3-kinase activity in a microsomal membrane fraction whereas treatment of these cells with PDGF activates PI 3-kinase activity in the plasma membrane fraction (Nave et al. 1996). Interestingly, it has also been shown recently (Kurosu et al. 1997) that a PI 3-kinase consisting of p110β (catalytic subunit) and p85 (regulatory subunit) can be activated by the βγ subunits of a G-protein as well as by a phosphopeptide. No such activation by βγ was observed in a PI 3-kinase consisting of p110α and p85. This suggests that p110β/p85 PI 3-kinase has the potential to be regulated in a cooperative manner by insulin and hormones, such as catecholamines, which act via G-protein-linked receptors.

There are other possible mechanisms by which this divergence of insulin signalling pathways occurs. There may be altered levels of expression of components of the insulin signalling pathway downstream of PI 3-kinase which are necessary for the antilipolytic action of insulin but which are not required for insulin to stimulate glucose transport. Protein kinase B is one key enzyme downstream of PI 3-kinase which is thought to mediate a number of actions of insulin including the stimulation of cardiac muscle glycolysis via 6-phosphofructo–2-kinase (Deprez et al. 1997), the stimulation of glycogen synthesis via inhibition of glucogen synthase kinase 3 (Cohen et al.

Figure 3 The effect of insulin on (a) PKBβ and (b) PKBα activity in adipocytes. Adipocytes were incubated with a modified Krebs–Ringer buffer in the absence (basal, stippled bars) or presence of insulin (100 nM) (hatched bars). PKB activity was then measured in immunoprecipitates as described in the Materials and Methods section. Results are expressed as means ± S.E.M. of 6 separate sets of control and low protein experiments, each performed in duplicate. *P<0.05 compared with controls; **P<0.01 compared with the basal state.

Figure 4 Immunoblot analysis of PKBα (a) and PKBβ (b) expression in adipocytes. Lysates (25 μg) were electrophoresed and transferred to nitrocellulose paper, which was reacted with either anti-PKBα (a) or anti-PKBβ (b) antibody. Similar results were observed on 6 separate occasions.
PKB activation is not sufficient for PKB in mediating the anti-lipolytic action of insulin. There is a report (Wijkander et al. 1998) which suggests that in rat adipocytes the kinase that phosphorylates and thereby activates phosphodiesterase 3b (PDE 3b) co-elutes with PKB. The data from the present study suggest that PKB activation is not sufficient for the anti-lipolytic action of insulin. Both low protein and control adipocytes contained PKBα and PKBβ activity. PKBβ activity increased in both experimental groups on stimulation by insulin. However, the adipocytes from low protein offspring had a significantly higher basal activity and tended to have a higher insulin-stimulated activity compared with controls. This pattern of activity is similar to that seen with glucose uptake and that seen previously for IRS-1-associated PI 3-kinase activity. This alteration in PKB activity was not related to any changes in expression of PKB protein. These findings are consistent with PKB activation being a downstream response to PI 3-kinase activation. In contrast, minimal stimulation of PKBα in the presence of insulin was observed in both experimental groups. This is consistent with PKBβ being the key insulin-sensitive form of the enzyme in adipocytes (Walker et al. 1998). A possible explanation for a reduction in the anti-lipolytic action of insulin despite PKB activation is that there is something specific to the activation of PKB by the p110β isoform of the catalytic subunit of PI 3-kinase that is required for the anti-lipolytic action of insulin.

There are other examples of differential changes in sensitivity to various actions of insulin. In the condition pseudoacromegaly, resistance to the metabolic actions of insulin (for example glycogen synthase activation) are observed; however these patients are still sensitive to the mitogenic actions of insulin (Flier 1993). An example of selective resistance to different metabolic actions of insulin can be seen in people with essential hypertension. A reduction in the ability of physiological insulin concentrations to stimulate whole body glucose uptake is observed. However, a number of other actions of insulin (e.g. suppression of hepatic glucose output, lipolysis and lipid oxidation) are unaffected (Ferrannini et al. 1990). Likewise, adipocytes isolated from Dahl rats (which are genetically hypertensive) have been reported to have lower levels of maximal insulin-stimulated glucose transport but similar responsiveness to the anti-lipolytic action of insulin (Reaven et al. 1991). In addition, in patients with insulin-dependent diabetes mellitus, decreased levels of glucose uptake during exercise have been observed while rates of lipolysis remained comparable to controls (Raguso et al. 1995).

These results demonstrate that early growth retardation is associated with long-term changes in adipocyte metabolism. These adipocytes provide a useful model for studying mechanisms by which insulin signalling pathways diverge and help in the understanding of the molecular machinery involved in the regulation of glucose uptake and lipolysis by insulin.

Acknowledgements

We thank D Hutt, A Flack, A Wayman and L Smith of the Dunn Nutrition Laboratory Animal Unit for their invaluable assistance. We are grateful to Professor C N Hales, Professor K Siddle and Professor Sir P Cohen for advice and useful discussions. We also thank Dr D Alessi for help with and providing reagents for the protein kinase B assays and many useful discussions. This work was supported by the British Diabetic Association, the Medical Research Council, the Parthenon Trust and the Wellcome Trust.

References

Hajduch E, Alessi DR, Hemmings BA & Haudal H 1998 Protein kinase B mediates the insulin induced increase in glucose and amino acid uptake in L6 myotubes. Diabetes 47 1006–1013.

Received 13 November 1998
Revised manuscript received 24 March 1999
Accepted 9 April 1999