Insulin activation of insulin receptor kinase in erythrocytes is not altered in non-insulin-dependent diabetes and not influenced by hyperglycemia

H H Klein, R Müller, M Drenckhan, M Schütt, B Bätge and H-L Fehm
Department of Internal Medicine 1, Medizinische Universität zu Lübeck, Lübeck, Germany

Abstract
Recent studies suggest that high glucose concentrations impair insulin receptor phosphorylation and kinase activation in certain cell models. To examine whether such an effect of glucose can also be demonstrated in vivo, insulin receptor kinase activation was studied in erythrocytes from 11 patients with non-insulin-dependent diabetes (NIDDM), before and after reduction of hyperglycemia (from 14.6 ± 1.6 to 6.6 ± 0.5 mmol/l fasting plasma glucose within 8.6 ± 0.6 days). For the measurement of receptor kinase activation, cells were incubated with insulin (0–400 nmol/l), solubilized and insulin receptors immobilized to microwells coated with anti-insulin receptor antibody. Kinase activity towards insulin receptor substrate-1 and insulin binding were then measured in these wells. Kinase activities (expressed as amol phosphate transferred per min and per fmol insulin binding activity) were similar before (2.4 ± 0.4 and 32.2 ± 2.0 amol/min per fmol with 0 and 400 nmol/l insulin, respectively) and after improvement of metabolic control (2.4 ± 0.5 and 32.0 ± 2.3 amol/min per fmol with 0 and 400 nmol/l insulin, respectively). Moreover, activities were also similar in 22 hyperglycemic patients with NIDDM (2.1 ± 0.3 and 35.1 ± 1.4 amol/min per fmol with 0 and 400 nmol/l insulin, respectively) compared with those in 21 non-diabetic control individuals (2.1 ± 0.3 and 34.2 ± 1.2 amol/min per fmol with 0 and 400 nmol/l insulin, respectively). We conclude that insulin activation of erythrocyte insulin receptor kinase is not impaired in NIDDM and is not influenced by hyperglycemia.

Introduction
In patients with non-insulin-dependent diabetes mellitus (NIDDM), insulin resistance is a key metabolic abnormality, and genetic factors appear to be pivotal in its development (DeFronzo et al. 1992). If hyperglycemia is present, this hyperglycemia by itself contributes further to the insulin resistance. This is supported by human and animal studies that have shown that hyperglycemia can cause impaired insulin action in vitro and insulin resistance in vivo (Rosetti et al. 1990, Yki-Jarvinen 1992). The mechanisms that lead to the insulin resistance in NIDDM and the mechanisms by which hyperglycemia causes insulin resistance are not completely understood.

The hyperglycemia-induced insulin resistance appears to be mediated, at least in part, by an increased flux through the hexosamine biothynthetic pathway (Hebert et al. 1996, McClain et al. 1996) and the accumulation of metabolites of this pathway (Hawkins et al. 1997). The exact mechanisms by which insulin signaling or the function of the glucose transporter effector system are impaired are, however, not clear. Studies with cultured cells with overexpressed insulin receptors have suggested that high glucose concentrations impair insulin-stimulated insulin receptor autophosphorylation and kinase activation (Berti et al. 1994, Maegawa et al. 1995, Kroder et al. 1996, Pillay et al. 1996). Such a mechanism could contribute to hyperglycemia-induced insulin resistance in humans. Moreover, because a reversal of the glucose-induced impairment of the receptor function was observed with the thiazolidinedione troglitazone in these cells, it has been speculated that the hyperglycemia-induced impairment of receptor kinase activation could represent a target for therapeutic intervention (Kellerer et al. 1994).

In the present study, we investigated whether such hyperglycemia-induced alterations in insulin receptor function could also be demonstrated in hyperglycemic patients with NIDDM. An assay system was established that makes it possible to determine insulin-induced insulin receptor kinase activation in intact erythrocytes from only...
Participants and Methods

Participants

We recruited only those individuals who, on evaluation by clinical and standard laboratory examinations, had no renal, hepatic, infectious or endocrine diseases other than diabetes. Before the volunteers entered the study, the purpose and risks of the experimental procedure were carefully explained to them, and their informed consent was obtained. The procedure was approved by the local ethics Committees and was in accordance with the Helsinki II Declaration.

Erythrocyte insulin receptor kinase and binding activities

Between 0730 h and 0830 h after the participants had undergone an overnight fast and before they had taken any medication, 20 ml blood were directly drawn into a vial that contained heparin (final concentration 3·5 U/ml). Aliquots (2 ml) of the blood were then transferred to 5 ml polyethylene vials (Nunc, Wiesbaden, Germany) and preincubated for 5 min in a rotary waterbath (37 °C, 70 r.p.m.). Insulin (0–400 nmol/l final concentration) was then added and incubations continued for 15 min. The blood was then rapidly transferred to glass tubes for manual tissue grinding (Braun, Melsungen, Germany) that were filled with 1000 µl ice-cold buffer (1% Triton X-100, 2·5 mmol/l phenylmethylsulfonylfluoride, 800 trypsin inhibitor units/ml aprotinin, 8 mmol/l EDTA, 8 mg/ml bacitracin, 2·5 mg/ml benzamidine, 2·5 µg/ml pepstatin, 2·5 µg/ml leupeptin, 160 mmol/l NaF, 10 mmol/l sodium pyrophosphate, 0·2 mmol/l sodium vanadate, 2 mmol/l dichloroacetic acid, and 20 mmol/l HEPES, pH 7·4), and the cells quickly broken by the investigator manually moving the pestle up and down 30 times. Samples were kept on ice for an additional 20 min, centrifuged for 15 min at 100 000 g to remove insoluble material and stored at −80 °C. Insulin receptor kinase activity with recombinant insulin receptor substrate (IRS)-1 (Upstate Biotechnology Incorporated, New York, NY) as substrate and binding activity were then measured essentially as previously described (Klein et al. 1999). Kinase activity was expressed as amol phosphate transferred to IRS-1 per min and per fmol insulin binding activity. Briefly, samples were thawed, twice concentrated by vacuum centrifugation, and added for 16 h to microwells coated with monoclonal anti-insulin receptor antibody. Wells were then washed and phosphorylation reactions performed with the immobilized insulin receptors by adding a mixture containing 0·05% Triton X-100, 60 mmol/l NaCl, 1·5 mmol/l KCl, 0·6 mmol/l CaCl 2, 0·06 mmol/l sodium vanadate, 12 mmol/l HEPES, 5 mmol/l MnCl 2, 10 mmol/l MgCl 2, 500 µmol/l CTP, 0·3 µmol/l 32P-ATP (100–200 Ci/mmol) and 2·3 µg/ml recombinant IRS-1, pH 7·4, for 120 min at 4 °C (phosphate incorporation into IRS-1 was linear with time during this period). Reactions were stopped by adding 15 µl of a solution that contained phosphatase and kinase inhibitors (final concentrations: 160 mmol/l NaF, 10 mmol/l sodium pyrophosphate, 0·2 mmol/l sodium vanadate, 2 mmol/l dichloroacetic acid, 8 mmol/l EDTA and 20 mmol/l HEPES, pH 7·4), and the supernatant transferred to anti-phosphotyrosine antibody–coated microwells. After 16 h at 4 °C, wells were washed and the bound IRS-1 detached by adding a solution of 2% SDS for 30 min (room temperature). The radioactivity in the collected SDS solution was determined by β-counting. [125I-Tyr-A14]Moniodoinsulin binding to immobilized insulin receptors was measured in the wells as described previously (Klein et al. 1999). Non-specific insulin binding determined in the presence of 3·5 µmol/l unlabeled insulin was <0·5%. Insulin binding activity was defined as the amount of specifically bound insulin at a concentration of 8·7 nmol/l (Klein et al. 1995). Experiments with leukocyte filters (RC 50 KCE, Pall-Newquay, Cornwall, UK) showed that almost complete removal of the leukocytes from the blood did not alter measured binding or kinase activities expressed per erythrocyte, indicating that the contribution of the leukocytes to the measured kinase and binding activities was negligible (data not shown). Although the measurements were performed in whole blood, the results therefore reflect, almost exclusively, erythrocyte receptor binding and kinase activities.

Results

Reduction of plasma glucose and erythrocyte insulin receptor kinase activity

The effect of a therapeutic reduction in hyperglycemia was studied in 11 patients (four women, seven men) with NIDDM (ages 59 ± 4 years, body mass index (BMI) 27·7 ± 1·7 kg/m², glycated hemoglobin (HbA1c) 13·2 ± 0·3%). As shown in Fig. 1, mean daily preprandial plasma glucose concentrations (measured at 1100 h, 1700 h and 0700 h) were decreased from 17·6 ± 1 to 6·6 ± 0·4 mmol/l (P<0·001, paired t-test) in 8·6 ± 0·6 days. Plasma insulin concentrations were 122 ± 34 and 91 ± 17 mU/ml (not significant; data not shown) when blood was drawn for first and second insulin receptor

Journal of Endocrinology (2000) 166, 275–281
kinase activity measurements, respectively. The reduction in plasma glucose concentrations was not associated with an alteration of the insulin binding activity that was extracted from the erythrocytes (Fig. 2A) or an altered efficiency of 400 nmol/l insulin to stimulate erythrocyte insulin receptor kinase activity (Fig. 2B). A maximal stimulation of the insulin receptor kinase in erythrocytes was produced by 400 nmol/l insulin (data not shown). To explore whether differences in insulin receptor kinase activation before and after the reduction in glucose concentrations might have existed at submaximal insulin concentrations, concentration–response curves were measured in eight of the 11 patients (Fig. 2C). Similar concentration–response curves were obtained, indicating that plasma glucose concentrations also had no effect on receptor kinase activation at submaximal insulin concentrations.
Insulin activation of insulin receptor kinase in erythrocytes from individuals with and without NIDDM

Insulin activation of insulin receptor kinase was also compared in 22 patients (12 women, 10 men) with NIDDM (ages 64 ± 3 years, BMI 27·9 ± 1 kg/m², HbA1c 9·8 ± 0·6%, fasting plasma glucose (FPG) 9·8 ± 0·6 mmol/l, fasting serum insulin 84 ± 9 pmol/l) and 21 non-diabetic control individuals (nine women, 12 men; ages 63 ± 3 years, BMI 27·5 ± 1 kg/m², HbA1c 6·3 ± 0·1%, FPG 4·6 ± 0·1 mmol/l, fasting serum insulin 43 ± 4 pmol/l). No differences were found between the two groups (Fig. 3). The insulin binding activity that was extracted from the erythrocytes was also not different (volunteers without diabetes: 0·79 ± 0·06 and 0·84 ± 0·07 fmol insulin binding activity per 2 × 10⁸ erythrocytes in erythrocytes stimulated with 0 or 400 nmol/l insulin respectively; patients with diabetes: 0·77 ± 0·05 and 0·82 ± 0·06 fmol insulin binding activity per 2 × 10⁸ erythrocytes in erythrocytes stimulated with 0 or 400 nmol/l insulin respectively).

Discussion

The molecular mechanism for hyperglycemia-induced insulin resistance is unclear. Findings in cultured cells with overexpressed insulin receptors (rat embryo fibroblasts (Berti et al. 1994, Kellerrer et al. 1994, Maegawa et al. 1995, Pillay et al. 1996) or NIH3T3-cells (Kroder et al. 1996)) have suggested that an impaired insulin-stimulated insulin receptor kinase activation may cause or contribute to the effect of glucose on insulin sensitivity. In tissues of hyperglycemic patients with NIDDM such a mechanism could cause or worsen insulin resistance, and it has been suggested that the hyperglycemia-induced impairment of receptor kinase activation could be a target for therapeutic intervention (Kellerer et al. 1994). The initial goal of the present study was therefore to establish a simple assay that allows evaluation of such secondary alterations in insulin-induced receptor kinase activation in patients. With the technique described in the present report, only 20 ml of blood is required to obtain a complete concentration–response curve, and this is particularly advantageous if multiple measurements at different time points are required. Insulin activation of the receptor kinase occurs in situ in the intact erythrocytes which, compared with most previous studies in which receptors were insulin-stimulated in a cell-free system (Comi et al. 1987, Santos et al. 1994, Sowers et al. 1995), represents a more physiological situation. Moreover, this in situ stimulation can be performed in the complete heparinized blood, without the need of prior erythrocyte isolation. It is therefore likely that in vivo conditions are better maintained than, for example, in adipocytes, in which the isolation procedure takes approximately 1 h. Finally, compared with previous studies by our own group (Klein et al. 1995, 1997), we now used recombinant IRS-1 as a physiologic substrate, instead of a synthetic polymer.

Were an effect of glucose on insulin-stimulated receptor kinase activation such as is described in cultured cells with overexpressed insulin receptors (Berti et al. 1994, Kellerrer et al. 1994, Maegawa et al. 1995, Kroder et al. 1996, Pillay et al. 1996) also to exist in erythrocytes of hyperglycemic patients with NIDDM, a reduction in pathologically increased plasma glucose concentrations should result in a reversal of this effect. Therapeutic reduction of hyperglycemia in patients with NIDDM did not, however, result in a detectable alteration in the effect of insulin on insulin receptor kinase activation in their erythrocytes. Moreover, erythrocyte insulin receptor kinase activation was not different between hyperglycemic patients with NIDDM and euglycemic non-diabetic control individuals. These data suggest that the effect of glucose on receptor kinase activation observed in cultured cell models may not be present under in vivo conditions, at least not in the presence of mean preprandial serum glucose concentrations less than 18 mmol/l and/or not in all tissues.

A potential explanation for the observation of an effect of glucose in cultured cell systems, but not in our study, could be that glucose concentrations (25 or 27 mmol/l) used in the studies with the cultured cells (Berti et al. 1994, Kellerer et al. 1994, Maegawa et al. 1995, Kroder et al. 1996, Pillay et al. 1996) were greater than the initial mean daily preprandial serum glucose concentrations in the hyperglycemic patients in our study.
(17.6 ± 1.0 mmol/l). Only in one of these studies (Pillay et al. 1996) were measurements also performed in the presence of lower glucose concentrations, and no effects of glucose on receptor kinase activation were apparent with concentrations of 20 mmol/l or less. To explore the possibility that greater glucose concentrations than those reached in our in vivo study might affect insulin receptor kinase activation in erythrocytes, we incubated heparinized blood in vitro for 3 h at 37 °C with 27 or 4 mmol/l glucose. No glucose-induced impairment of insulin-stimulated receptor kinase was observed (data not shown), suggesting either that the exposure to glucose was too short, or that insulin receptor kinase activity, in contrast to the cultured cell systems mentioned above, is not responsive to glucose.

There are several lines of evidence that the effects of glucose on the insulin receptors described in the cultured cell systems are mediated, at least in part, by protein kinase C (PKC). High glucose concentrations have been shown to lead to PKC activation (Lee et al. 1989) and the translocation of certain PKC isoforms (e.g. PKCβ (Berti et al. 1994)), potentially by mechanisms related (Filippis et al. 1997) or not related (Laybutt et al. 1999) to an increased flux through the hexosamine biotransformation pathway. This PKC activation and/or translocation may result in an increased serine phosphorylation of the insulin receptor and/or IRS-1 which, in turn, has been linked to impaired receptor kinase activation and downstream signaling (Bollag et al. 1986, Takayama et al. 1988, Hotamisligil et al. 1996). Erythrocytes contain PKC that can be stimulated by phorbol-myristate 13-acetate, and it has also been shown that the PKCβ isoform can be activated and translocated to the plasma membrane in erythrocytes (Fathallah et al. 1997). Another proposed mechanism for the glucose-mediated reduction in insulin receptor kinase activation in rat embryo fibroblasts with overexpressed insulin receptors involves alterations in phosphotyrosine phosphatase activity (Maegawa et al. 1995). Phosphotyrosine phosphatase-1B (PTP-1B) appears to have a major role in the dephosphorylation of the insulin receptor and IRS-1 (Goldstein et al. 2000), and erythrocytes contain a phosphotyrosine phosphatase that immunoprecipitates with monoclonal antibodies against this phosphatase (Zipser & Kosower 1996), and therefore most probably represents PTP-1B. It is nevertheless possible that erythrocytes lack certain components that are present in the cultured cell systems and that are necessary for the effect of glucose on receptor kinase activity or its reversal.

As the cultured rat embryo fibroblasts or NIH3T3-cells with overexpressed receptors (Berti et al. 1994, Kollerer et al. 1994, Maegawa et al. 1995, Kroder et al. 1996, Pillay et al. 1996) also do not represent typical insulin target tissues, it can also be questioned whether such components are operative in more relevant tissues such as adipocytes, liver or skeletal muscle. In fact, no effects of glucose on insulin-induced in situ insulin receptor autophosphorylation or receptor kinase activity were observed in cultured rat adipocytes (Lima et al. 1991). Likewise, no improvement of the effect of insulin on receptor autophosphorylation was observed in liver insulin receptors from hyperglycemic rats when hyperglycemia was reduced from 27 to 6 mmol/l by phlorizin treatment (Considine et al. 1995), and in a recent study a hyperglycemia-induced reduction of protein kinase B (PKB) but not phosphatidylinositol 3-kinase, activity was observed in rat skeletal muscle – suggesting that the preceding steps of insulin signaling such as receptor kinase activation were not altered (Kurowski et al. 1999). In contrast to the findings of that study, Kim et al. (1999) and Patti et al. (1999) found normal PKB activation and reduced phosphatidylinositol 3′-kinase activation in rat skeletal muscle when they stimulated the hexosamine pathway with glucosamine instead of glucose. With respect to our data it is, however, important to note that insulin-stimulated insulin receptor phosphorylation was not affected in either of the above studies, despite the glucosamine-induced reduction in insulin-stimulated phosphatidylinositol 3′-kinase activity. Our finding that hyperglycemia did not affect insulin-stimulated insulin receptor kinase activation in human erythrocytes is therefore consistent with previous studies in more relevant target tissues in animals.

Our present observation that insulin receptor kinase activation is not impaired in erythrocytes from patients with NIDDM compared with those from non-diabetic control individuals is in contrast to the findings of studies in which reduced insulin receptor autophosphorylation and/or kinase activity was measured after insulin stimulation of erythrocyte receptors in a cell-free system (Comi et al. 1987, Santos et al. 1994). It is, however, consistent with data reported by Hagino et al. (1994) who, similarly to our study procedure, stimulated the intact erythrocytes with insulin, and found no difference in receptor autophosphorylation between patients with NIDDM and non-diabetic controls. Our finding that in situ insulin activation of receptor kinase was not different in erythrocytes from those with and without NIDDM is also consistent with data on human skeletal muscle obtained by our group (Klein et al. 1995) and others (Krook et al. 1999).

In summary, our data indicate that mean daily preprandial glucose concentrations of approximately 18 mmol/l do not impair insulin receptor kinase activation in erythrocytes from patients with NIDDM. The assay described can therefore not be used to monitor hyperglycemia-induced changes in insulin signaling and insulin sensitivity in patients. Moreover, our data in the human erythrocyte model confirm the findings of other studies in animal models that suggest that the hyperglycemia-induced insulin resistance appears to be mainly caused by mechanisms affecting insulin signaling steps downstream of the insulin receptor kinase. To our
knowledge, no similar study in patients has so far been performed with other, more relevant tissues.

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (K1503/7–3) and the EC (BMH4-CT960751). This work contains major parts of the thesis of R M.

References


Bollag GE, Roth RA, Beaudoin J, Moehly-Rosen D & Koshland DE Jr 1986 Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein–tyrosine kinase activity. PNAS 83 5822–5824.


Klein HH, Vestergaard H, Kotzke G & Pedersen O 1995 Elevation of serum insulin concentration during euglycemic hyperinsulimnic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes 44 1310–1317.


Klein HH, Muller R, Vestergaard H & Pedersen O 1999 Implications of compound heterozygous insulin receptor mutations in congenital muscular fibre type disproportion myopathy for the receptor kinase activation. Diabetologia 42 245–249.


Lee TS, Saltman KA, Ohashi H & King GL 1989 Activation of protein kinase C by glucose. PNAS 86 5141–5145.


Santos RF, Palmieri MG, Wajchenberg BL & Azhar S 1994 Insulin–receptor tyrosine kinase activity is decreased in erythrocytes from non-obese patients with NIDDM. Hormone and Metabolic Research 26 283–287.


Received 11 November 1999
Revised manuscript received 21 March 2000
Accepted 11 April 2000