Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles

B Berisha, D Schams, M Kosmann, W Amselgruber and R Einspanier
Institute of Physiology, Technical University of Munich, Weihenstephaner Berg 3, D-85350 Freising-Weihenstephan, Germany
1Department of Anatomy and Physiology, University of Hohenheim, D-70593 Stuttgart, Germany
(Requests for offprints should be addressed to D Schams; E-mail: physio@weihenstephan.de)

Abstract
Locally produced growth factors may have important modulatory roles in final ovarian follicular growth. The aim of this study was to investigate the possible participation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2) in bovine follicles during final growth. Ovaries were collected from a slaughterhouse within 10–20 min after exsanguination. A classification of follicles into five groups (<0.5; >0.5–5; >5–20; >20–180; >180 ng/ml) was performed according to the follicular fluid (FF) oestradiol-17β content. For a better characterisation of classes the mRNA expressions of FSH receptor, LH receptor and aromatase cytochrome P450 in theca interna (TI) and granulosa cells (GC) were determined. Analysis of VEGF transcript by RT-PCR showed that GC and theca cells express predominantly the smallest isoforms (VEGF121 and VEGF165). VEGF mRNA expression in both tissues (TI and GC) and VEGF protein concentration in total follicle tissue increased significantly (and correlated) with developmental stages of follicle growth. The expression of mRNA for VEGF receptor (VEGFR)-1 and VEGFR-2 was very weak in GC, without any regulatory change during final follicle growth. In contrast, TI showed strong expression of mRNA for both receptors in all follicle classes examined. VEGF protein concentrations in FF increased significantly and continuously to maximum levels in preovulatory follicles. As shown by immunohistochemistry, VEGF protein was clearly localised in TI and GC of preovulatory follicles. FGF2 and FGF receptor (FGFR) mRNA expression in TI increased significantly during final growth of follicles. In contrast, the FGF2 and FGFR mRNA expression in GC was very weak and without any regulatory change during follicle growth. Histological observation revealed that FGF2 protein was localised in theca tissue (cytoplasm of endothelial cells and pericytes) but not in GC.

Our results suggest that VEGF and FGF families are involved in the proliferation of capillaries that accompanies the selection of the preovulatory follicle resulting in an increased supply of nutrients and precursors, and therefore supporting the growth of the dominant follicle.

Journal of Endocrinology

Introduction
In cattle, ovarian follicular development is characterised by two or three consecutive follicular waves per oestrous cycle (Savio et al. 1988, Siros & Fortune 1988). Each wave involves the recruitment of a cohort of follicles and the selection of a dominant follicle, which continues to grow and mature to the preovulatory stage while others in the wave undergo atresia. A complex regulatory system (still not well understood) must exist to determine which follicles are selected. Although it is well established that ovarian function is regulated primarily by the pituitary gonadotrophins follicle-stimulating hormone (FSH) and luteinising hormone (LH) and their receptors (FSHR, LHR), it is also evident that locally produced factors such as steroid hormones, peptides and growth factors have modulatory roles in follicular development (Fortune 1994).

That angiogenesis, the formation of new capillaries to a dense network, may play an important role in the selection process was suggested by previous studies that demonstrated that the selected follicle possesses a more elaborate microvasculature than other follicles (Zeleznik et al. 1981). In view of the importance of angiogenesis in ovarian function, the elucidation of the factors that are responsible for selective vascularisation of the follicle is central for the understanding and control of both normal and abnormal ovarian function. A number of polypeptide growth factors have been demonstrated to be angiogenic in vivo (Klagsbrun & D’Amore 1991). Angiogenic factors...
produced by the corpora lutea of cows, pigs and sheep are primarily heparin-binding and can be immuno-neutralised with antibodies against fibroblast growth factors (FGFs) and vascular endothelial growth factors (VEGFs) (Gospodarowicz & Thakral 1978, Grazul-Bilska et al. 1993).

VEGF is known as a potent mitogen for endothelial cells (Ferrara & Davis-Smyth 1997) and as a stimulator of vascular permeability (Connolly 1991, Senger et al. 1993). These biological activities are important in the cascade of events leading to angiogenesis. VEGF is the most important factor in the regulation of normal and abnormal angiogenesis (Ferrara & Davis-Smyth 1997). Molecular cloning of the cDNAs revealed that human VEGF may exist as one of four different molecular species, having 121, 165, 189 and 206 amino acids. Bovine VEGF is expected to be one amino acid shorter (Tischer et al. 1992). VEGF isoforms are encoded by the same gene, through alternative splicing of mRNA. The resulting four polypeptides have strikingly different secretion patterns, which suggests multiple physiological roles for VEGF isoforms. The two smaller members of this family are secreted by cells and may act paracrinely, while the third and fourth are mostly cell associated and may act autocrinely, despite the fact that all members have an identical signal sequence (Ferrara et al. 1992). The biological activities of VEGF are mediated by two high affinity receptor tyrosine kinases (Ferrara & Davis-Smyth 1997). The fms-like tyrosine kinase or VEGF receptor (VEGFR)-1 and the fetal liver kinase-1 or VEGF receptor (VEGFR)-2 possess seven immunoglobulin-like domains in the extracellular domain, a single transmembrane region and a consensus tyrosine kinase sequence that is interrupted by a kinase insert domain.

FGFs are necessary for many biological processes such as cell growth, differentiation, angiogenesis, tissue repair and transformation. The FGFs have a wide range of tissue and cell distribution (Gospodarowicz et al. 1987). The two most famous members of this group, FGF1 (acidic) and FGF2 (basic), are closely related. FGF2 has been identified as a potential regulator of ovarian function (Gospodarowicz et al. 1986, Schams et al. 1994). The FGF receptor (FGFR) family includes four identified genes and numerous subtypes of alternatively spliced isoforms, particularly within the well-characterised FGFR-1 and FGFR-2 types. Differential responses follow from this diversity (Stauber et al. 2000). In the rat ovary FGFR-1 and FGFR-2 are the most important receptors (Asakai et al. 1994).

The expression and localisation of VEGF and FGF2 during final follicular growth is not well documented in large animals. The aim of the present study was to evaluate the expression pattern of mRNA for VEGF, FGF2 and their receptors, tissue and follicular fluid (FF) concentrations of VEGF and localisation of VEGF and FGF2 in bovine antral follicles during final growth to the preovulatory stage.

Materials and Methods

Collection of follicles and preparation

Entire reproductive tracts from German Fleckvieh cows were collected at a local slaughterhouse within 10–20 min after slaughter and were transported on ice to the laboratory. The stage of the oestrous cycle was defined by macroscopic observation of the ovaries (colour, consistency, corpus luteum stage, number and size of follicles) and the uterus (colour, consistency and mucus). Only follicles which appeared healthy (i.e. well vascularised and having transparent follicular wall and fluid) and whose diameter was >5 mm were used. Large follicles (>14 mm) were collected only after corpus luteum regression, with signs of mucus production in the uterus and cervix and assumed to be preovulatory. For immunohistochemical investigations after aspiration of the FF, the follicles were fixed via immersion with methanol/glacial acid 2/1 v/v for FGF2 and Bouin’s solution for VEGF. For the RNA extraction the follicles were dissected from the ovary. The surrounding tissue (theca externa) was removed with forceps under a stereo microscope. After aspiration of FF, the follicles were bisected and their inside wall was gently scraped and flushed with Ringer’s solution (Fresenius, Wendel, Germany) to remove the granulosa cells (GC). The GC in the FF as well as in the flushing solution were centrifuged at 2000 g for 10 min at 4 °C. The theca interna tissue (TI) and GC pellet were snap frozen in liquid nitrogen and stored at −80 °C until RNA isolation. For follicle VEGF tissue extraction, after aspiration of FF, follicle tissue was stored at −80 °C. The FF was stored at −20 °C until determination of progesterone, oestradiol-17β and VEGF.

Follicle classification

Since healthy follicles have relatively constant progesterone levels in FF, only follicles with progesterone below 100 ng/ml FF were used for the evaluation, to exclude atretic follicles. For further characterisation of the follicle classes, mRNA expression was determined for the FSHR and aromatase cytochrome P450 (ARO) in GC and LHR in TI and GC.

The follicles were classified according to the oestradiol-17β content in FF as follows; (i) <0.5; (ii) >0.5–5; (iii) >5–20; (iv) >20–180; and (v) >180 ng/ml FF. The corresponding size of follicles were in the range of (i) 5–7 mm; (ii) 8–10 mm; (iii) 10–13 mm; (iv) 12–14 mm; and (v) >14 mm.

Hormone determinations

Concentrations of progesterone and oestradiol-17β were determined directly in the FF with an enzyme immunoassay using the second antibody technique (Prakash et al.,...
1987, Meyer et al. 1990). We used as enzyme solution progesterone-6β-hydroxy-hemisuccinate-horseradish peroxidase (HRP) or oestradiol-17β-6-carboxy-methyl-oxime-HRP. Each polyclonal antibody was raised in a rabbit against progesterone-7α-carboxyethylthioether-BSA or for oestradiol against oestradiol-17β-6-carboxymethylxoxime-BSA. The effective dose for 50% inhibition (ED50) of the assay was 6 ng/ml for progesterone and 3.5 pg/ml for oestradiol-17β. The FF was diluted accordingly. The intraassay variations were 4–5% (progesterone) and 6–7% (oestradiol-17β) and the inter-assay variations 8–9% (progesterone) and 9–10% (oestradiol-17β).

Concentrations of VEGF in FF and homogenate supernatant of follicles were measured in 200 µl by RIA using a rabbit antiserum raised against recombinant bovine VEGF164 (prepared in our laboratory). The antibody cross-reacts with all four human isoforms of VEGF (VEGF121, 165, 189, 206). The cross-reactivities to the other growth factors platelet-derived growth factors (PDGF)-AA, PDGF-BB, PDGF-AB, FGF1, FGF2 and transforming growth factor-β (TGF-β) were below 0.1%. The recombinant VEGF164 was used for iodination by the iodogen method according to the avidin–biotin peroxidase complex (ABC) method (Hsu et al. 1981). To expose antigenic sites for VEGF, dewaxed sections were heated four times to 95 °C in a 600 W microwave oven maintained for 5 min and allowed to cool for 20 min. The sections were then treated with hydrogen peroxide (1%) in methanol for 30 min to block endogenous peroxidase; normal goat serum diluted 1:10 in PBS for 20 min to reduce non-specific background staining; polyclonal anti-VEGF antibody 1:300 in PBS (the same antibody as used for RIA), overnight at 4 °C; biotinylated secondary antibody (goat anti-rabbit IgG 1:400) 30 min at room temperature; and StreptAB–HRP complex (DAKO, Hamburg, Germany) 30 min at room temperature, followed by histochemical visualisation of peroxidase using 3',3'-diaminobenzidine hydrochloride chromogen (Biotrend, Cologne, Germany) in 0.0006% hydrogen peroxide–0.05 M Tris buffer, pH 7.6 for 5 min in a dark room.

For FGF2, potential endogenous peroxidase activity was suppressed by incubation with methanolic hydrogen peroxide followed by an overnight incubation at 4 °C with 1:1200 dilutions of rabbit anti-FGF2 (polyclonal antibody #14, prepared in our laboratory and raised again recombinant bovine FGF2). After washing in PBS the sections were incubated for 30 min with biotinylated goat anti-rabbit IgG. The sections were then reacted with ABC reagent from a commercial kit (Vector Laboratories, Burlingame, CA, USA). The bound complex was made visible by reaction with 0.05% 3,3'-diaminobenzidine hydrochloride and 0.0006% hydrogen peroxide in 0.1 M PBS.

The specificity of the immunocytochemical reactions was assessed by: (i) replacement of the primary antibody with buffer; (ii) its substitution with non-immune goat IgG (1:10 diluted); (iii) incubation with dianobenzidine reagent alone to exclude the possibility of non-suppressed endogenous peroxidase activity; and (iv) an absorption test involving the respective antigen (15 µg/ml). Lack of detected staining of tissue elements in the controls demonstrated the specificity of the reactions.

Immunohistochemistry

After 12 h fixation the follicles were dehydrated in a graded series of ethanol, cleared in xylene and embedded in paraffin wax using conventional procedures. Serial sections of 5 µm thickness were cut on a microtome and processed for immunohistochemistry.

Immunohistochemical demonstration of VEGF and FGF2 was performed according to the avidin–biotin peroxidase complex (ABC) method (Hsu et al. 1981). To expose antigenic sites for VEGF, dewaxed sections were heated four times to 95 °C in a 600 W microwave oven maintained for 5 min and allowed to cool for 20 min. The sections were then treated with hydrogen peroxide (1%) in methanol for 30 min to block endogenous peroxidase; normal goat serum diluted 1:10 in PBS for 20 min to reduce non-specific background staining; polyclonal anti-VEGF antibody 1:300 in PBS (the same antibody as used for RIA), overnight at 4 °C; biotinylated secondary antibody (goat anti-rabbit IgG 1:400) 30 min at room temperature; and StreptAB–HRP complex (DAKO, Hamburg, Germany) 30 min at room temperature, followed by histochemical visualisation of peroxidase using 3',3'-diaminobenzidine hydrochloride chromogen (Biotrend, Cologne, Germany) in 0.0006% hydrogen peroxide–0.05 M Tris buffer, pH 7.6 for 5 min in a dark room.

Follicle tissue (1 g) from pools of small follicles (n = 5 pools, 4–6 follicles/pool; <9 mm; oestradiol-17β <12 ng/ml FF) and large follicles (n = 5 pools, 2–3 follicles/pool; >12 mm; oestradiol-17β >30 ng/ml FF) were transferred into 10 volumes of PBS containing 0.1% 1,4-dithiothreitol (Merck Co., Darmstadt, Germany) and homogenised in an ice bath by Ultra Turrax (Janke and Kunkel, Staufen, Germany). Five bursts of 15 s at maximum speed with 45 s intervals of cooling between each burst were applied. The homogenate was subsequently centrifuged at 2000 × g for 15 min at 4 °C. The supernatant was separated into 1 ml aliquots and kept frozen until analysis.
Table 1 Gene transcript, number of cycles used, primer sequences and resulting fragment size

<table>
<thead>
<tr>
<th>Target</th>
<th>Cycle number</th>
<th>Sequence of nucleotide*</th>
<th>Fragment size (bp)</th>
<th>EMBL/reference**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSHR</td>
<td>30</td>
<td>For 5′-AAC TGC TCA TCA TGC TGG AGG-3′</td>
<td>222</td>
<td>L 22319</td>
</tr>
<tr>
<td>LHR</td>
<td>30</td>
<td>For 5′-AAA AGA TGA ACA ACA CAG-3′</td>
<td>326</td>
<td>U 41413</td>
</tr>
<tr>
<td>Xin et al. (1999)</td>
<td>20</td>
<td>For 5′-ATT CAG GGC CTG GAG-3′</td>
<td>326</td>
<td>Z 32741</td>
</tr>
<tr>
<td>VEGF</td>
<td>35</td>
<td>For 5′-AGT GCT TCA CGC TGG ACA-3′</td>
<td>186</td>
<td>Garrido et al. (1993)</td>
</tr>
<tr>
<td>VEGFR-1</td>
<td>30</td>
<td>For 5′-CAG CAA GAG GGA CTC GTG-3′</td>
<td>351</td>
<td>Gabler et al. (1999)</td>
</tr>
<tr>
<td>VEGFR-2</td>
<td>30</td>
<td>For 5′-AGA AGA TGC ACA ATG CAA-3′</td>
<td>379</td>
<td>Gabler et al. (1999)</td>
</tr>
<tr>
<td>FGF2</td>
<td>30</td>
<td>For 5′-CAG GCA GCA CGA CTA GAG-3′</td>
<td>288</td>
<td>Gabler et al. (1997)</td>
</tr>
<tr>
<td>FGF1</td>
<td>30</td>
<td>For 5′-GAR ATG GAG CAG ATG TGC-3′</td>
<td>471</td>
<td>Xin et al. (1994)</td>
</tr>
<tr>
<td>Ubiquitin</td>
<td>22</td>
<td>For 5′-AGA ATG GAT GAT GAT-3′</td>
<td>189</td>
<td>Gabler et al. (1997)</td>
</tr>
</tbody>
</table>

*For, forwards; Rev, reverse; R, A or C; M, A or G; Y, C or T; S, G or C.
**EMBL accession number or reference of published sequence.

RT-PCR

Total RNA from TI tissue was isolated by the single step method of Chomczynski & Sacchi (1987) using TRIzol reagent (Gibco BRL, Gaithersburg, MD, USA). Total RNA from GC was isolated using the NucleoSpin RNA kit (Macherey-Nagel, Dueren, Germany). RNA was dissolved in water and spectroscopically quantified at 260 nm. Aliquots were subjected to 1% denaturing agarose gel electrophoresis and ethidium bromide staining to verify the quantity and quality of RNA.

Two micrograms of total RNA were used to generate single-strand cDNA in a 60 µl reaction mixture by use of hexanucleotides as primers according to the protocol for the M-MLV Reverse Transcriptase Kit (Promega, Madison, WI, USA). The optimal amount of total RNA for reverse transcription was evaluated by testing different RNA concentrations. The primers were designed using the EMBL database or were used as described elsewhere (Table 1) and were commercially synthesised (Amersham-Pharmacia). Except those for FGF, all primer pairs were designed according to known bovine sequences. For FGF primers from consensus cDNA portions of highly conserved regions within the cytoplasmic tyrosine kinase domains of all four FGF types were used (Xin et al. 1994). The VEGF primer allows detection of all four isoforms (186, 318, 390 and 441 bp) representing VEGF₁₂₁, VEGF₁₆₅, VEGF₁₈₉, and VEGF₂₀₆ (Garrido et al. 1993). The number of amplification cycles, primer sequence and resulting fragment size for all examined factors are shown in Table 1. The conditions for enzymatic amplification (RT-PCR) were established on a gradient cycler (Eppendorf, Hamburg, Germany). The PCR for all examined factors contained 10 mM Tris–HCl (pH 8.8), 50 mM KCl, 1·5 mM MgCl₂ (FGF2, 1·0 mM MgCl₂), 0·1% Triton X-100, 0·6 µM each primer and 0·5 units of thermostable polymerase PrimeZyme (Biometra, Göttingen, Germany) to 3 µl cDNA (final volume 25 µl). Ubiquitin PCR was performed under the same conditions, but a higher concentration of primer (1·0 µM) was used. All amplifications were carried out as follows: an initial denaturation step at 94 °C for 2 min, each cycle at 94 °C for 1 min, 60 °C for 1 min (VEGF, 55 °C and VEGFR–2, 64 °C) and afterwards one additional elongation step at 72 °C for 2 min. Samples for the housekeeping gene ubiquitin were amplified for 22 cycles: a single denaturation step at 94 °C for 2 min, each cycle at 94 °C for 45 s, 55 °C for 45 s, 72 °C for 45 s and afterwards one additional elongation step at 72 °C for 2 min.

To determine the optimal quantity of reverse transcript needed for PCR and to verify that the cDNA product was dependent on the input of transcript, varying quantities of transcript were used in the PCR reaction. The RT product in 3 µl was in the linear range for these amounts and produced a visible band. To exclude any contaminating genomic DNA, all experiments included controls lacking the RT enzyme. As a negative control water was used instead of RNA for the RT-PCR to exclude any contamination from buffers and tubes.

Aliquots of the PCR reaction products (5 µl) were fractionated by electrophoresis through a 1·5% agarose gel containing ethidium bromide in a constant 60 V field. To determine the length of the products, a Mass Ladder and 100 bp marker (Gibco BRL) were used. The ethidium
bromide-stained gels were evaluated by a video documentation system (Amersham-Pharmacia). For comparison of treatment effects all gels being compared were run and stained at the same time to ensure that apparent differences detected were indeed due to treatments and not the result of between-run variability. Band intensities (relative) were analysed by computerised densitometry (arbitrary units) using the Image Master program (Amersham-Pharmacia). However, RT-PCR and the evaluation technique used are relative and not a strictly quantitative method. Confirmation of the PCR product identity was obtained by subcloning the cDNA into a transcription vector (PCR-Script; Stratagene, La Jolla, CA), followed by commercial DNA sequencing (TopLab, Munich, Germany).

Statistical analyses

The statistical significance of differences in mRNA expression and protein concentration of examined factors was assessed by ANOVA, followed by Fisher’s LSD as a multiple comparison test. All experimental data are shown as means ± S.E.M.

Results

Specificity and validation of RT-PCR data

Initial experiments verified specific transcripts for all examined factors in bovine follicles (TI and GC) by RT-PCR (data for LH, FSH and ARO are not shown). Each PCR product showed 100% homology to the known bovine genes after sequencing. To confirm the integrity of the mRNA templates and RT-PCR protocol, the housekeeping gene ubiquitin was examined in all samples. A representative example for the ubiquitin-specific RT-PCR products (189+417 bp) is shown in Fig. 2a. The relative signal intensities for PCR products specific for all examined factors were assessed after correction based on the ubiquitin PCR signal intensities.

Characterisation of follicle classes

For a better understanding and characterisation of the follicle classes determined by oestradiol-17β and progesterone concentrations in FF, the expression of mRNA for
Expression of mRNA for VEGF and its receptors in follicle classes

The expression of mRNA for both receptors in all follicle classes examined (Fig. 3e and f) without any regulatory change during follicle growth. In contrast, TI showed a clear mRNA expression for both receptors in all follicle classes examined (Fig. 3e and f) without any regulatory change during follicle growth.

VEGF protein concentration

The VEGF protein levels in FF for the follicle classes are shown in Fig. 4a. The lowest VEGF levels in FF were measured in small follicle classes with a significant and continuous increase afterwards to maximum levels in preovulatory follicles. The VEGF follicle tissue concentration is shown in Fig. 4b. VEGF follicle tissue levels were significantly higher in large follicles.

Expression of mRNA for FGF2 and FGFR in follicle classes

A representative example for RT-PCR specific products of FGF2 and FGFR, examination in FF is given in Fig. 5b. The results of the densitometric analysis of mRNA expression by RT-PCR for FGF2 and FGFR examined in TI are presented in Fig. 6a and b. The expression intensity of FGF2 transcripts in TI significantly increased in follicles with oestradiol-17β >20–180 ng/ml FF (Fig. 6a). The expression signal for the FGFR in TI increased significantly with the beginning of oestradiol-17β production in FF (oestradiol-17β >0.5–5 ng/ml FF). In contrast, the expression of mRNA for FGF2 (Fig. 6c) and FGFR (Fig. 6d) in GC was very weak and without any regulatory change during follicle growth.

Immunohistochemistry (FGF2 and VEGF)

The histological evaluation revealed that those follicles characterised by a high oestradiol-17β content (>180 ng/ml) show a strong positive reaction for FGF2 (Fig. 7A and B) in the TI tissue. At the cellular level, FGF2 immunostaining was restricted to the cytoplasm of endothelial cells and pericytes (Fig. 7B) of the capillary bed located in the TI or larger vessels in the theca externa (Fig. 7A), while lymphatic vessels (arrow in Fig. 7A) were consistently negative. Follicles with low oestradiol-17β content (Fig. 7C) in FF or atretic follicles (Fig. 7D) showed no positive immunostaining of blood vessels in TI, whereas blood vessels localised in the stroma exhibited a positive FGF2 immunoreactivity.

An intense positive immunostaining for VEGF was observed in both GC and TI tissue (Fig. 7E) of mature follicles. Higher magnification (Fig. 7F) demonstrated specific immunolocalisation of VEGF in the cytoplasm of GC as well as in theca cells and in endothelial cells of blood vessels.

Discussion

In the present study we demonstrate that VEGF, FGF2 and their receptors are expressed clearly in bovine follicles...
during final growth to preovulatory follicles. The expression of mRNA and localisation of protein show distinct differences between TI and GC layers.

The collection of our follicles from slaughterhouse material does not allow determination of the exact stage of follicular development. The expression of mRNA for FSHR, LHR and ARO supports our classification system of follicles according to the progesterone and oestradiol-17β content in FF and allows some conclusions in comparison with data from the literature. Recently, expression of mRNAs for LHR, FSHR and ARO during growth, dominance, and atresia of bovine dominant follicles harvested during the first follicular wave of the oestrous cycle was reported (Xu et al. 1995a,b). The results suggested that expression of ARO was associated with recruitment (initiation of the wave) and mRNA expression for LHR was associated with selection of the dominant follicle. In another paper (Evans & Fortune 1997) data suggest that selection occurred in the absence of detected levels of mRNA for LHR in GC. The level of expression of FSHR mRNA in GC did not vary significantly with follicular size. More recently (Bao et al. 1997), expression of mRNA for ARO was first detected in the GC of follicles 4–6 mm in diameter and almost all follicles 6–9 mm in diameter. Expression of LHR mRNA was first detected in the GC of one follicle >8 mm per cow and was

Figure 3 Densitometrically analysed RT-PCR results (arbitrary units) in different bovine follicle classes. (a) VEGF in GC (35 cycles); (b) VEGFR-1 in GC (30 cycles); (c) VEGFR-2 in GC (30 cycles); (d) VEGF in TI (35 cycles); (e) VEGFR-1 in TI (30 cycles); (f) VEGFR-2 in TI (30 cycles). Data are expressed as a means ± S.E.M. (n=4 or 5 follicles/class). Different superscripts denote statistically different values (P<0.05).
limited to follicles that also expressed ARO mRNA in GC. From these data we assume that the following follicle classes may represent: oestradiol-17β <0.5 ng/ml, FF before recruitment; oestradiol-17β >0.5–5 ng/ml, FF just recruited; oestradiol-17β >20–180 ng/ml, FF during or after the process of follicle selection; and oestradiol-17β >180 ng/ml FF, should be mature, pre-ovulatory follicles. The results support our assumption that the follicles used were healthy.

We found only a weak FGF2 signal in GC. This agrees with earlier observations in the rat (Koos & Olson 1989) that FGF2 is not expressed at significant levels by GC of rat preovulatory follicles, but that the mRNA is abundant in theca/interstitial tissue. Stirling et al. (1991) found no FGF2 mRNA in bovine GC in vitro. But FGF2 was produced by GC in cell culture (Neufeld et al. 1987). This could have been an effect of beginning luteinisation or due to the fact that GC produce FGF2 only in culture. As mentioned before, our FGFR primers detect FGFR-1 to -4 (Xin et al. 1994). It is not clear which subtype of alternatively spliced isoforms are targeted by our primer.

After applying a gel-retardation technique, two different types of FGFR were found in the bovine ovary using a simple electrophoretic separation of specific PCR products. Type FGFR-1 was found in GC and cumulus cells, but a mixture of FGFR-1 and -2 in thecal tissue (Einspanier et al. 1999a). FGF-2 interacts with high-affinity tyrosine kinase FGFRs and low-affinity heparan sulphate proteoglycans in target cells. Both interactions are required for FGF-2-mediated biological responses (Liekens et al. 1999, Rege et al. 1999). Alternative splicing in the extracellular region of FGFR-1 to -3 generates receptor variants (IIib and IIIc isoforms) with different ligand-binding affinities (Beer et al. 2000). In our study the FGF2 mRNA is, similar to the FGF2 mRNA, only weakly expressed in GC compared with TI and increasing oestradiol-17β levels show no regulatory effect, indicating that FGF2 and the receptor in GC are not involved in follicular growth regulation. In contrast, FGF2 mRNA expression in TI increased with rising oestradiol in the FF. The FGF2 protein could be localised in the blood capillaries of TI by immunohistochemistry. The selective demonstration of FGF2 in vascular cells of mature follicles suggests that FGF2 could play an important role during follicle selection and dominance in the cow. The early mRNA expression of the FGFR before the ligand in TI may support this assumption.
In contrast to FGF2, VEGF mRNA is clearly expressed in GC and TI, with a significant up-regulation during maturation of follicles. However, the expression of VEGF in the rat ovary, detected by in situ hybridisation, showed little or no VEGF mRNA in GC, with the exception of cumulus cells (Phillips et al. 1990). Another study in the rat ovary demonstrated that VEGF is expressed by both GC and theca cells and could be stimulated by human chorionic gonadotrophin (Koos 1995). The VEGF mRNA expression in our study is confirmed by the localisation of the protein, increased FF concentration and increased concentration in total follicle tissue of assumed preovulatory follicles. The VEGF in GC may not affect GC themselves since mRNA for both receptors is only weakly expressed in GC during the mature stage of follicles. In contrast, as shown by Einspanier et al. (1999b), cumulus–oocyte complexes (COC) showed enriched transcriptional activity for VEGF receptor mRNA especially during in vitro maturation (IVM) after FSH stimulation, suggesting COC as a potent target for VEGF secreted from GC into FF. Addition of exogenous VEGF during early IVM induced a significant increase in the number of blastomeres per embryo (Einspanier et al. 1999b). The target for VEGF expressed in GC and TI could be the TI endothelial cells where both receptors (VEGFR-1 and VEGFR-2) are found (De Vries et al. 1992, Terman et al. 1992).

Our immunohistochemical localisation of VEGF in the GC and theca cells agrees with recent observations in the human ovary (Gordon et al. 1996, Yamamoto et al. 1997). The VEGF immunostaining in the GC was weak or absent in small follicles but increased clearly in large mature follicles.

The strong expression of mRNA for the angiogenic factors VEGF and FGF2 in the mature follicles raises the exciting possibility that these factors may play a role in the angiogenesis that accompanies follicular growth and selection. Previous work in primate follicles has shown that the density of the microvascular network of the selected follicle is at least double that of follicles of lesser maturity. This increased capillary density resulted in a greater delivery of gonadotrophic hormone to the selected follicle in vivo (Zeleznik et al. 1981). The process of follicle selection requires a mechanism by which a single follicle continues to survive in the presence of gonadotrophin concentrations which are insufficient to support the growth of other follicles (Zeleznik & Kubik 1986). Both VEGF and FGF2 are known as very potent factors for angiogenesis (Gospodarowicz & Thakral 1978, Ferrara & Davis-Smyth 1997). Growth factor activation enables quiescent, resting endothelial cells to proteolytically degrade their underlying extracellular matrix, to invade and directionally migrate towards the angiogenic stimulus, and to proliferate and organise into new three-dimensional capillaries (Augustin 1998). Our finding that VEGF is localised in theca cells underlines these assumptions, suggesting that VEGF may act as a chemoattractant for sprouting endothelial cells. This is supported by the dominant expression of the secretory forms of VEGF121.
and VEGF₁₆₅ whose receptors (VEGFR-1 and VEGFR-2) are found exclusively on endothelial cells. Therefore VEGF localised in and secreted from theca cells may act paracrinely as a chemoattractant to sprouting endothelial cells. FGF2 is a heparin-binding growth factor which occurs in several isoforms resulting from alternative initiations of translation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22·5, 24 and 34 kDa). Although devoid of a signal peptide, it could be secreted. This protein acts mainly through a paracrine/autocrine mechanism involving high affinity receptors, but also through still unknown intracrine processes on intracellular targets (Okada-Ban et al. 2000). In the early bovine corpus luteum FGF2 is observed exclusively in vascular cells and represents the 18 kDa form (Schams et al. 1994), which was previously shown to be secreted (Escalf et al. 2000). The localisation of FGF2 predominantly in capillaries of TI suggests an autocrine

Figure 7 Immunohistochemical localisation of FGF2 and VEGF in bovine follicles. Positive staining for FGF2 was observed in oestrogen-dominant follicles (A, B) but not in progesterone dominant follicles (C) and atretic follicles (D). Arrow in panel A indicates negatively stained lymphatic vessels. Strong positive immunostaining for VEGF is observed in granulosa and theca cells of mature follicles (E, F). Bar: 100 μm (A, C–E); 20 μm (B, F).
function on endothelial cells. Two *in vitro* studies (Pepper *et al.* 1992, Goto *et al.* 1993) have demonstrated that combined administration of VEGF and FGF2 to endothelial cell cultures in three-dimensional collagen gels results in much greater and more rapid capillary tubule formation than the additive effects of either mitogen alone. This synergism was confirmed recently under *in vivo* conditions where combined administration of VEGF and FGF2 stimulated significantly greater and more rapid augmentation of collateral circulation, resulting in superior haemodynamic improvement compared with either VEGF or FGF2 alone (Asahara *et al.* 1995). VEGF has also been known to have a vascular permeability enhancing activity 50,000 times that of histamine on a molecular basis (Dvorak *et al.* 1995), which could be responsible for the leakiness of the vascular bed in mature follicles which may play a paramount role in the delivery of gonadotrophins and of low density lipoprotein cholesterol for progesterone and androgen biosynthesis, resulting in an increased supply of substrate to GC for the production of oestradiol-17β. But VEGF may also have a survival function for endothelial cells of capillaries surrounding theca cells. As shown by Alan *et al.* (1995), a certain threshold concentration of VEGF is required to inhibit apoptosis of the endothelial cells and is essential for the stabilisation of the newly formed blood vessels.

In conclusion, our results demonstrate the localisation and distinct up-regulation during development of bovine follicles of mRNA and of protein concentrations of VEGF and FGF2, factors known to be most important for angiogenesis. The results are consistent with the hypothesis that these angiogenic factors may be involved in the proliferation of capillaries that accompanies the selection of the preovulatory follicle, resulting in an increased supply of nutrients and precursors, and therefore supporting growth of the dominant follicle.

Acknowledgements

The authors thank Dr Gospodarowicz, Chiron Corp., Berkeley, CA, USA for the supply of bovine FGF2 and VEGF for immunisation and Mrs Gabi Schwenker for technical help. We greatly acknowledge the support of the work by the German Research Foundation (DFG, Sch a 257/II-3 and Scha 257/14–1).

References

Beer HD, Vindevoghel L, Gait MJ, Revest JM, Duan DR, Mason I & Dickson C 2000 Werner S. Fibroblast growth factor (FGF) receptor I–IIb is a naturally occurring functional receptor for FGFs that is preferentially expressed in the skin and the brain. *Journal of Biological Chemistry* 276 16091–16097.

Received 14 January 2000

Revised manuscript received 5 May 2000

Accepted 8 August 2000