The hexapeptide KP-102 (D-Ala-D-β-Nal-Ala-Trp-D-Phe-Lys-NH₂)
stimulates growth hormone release in a cichlid fish (Oreochromis mossambicus)

B S Shepherd¹,², S M Eckert³, I S Parhar⁴, M M Vijayan⁵, I Wakabayashi⁶, T Hirano³, E G Grau³ and T T Chen¹

¹Biotechnology Center, University of Connecticut, Storrs, Connecticut 06269, USA
²T.H. Morgan School of Biological Sciences, 101 Morgan Building, University of Kentucky, Lexington, Kentucky 40506-0225, USA
³Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
⁴Department of Physiology, Nippon Medical School, Tokyo 113, Japan
⁵Department of Biology, University of Waterloo, Ontario N2L 3G1, Canada
⁶Department of Medicine, Nippon Medical School, Tokyo 113, Japan

("To whom correspondence should be addressed, E-mail "bsshep2@pop.uky.edu")

Abstract

Studies in mammals have shown that synthetic Met- enkephalin derivatives, called growth hormone-releasing peptides (GHRPs), stimulate growth hormone (GH) release. The present study was conducted to determine whether the GHRP, KP-102, specifically stimulates GH release in a teleost. Tilapia (Oreochromis mossambicus) were given a single intraperitoneal injection of KP-102 (D-Ala-D-β-Nal-Ala-Trp-D-Phe-Lys-NH₂) or bovine GHRH₁–₂₉-amide or vehicle and blood was sampled at 1, 6 and 12 h after injection. KP-102 was administered at two doses of 1 ng/g and 10 ng/g body weight, whereas GHRH (positive control) was administered at a single dose of 10 ng/g body weight. Plasma levels of tilapia GH and prolactins (tPRL₁₇₇ and tPRL₁₈₈) were determined by radioimmunoassay. As expected, GHRH injection significantly (P<0.001) elevated plasma GH levels (ng/ml) in tilapia at 6 h post-injection. KP-102 also significantly elevated GH levels (at the low dose) at 6 (P<0.05) and 12 (P<0.01) hours post-injection. There were no significant effects on plasma PRL(s) levels, although mean levels of both PRLs were elevated at 6 h post-injection. These results show for the first time that GHRPs stimulate GH release in teleosts and suggest that the GHRP receptor and possibly a "Ghrelin-like" ligand are also present in lower vertebrates.

Journal of Endocrinology (2000) 167, R7-R10

Introduction

Growth hormone (GH) and prolactin (PRL) are structurally related hormones that are secreted by the vertebrate anterior pituitary, and their secretion is principally under the control of neuroendocrine factors (e.g., growth hormone-, gonadotropin- and thyrotropin-releasing hormones and somatostatin and dopamine). In addition to these regulatory factors, synthetic Met-enkephalin derivatives (hexapeptides) have also been shown to stimulate GH, and to some extent, PRL release in vertebrates. Against this background, we examined whether the GHRP, KP-102, would stimulate GH and/or PRL levels in a teleost, the tilapia (Oreochromis mossambicus). In addition to GH, the tilapia pituitary secretes two forms of prolactin (tPRL₁₇₇ and tPRL₁₈₈), one of which contain 177 amino acid residues, and the other, 188 amino acid residues. These two prolactins, to which unique functions have been ascribed (Rubin & Specker 1992, Oshima et al. 1996, Sakamoto et al. 1997, Shepherd et al. 1997), are encoded by separate genes and share only 69% sequence identity (Specker et al. 1985, Rentier-Delrue et al. 1989, Yamaguchi et al. 1991). In this study, we report the effects of KP-102 treatment on circulating GH and PRL(s) levels in a cichlid teleost.
Materials and Methods

Animals

Tilapia (Oreochromis mossambicus) were reared in circular 6000-liter tanks in fresh water (FW) and under natural photoperiod at the Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii. Animals were fed Purina Trout Chow twice daily (ration was approximately 2% of body weight per day). Water temperature was 25±2 °C.

Experimental Approach

Prior to the study, animals were netted, anesthetized with bicarbonate-buffered MS-222 (100 mg/liter) and transferred to oval 60-liter tanks (n=6/tank) supplied with recirculated fresh water as previously described (Sakamoto et al. 1997, Shepherd et al. 1997). Animals were allowed to acclimate to these conditions for 10 days prior to the study. During this period, animals were fed once daily to satiety; food was withheld 24 h prior to the experiment. After acclimation, animals were given a single intraperitoneal injection of vehicle (sterile saline) alone or vehicle containing KP-102 (D-Ala-D-Ala-Nal-Ala-Trp-D-Phe-Lys-NH2) (Kaken Pharmaceuticals, Tokyo, Japan) or bGHRH1-29-amide (Sigma Chemical, St Louis, MO). KP-102 was administered at two doses of 1 ng/g (low) and 10 ng/g (high) body weight, whereas bGHRH (positive control) was administered at a single dose of 10 ng/g body weight. Control animals were injected with vehicle alone and injection volume was 1 µl/g body weight in all groups.

Blood Sampling

For sampling, animals from each group (control, GHRH and GHRP) were anesthetized in bicarbonate-buffered MS-222 (100 mg/liter) and blood was withdrawn by caudal puncture using heparinized syringes. Animals (control, GHRH and GHRP low and high) were sampled for blood at 1, 6 and 12 h after initial injection. Plasma was separated by centrifugation at -80 °C for later hormone analyses. Plasma levels of tilapia GH and prolactins (tPRL177 and tPRL188) were determined by radioimmunoassay as described by Yada et al. (1994). Values are reported in nanograms per milliliter (ng/ml) plus or minus the standard error of the mean (S.E.M.).

Statistics

Differences among groups were evaluated by two-way analysis of variance (two-way ANOVA) with treatment and sampling time as independent variables (main effects) (Minitab Statistical Software Package, State College, PA). Where significant differences occurred (P<0.05) with the main effects, comparisons between group means were performed using Fisher’s Least Significant Test (FPLSD) for predetermined pairwise comparisons (Steele & Torrie 1980).

Results

There was a significant (P<0.001) main effect of sampling time on plasma GH levels. By contrast, there was no significant (P>0.05) effect of treatment on plasma GH levels; however, there was a significant (P<0.001) interaction of treatment × time on plasma GH levels (Figure 1 A). Given this treatment × time interaction, we proceeded to examine pairwise differences between treatment groups and controls at the various sampling time points. These comparisons show that there was no significant (P>0.05) effect of sampling time on plasma GH or prolactin(s) levels in the control groups (Figures 1 A-C). Compared with the corresponding control value, GHRH injection significantly elevated plasma GH levels (6.5±2.3 vs 0.6±0.3 ng/ml; P<0.001) in tilapia at 6 h post-injection (Figure 1A). Compared with corresponding control values, the low dose of KP-102 significantly elevated GH levels at 6 (3.2±1 vs 0.6±0.3 ng/ml; P<0.05) and 12 h (6.4±2 vs 2.2±1 ng/ml; P<0.01) post-injection. At the high dose of KP-102, there was a significant effect on plasma GH levels only at 12 h (7.1±3 vs 2.2±1 ng/ml; P<0.001) post-injection (Figure 1A).

There were no statistically significant (P>0.05) treatment or sampling time effects on plasma tPRL177 or tPRL188 levels (Figures 1 B-C), although mean levels of both prolactins in this study were elevated at the 6 h time point.

Discussion

Our results show that the GHRP, KP-102, stimulates GH release in the cichlid teleost, Oreochromis mossambicus. This finding suggests that the GHRP receptor may also be present in tilapia. This hypothesis is supported by the recent molecular cloning of a gene, in the Pufferfish (Spheroidees nephelaux), which shares significant (58%) identity to the human GHRP receptor (Palyha et al. 2000).

Mean levels of plasma PRL(s) were elevated at the 6-h sampling time point, although these differences were not statistically significant. We interpret this to suggest that the stimulatory effects of KP-102 treatment may be specific to GH secretion. Our present observations that circulating PRL(s) levels in tilapia were not significantly affected by KP-102 treatment, or sampling time, is indeed interesting since studies in mammals have shown that GHRP administration can stimulate increases in PRL levels (Bowers et al. 1990, Elias et al. 1995, Bowers 1998). This difference may be attributed to bio-hormonal pituitary cells (mammosomatotropes), that are present in mammals (Frawley & Boockfor 1991), but not in teleosts (Nishioka et al. 1993, Specker et al. 1993), and which secrete both GH and PRL.

The finding that KP-102 stimulates GH levels in a teleost is particularly exciting, since recent findings in mammals (i.e., high-affinity GHRP receptors) strongly suggest that GHRP(s) mimic, or in fact are, as yet, unidentified, endogenous,
vertebrate neuroendocrine ligand(s) (Bowers 1998, Camanni et al. 1998). In this regard, Kojima and colleagues (Kojima et al. 1999) recently isolated an acylated peptide (termed "Ghrelin") of 28 amino acids (from rat stomach) that binds to the GHRP receptor, consequently stimulating GH release in vitro and in vivo. In addition, Yang and colleagues (Yang et al. 1998) recently demonstrated that tripeptide derivatives of GHRPs exhibit GH secretagogue activity in the rat pituitary, and (Geris et al. 1998) found that the non-peptidyl (benzolactam) GH secretagogue (L-692,429) stimulates GH secretion in an avian species.

Collectively, the discoveries of new GH secretagogue(s) (Ghrelin and GHRP tripeptide derivatives), that GHRPs are active in lower vertebrates (Figure 1A), and a new prolactin-releasing peptide (Hinuma et al. 1998), which functions in a wide range of vertebrates, opens new avenues to the study of vertebrate pituitary neuroendocrine physiology. Furthermore, our results show that the role of KP-102, in stimulating GH release, is physiologically conserved among taxonomically distant vertebrate groups, and suggest the presence of a "Ghrelin-like" ligand in lower vertebrates as well. Comparative studies of how GHRPs/Ghrelin work in vivo will add significantly to our understanding of the common neuroendocrine mechanisms that regulate pituitary physiology, and consequently the growth, development and metabolism of economically important vertebrates.

Acknowledgements

We thank Dr. G. Weber for his assistance with this study. We also wish to thank Kaken Pharmaceuticals (Tokyo, Japan) for their generous gift of KP-102. This work was supported by grants from the National Research Initiative Competitive Grants Program/USDA award nos, 97-352206-5094 to B. S. S., 95-37206-2283 to E.G.G. and by NOAA, National Sea Grant College Program, US Department of Commerce, grant NA86RG0043 to T.T.C. and B.S.S., and the Edwin W. Pauley Foundation. The views expressed herein are those of the authors and do not necessarily reflect the views of the NOAA, USDA-ARS or any of their sub-agencies.

References


Bowers CY, Momany FA, Reynolds GA & Hong A 1993 Effects of acclimation to hypertonic environment on plasma and pituitary levels of two prolactins and growth hormone in two species of tilapia, Oreochromis mossambicus and Oreochromis niloticus. General and Comparative Endocrinology 89 138-148.


Bowers CY, Momany FA, Reynolds GA & Hong A 1993 Effects of acclimation to hypertonic environment on plasma and pituitary levels of two prolactins and growth hormone in two species of tilapia, Oreochromis mossambicus and Oreochromis niloticus. General and Comparative Endocrinology 89 138-148.


Shepherd BS, Sakamoto T, Nishioka RS, Richman NH, Mori I, Madsen SS, Chen TT, Hirano T, Bern HA & Grau EG 1997 Somatotropic actions of the homologous growth hormone (tGH) and prolactin (tPRL177) in the euryhaline teleost, Oreochromis mossambicus. Proceedings of the National Academy of Sciences, USA 94 2068-2072.


