Primary hypothyroidism in dogs is associated with elevated GH release

W M Lee, M Diaz-Espineira, J A Mol, A Rijnberk
and H S Kooistra

Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 8, PO Box 80·154, NL-3508 TD Utrecht, The Netherlands

(Requests for offprints should be addressed to W M Lee; Email: W.M.Lee@vet.uu.nl)

Abstract

The pulsatile secretion patterns of GH were investigated in seven beagle bitches by collecting blood samples every 10 min for 6 h during euthyroidism and 1·5 years after induction of primary hypothyroidism. Hypothyroidism was induced by surgical removal of the thyroid gland and subsequent destruction of any remnant thyroid tissue by oral administration of sodium $[^{131}I]$iodide. Some of the physical changes observed in the dogs with primary hypothyroidism mimicked those of acromegaly. During both euthyroidism and hypothyroidism GH was secreted in a pulsatile fashion. The mean (± s.e.m.) basal plasma GH concentration was significantly higher ($P=0.003$) in the hypothyroid state (4·1 ± 1·6 µg/l) than in the euthyroid state (1·2 ± 0·4 µg/l). Likewise, the mean area under the curve (AUC) for GH above the zero-level during hypothyroidism (27·0 ± 10·0 µg/l × 6 h) was significantly higher ($P=0.004$) than that during euthyroidism (11·7 ± 2·0 µg/l × 6 h). The mean AUC for GH above the baseline was significantly lower ($P=0·008$) during hypothyroidism (2·4 ± 0·8 µg/l × 6 h) than during euthyroidism (4·5 ± 1·8 µg/l × 6 h), whereas there was no significant difference in GH pulse frequency. The mean plasma IGF-I level was significantly higher ($P<0·01$) in the hypothyroid state (169 ± 45 µg/l) than in the euthyroid (97 ± 15 µg/l). The results of this study demonstrate that primary hypothyroidism in dogs is associated with elevated basal GH secretion and less GH secreted in pulses. This elevated GH secretion has endocrine significance as illustrated by elevated plasma IGF-I levels and some physical changes mimicking acromegaly. It is discussed that the increased GH release in hypothyroid dogs may be the result of the absence of a response element for thyroid hormone within the canine pituitary GH gene and alterations in supra-pituitary regulation.

Introduction

Growth hormone (GH) is secreted by the pituitary anterior lobe in a pulsatile fashion under the regulation of two hypothalamic peptides: GH-releasing hormone (GHRH) stimulates GH secretion, while somatostatin (SS) inhibits GH release. This regulatory system is influenced by negative feedback from peripherally formed growth factors, particularly insulin-like growth factor-I (IGF-I) (Hartman et al. 1993, Bermann et al. 1994). In addition, a recently identified GH-releasing peptide, called Ghrelin, is likely to play a role in the regulation of pituitary GH secretion (Kojima et al. 1999). The amplitude and frequency of GH secretory pulses are regulated by a complex array of external and internal stimuli including age (Corpas et al. 1993, Arvat et al. 1997), gender (Van den Berg et al. 1996), oestrous cycle phase (Faria et al. 1992), genetic background (Mendlewicz et al. 1999), nutritional status (Riedel et al. 1995), sleep (Matsumo et al. 1998), disease status (Frohman et al. 1992) and body composition (Ahmad et al. 1989). In addition, hormones such as glucocorticoids and thyroid hormones (Devesa et al. 1992) influence the pulsatile secretion pattern of GH.

In rats, thyroid hormones are necessary to maintain both pulsatile and induced GH secretion (Martin et al. 1985). The GH secretory profile has been found to shift from a low-frequency, high-amplitude pattern in euthyroid rats to a high-frequency, low-amplitude pattern in rats with mild hypothyroidism induced by methimazole (Bruhn et al. 1992). Severe hypothyroidism in rats is associated with markedly reduced circulating GH levels (Varela et al. 1991, Santini et al. 1993, Mizobuchi et al. 1996, Tam et al. 1996, Osorio et al. 1998), abolished GH bursts (Takeuchi et al. 1978, Katakami et al. 1986), blunted GH response to GHRH (Williams et al. 1985, Tam et al. 1996) and decreased pituitary content of mRNA encoding for GH (Martinoli & Pelletier 1989, Lloyd et al. 1990, Tam et al. 1996). In addition, hypothyroidism in rats causes a reduction in pituitary GH content (Szabo et al. 1985, Katakami et al. 1986, Wood et al. 1987, Lloyd et al. 1990, Varela...

In humans with primary hypothyroidism, the peak GH values after GHRH administration are low (Root et al. 1996). Similar findings of normal thyroid gland in situ. About 3 months later, the dogs were fed a low-iodine diet (meat and white bread) for 3 weeks to increase the iodine uptake by any remnant thyroid tissue, which was then destroyed by administering 5 mCi (=185 MBq) of sodium [131I]iiodide orally.

The present study was part of a larger study in which we investigated the effect of long-term primary hypothyroidism on pituitary TSH secretion in dogs.

Sample collection

Plasma TSH concentrations were determined by a homologous solid-phase, two-site chemiluminescence enzyme immunometric assay (Immulite canine TSH; Diagnostic Products Corporation (DPC), Los Angeles, CA, USA) in accordance with the instructions of the manufacturer. The intra-assay coefficients of variation were 5·0, 4·0 and 3·8% at TSH levels of 0·20, 0·50 and 2·6 µg/l respectively. The intra-assay coefficients of variation were 6·3 and 8·2% at TSH levels of 0·16 and 2·8 µg/l respectively. The lowest detectable amount of TSH was 0·03 µg/l.

Plasma total thyroxine concentrations were determined by a homologous RIA as described previously (Eigenmann & Eigenmann 1981). The intra- and inter-assay coefficients of variation were 3·8 and 7·2% respectively, and the sensitivity of the assay was 0·3 µg/l.

Plasma IGF-I concentrations were measured by a heterologous RIA as described previously (Nap et al. 1993). The intra- and inter-assay coefficients of variation were 4·7

Materials and Methods

Dogs

Seven neutered (ovariectomized) beagle bitches entered the study at the age of 3 years. All bitches were accustomed to the laboratory environment and procedures such as the collection of blood. They were housed in individual cages, fed a commercial dog food twice a day, and had free access to water. On the days on which blood samples were collected, the dogs were fed their usual commercial dog food between 0900 and 0930 h.

Euthyroidism was confirmed by the finding of basal and bovine thyrotrophin (TSH)-stimulated plasma thyroxine concentrations within their respective reference range, a normal image of the thyroid glands obtained by scintigraphy using radioactive pertechnetate (\(^{99m}\)TcO\(_4^{-}\)), and, eventually, by the finding of normal thyroid gland tissue by histological examination after thyroidectomy.

Primary hypothyroidism was induced by surgical removal of the thyroid gland, leaving the external parathyroid glands in situ. About 3 months later, the dogs were fed a low-iodine diet (meat and white bread) for 3 weeks to increase the iodine uptake by any remnant thyroid tissue, which was then destroyed by administering 5 mCi (=185 MBq) of sodium [131I]iodide orally.

The present study was part of a larger study in which we investigated the effect of long-term primary hypothyroidism on pituitary TSH secretion in dogs.

Sample collection

Blood samples for determining the plasma concentration of GH were collected at 10 min intervals between 0800 and 1400 h. This was done 1 month prior to the surgical thyroidectomy and again 1·5 years later. Blood samples were collected by jugular venepuncture and immediately placed in chilled EDTA-coated tubes, and centrifuged. Plasma was stored at −20 °C until assayed.

Hormone determination

Plasma TSH concentrations were determined by a homologous solid-phase, two-site chemiluminescence enzyme immunometric assay (Immulite canine TSH; Diagnostic Products Corporation (DPC), Los Angeles, CA, USA) in accordance with the instructions of the manufacturer. The intra-assay coefficients of variation were 5·0, 4·0 and 3·8% at TSH levels of 0·20, 0·50 and 2·6 µg/l respectively. The intra-assay coefficients of variation were 6·3 and 8·2% at TSH levels of 0·16 and 2·8 µg/l respectively. The lowest detectable amount of TSH was 0·03 µg/l.

Plasma total thyroxine concentrations were determined by a homologous solid-phase, chemiluminescence enzyme immunnoassay (Immulite canine Total T4; DPC) in accordance with the instructions of the manufacturer and validated for the dog by Bruner et al. (1998). The intra-assay coefficients of variation were 13·8 and 8·2% at thyroxine levels of 8 and 25 nmol/l respectively. The lowest detectable amount of thyroxine was 1·5 nmol/l.

Plasma GH concentrations were measured by a homologous RIA as described previously (Eigenmann & Eigenmann 1981). The intra- and inter-assay coefficients of variation were 3·8 and 7·2% respectively, and the sensitivity of the assay was 0·3 µg/l.

Plasma IGF-I concentrations were measured by a heterologous RIA as described previously (Nap et al. 1993). The intra- and inter-assay coefficients of variation were 4·7
and 15·6% respectively, at an IGF-I concentration of 175 µg/l. The sensitivity of the assay was 6 µg/l.

Data analysis

The 6 h secretion patterns of GH were analysed using the Pulsar program developed by Merriam & Wachter (1982). The program identifies secretory peaks by height and duration from a smoothed baseline, using the assay s.d. as a scale factor. The cut-off parameters G1–G5 of the Pulsar program were set at 3·98, 2·40, 1·68, 1·24 and 0·93 times the assay s.d. as criteria for accepting peaks 1, 2, 3, 4 and 5 points wide respectively, resulting in a false-positive error rate of less than 5%. The smoothing time, a window used to calculate a running mean value, was set at 5 h. The weight assigned to peaks was 0·05. The A, B and C values of the Pulsar program, used to calculate the variance of the parameters G1–G5 of the Pulsar program, used to calculate the variance of the assay, were set at A=0, B=7·2 and C=5·0. The values extracted from the Pulsar analyses included the overall mean of the smoothed baseline, the number of peaks, the area under the curve (AUC) above the zero-level and the AUC above the baseline.

Differences in parameters during euthyroidism and hypothyroidism were evaluated by Student’s t-test for related samples (two-tailed). Since the data were not assumed to be normally distributed, differences in parameter frequency in the euthyroid state (6 h) was significantly higher (P=0·008) than that during euthyroidism (4·1 ± 1·6 µg/l) was significantly higher (P=0·003) than that during euthyroidism (1·2 ± 0·4 µg/l). Likewise, the mean AUC for GH above the zero-level during hypothyroidism (27·0 ± 10·0 µg/l × 6 h) was significantly higher (P=0·004) than that during euthyroidism (11·7 ± 2·0 µg/l × 6 h). In contrast, the AUC for GH above the baseline was significantly lower (P=0·008) during hypothyroidism (2·4 ± 0·8 µg/l × 6 h) than during euthyroidism (4·5 ± 1·8 µg/l × 6 h). The GH pulse frequency in the 6 h secretory patterns varied from one to ten peaks prior to thyroidecotony, and from two to five peaks after induction of hypothyroidism (Table 1). The mean GH pulse frequency in the euthyroid state (6 ± 3 pulses/6 h) was higher than that in the hypothyroid (4 ± 1 pulses/6 h), but this difference was not statistically significant (P=0·24). The mean plasma IGF-I level was significantly higher

Figure 1 The 6 h secretory profiles of GH in a beagle bitch during euthyroidism (before) and during hypothyroidism (after). Significant GH pulses, calculated by the Pulsar program, are indicated by an asterisk.

Ethics of experimentation

The experiments in this study were approved by the Ethical Committee of the Faculty of Veterinary Medicine, Utrecht University.

Results

The mean body weight during hypothyroidism (20·1 ± 1·4 kg) was significantly higher (P=0·002) than that during euthyroidism (14·5 ± 0·7 kg). In all dogs, induction of primary hypothyroidism also resulted in marked exercise intolerance and skin changes such as thick folding. In all dogs, alopecia and hyperpigmentation were noticeable especially on the bridge of the nose. In four of the dogs there appeared to be some maxillar prognathia with widening of the interdental spaces.

At 1·5 years after induction of primary hypothyroidism plasma thyroxine concentrations were low (<2 nmol/l) as compared with the euthyroid state (18·3 ± 1·7 nmol, P<0·001). The mean plasma TSH level rose (P=0·01) from 0·11 ± 0·03 µg/l prior to thyroidecotony to 1·4 ± 0·38 µg/l during hypothyroidism.

GH was secreted in a pulsatile fashion both before and after induction of primary hypothyroidism. Examples of the pulsatile secretion patterns of GH during euthyroidism and hypothyroidism are shown in Fig. 1. The mean plasma GH level in the hypothyroid state (4·1 ± 1·6 µg/l) was significantly higher (P=0·003) than that during euthyroidism (1·2 ± 0·4 µg/l). Likewise, the mean AUC for GH above the zero-level during hypothyroidism (27·0 ± 10·0 µg/l × 6 h) was significantly higher (P=0·004) than that during euthyroidism (11·7 ± 2·0 µg/l × 6 h). In contrast, the AUC for GH above the baseline was significantly lower (P=0·008) during hypothyroidism (2·4 ± 0·8 µg/l × 6 h) than during euthyroidism (4·5 ± 1·8 µg/l × 6 h). The GH pulse frequency in the 6 h secretory patterns varied from one to ten peaks prior to thyroidecotony, and from two to five peaks after induction of hypothyroidism (Table 1). The mean GH pulse frequency in the euthyroid state (6 ± 3 pulses/6 h) was higher than that in the hypothyroid (4 ± 1 pulses/6 h), but this difference was not statistically significant (P=0·24). The mean plasma IGF-I level was significantly higher
basal and integrated GH levels were significantly higher in hypothyroidism than in euthyroidism. In some mammals, such as sheep and steers, primary hypothyroidism does not seem to affect GH secretion (Ekersser et al. 1992, Fletcher & Clarke 1994), whereas in rats (Varela et al. 1991, Santini et al. 1993, Mizobuchi et al. 1996, Tam et al. 1996, Osorio et al. 1998) and pigs (Morovat & Dauncey 1998) primary hypothyroidism is associated with low circulating GH levels.

The human pituitary GH gene contains a positive thyroid hormone response element (TRE) (Chomczynski et al. 1993). In line with this observation, experimentally induced thyroid hormone excess leads to increased GH secretion in healthy men (Lovejoy et al. 1997). It is likely that the low thyroid hormone levels of hypothyroidism will result in a low expression of pituitary GH in species with a positive TRE in the GH gene. Indeed, in hypothyroid rats both decreased pituitary content of GH mRNA (Martinoli & Pelletier 1989, Lloyd et al. 1990, Tam et al. 1996) and reduced pituitary GH content (Szabo et al. 1985, Katakami et al. 1986, Wood et al. 1987, Lloyd et al. 1990, Varela et al. 1991) have been reported. The lack of a decrease in GH biosynthesis and release in dogs with primary hypothyroidism may be explained by the absence of a positive TRE within the canine GH gene. Alternatively, the presence of a negative TRE within the GH gene would result in a reduced suppression of GH expression, i.e. elevated GH production and secretion in hypothyroid animals. The presence of negative TREs has been demonstrated in different genes, for example in the TSH-releasing hormone (TRH) gene (Hollenberg et al. 1995), the TSHbeta gene (Breen et al. 1997) and in keratin genes (Radoja et al. 1997). Sequence analysis of the promoter region and intron 1 of the canine GH gene (Lantinga-van Leeuwen & Mol 2000) has not demonstrated the existence of a TRE in this species. However, gel shift assays or footprints have not been performed yet in the dog.

Apart from direct effects in transcription of the GH gene, it is possible that hypothyroidism affects GH release via an influence on the hypothalamic hormones GHRH and SS. In rats, primary hypothyroidism is associated with a reduced hypothalamic content of SS mRNA and SS (Tam et al. 1996). Moreover, thyroidectomy in rats leads to decreased SS release from the hypothalamus (Mizobuchi

Table 1 Characteristics of the 6 h secretory profiles of GH and the plasma IGF-I levels in seven beagle bitches during euthyroidism and hypothyroidism. Basal GH, basal plasma GH level; AUC(0), AUC above zero-level; AUC (baseline), AUC above baseline; frequency, GH pulse frequency per 6 h. The values are expressed as means±SEM.

<table>
<thead>
<tr>
<th>Dog</th>
<th>Euthyroid</th>
<th>Hypothyroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal GH (µg/l)</td>
<td>AUC(0) (µg/l × 6 h)</td>
<td>AUC(baseline) (µg/l × 6 h)</td>
</tr>
<tr>
<td>Dog 1</td>
<td>Euthyroid</td>
<td>1.2</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>2.6</td>
<td>17.9</td>
</tr>
<tr>
<td>Dog 2</td>
<td>Euthyroid</td>
<td>0.8</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>3.5</td>
<td>23.3</td>
</tr>
<tr>
<td>Dog 3</td>
<td>Euthyroid</td>
<td>1.8</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>4.6</td>
<td>29.1</td>
</tr>
<tr>
<td>Dog 4</td>
<td>Euthyroid</td>
<td>1.5</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>3.1</td>
<td>20.8</td>
</tr>
<tr>
<td>Dog 5</td>
<td>Euthyroid</td>
<td>1.4</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>7.4</td>
<td>47.2</td>
</tr>
<tr>
<td>Dog 6</td>
<td>Euthyroid</td>
<td>1.0</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>4.4</td>
<td>30.1</td>
</tr>
<tr>
<td>Dog 7</td>
<td>Euthyroid</td>
<td>0.9</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>3.2</td>
<td>20.3</td>
</tr>
</tbody>
</table>

(P=0.009) in the hypothyroid state (169 ± 45 µg/l) than in the euthyroid (97 ± 15 µg/l).

Discussion

The results of this study demonstrate that in dogs primary hypothyroidism is associated with elevated GH secretion. In contrast to observations in other mammals, in dogs both basal and integrated GH levels were significantly higher in hypothyroidism than in euthyroidism. In some mammals, such as sheep and steers, primary hypothyroidism does not seem to affect GH secretion (Ekersser et al. 1992, Fletcher & Clarke 1994), whereas in rats (Varela et al. 1991, Santini et al. 1993, Mizobuchi et al. 1996, Tam et al. 1996, Osorio et al. 1998) and pigs (Morovat & Dauncey 1998) primary hypothyroidism is associated with low circulating GH levels.
et al. 1996). Therefore, it may be postulated that the hypothalamic SS secretion is also reduced in dogs with primary hypothyroidism, which may in turn explain the elevated basal GH secretion in this species.

Another option that should be discussed concerns the feedback signal of the low thyroxine concentration on the release of hypothalamic TRH. In healthy humans administration of TRH does not result in appreciable changes in plasma GH levels (Faggiano et al. 1985, Coiro et al. 1994, Hanew et al. 1995), whereas in euthyroid rats stimulation with TRH elicits no (Varela et al. 1991) or only a small transient (Szabo et al. 1985) rise in plasma GH levels. In contrast, in humans and rats with primary hypothyroidism TRH administration results in significantly increased plasma GH levels (Faggiano et al. 1985, Varela et al. 1991, Coiro et al. 1994, Hanew et al. 1995). In line with these observations, Konaka et al. (1997) have demonstrated the expression of TRH receptor mRNA in rat somatotrophs. The paradoxical response of GH to TRH in primary hypothyroidism may be caused by the relative deficiency of SS discussed in the previous paragraph, as SS infusion inhibits the GH response to TRH in hypothyroid human patients (Baldini et al. 1992). Also, in healthy dogs TRH administration does not result in changes in the plasma GH level (Rutteman et al. 1987). However, so far there is no information on the effect of TRH on GH secretion in dogs with primary hypothyroidism. Nevertheless, it may be hypothesized that also in hypothyroid dogs the elevated release of TRH not only causes increased TSH secretion but may also give rise to elevated GH secretion.

In agreement with previous publications (Takahashi et al. 1981, French et al. 1987, Kooistra et al. 2000), in the present dogs GH was secreted in a pulsatile fashion. The results demonstrate that primary hypothyroidism in dogs is associated with changes in the pulsatile secretion pattern of GH. The mean AUC for GH above the baseline was significantly lower during hypothyroidism than in the euthyroid state. In combination with an unchanged GH pulse frequency this indicates that in hypothyroid dogs less GH is released per pulse. This may be explained by a blunted response of the pituitary somatotrophs to GHRH. Indeed, administration of GHRH results in a markedly reduced GH response in hypothyroid humans (Root et al. 1985, Williams et al. 1985, Damjanovic et al. 1996, Pimentel-Filho et al. 1997), hypothyroid rats (Williams et al. 1985, Tam et al. 1996) and hypothyroid sheep (Fletcher & Clarke 1994). Moreover, in hypothyroid rats a reduced pituitary content of GHRH receptor mRNA has been reported (Tam et al. 1996, Korytko & Cuttler 1997).

The reduction in GH secreted in pulses in the hypothyroid dogs may also be explained by increased IGF-I secretion. The results demonstrate that the plasma IGF-I levels were significantly higher in hypothyroidism than in euthyroidism. Elevated circulating levels of IGF-I have been reported to inhibit pulsatile pituitary GH secretion (Hartman et al. 1993), mainly by attenuation of spontaneous GH pulse amplitude (Bermann et al. 1994).

Finally, the reduction in GH secreted in pulses in hypothyroid dogs may be ascribed to extra-pituitary secretion of GH. Decreased GH pulsatility has been reported in women during the second half of pregnancy (Eriksson et al. 1989). In these women the loss of GH pulsatility is due to the release of a placental GH variant (Eriksson et al. 1989). In addition, a reduction in GH secreted in pulses has been reported in bitches during the progesterone phase of the oestrous cycle (Kooistra et al. 2000) and in bitches treated with progestagens (Watson et al. 1987). Endogenous progesterone and exogenous progestagens in these bitches result in excessive GH secretion (Eigenmann et al. 1983) originating from foci of hyperplastic ductular epithelium of the mammary gland (Selman et al. 1994, Van Garderen et al. 1997). The loss of GH pulsatility in both humans and bitches has been ascribed to the negative feedback effects of non-episodically secreted extra-pituitary GH. However, it is very unlikely that this mechanism was operational in the present dogs as only ovariectomized bitches were used.

The endemic effects of GH can be divided into rapid catabolic actions, mainly due to insulin antagonism, and into slow anabolic actions. The slow hypertrophic effects of GH are mediated via IGF-I. In this respect it is interesting to note that children with primary hypothyroidism have low plasma IGF-I levels compared with concentrations during therapy with t-thyroxine (Chernausek & Turner 1989). Reduced circulating IGF-I levels have also been reported in hypothyroid rats (Osorio et al. 1998, Ramos et al. 1998). The low circulating IGF-I levels probably reflect the reduced GH secretion in these children and rats. In contrast, the results of this study demonstrate that the plasma IGF-I levels in dogs with primary hypothyroidism were significantly higher than those in the euthyroid state. The significantly elevated plasma IGF-I levels indicate that the elevated GH secretion in the hypothyroid dogs has systemic endocrine effects. Another indication that the elevated GH secretion has endocrine significance concerns the physical changes observed in dogs with primary hypothyroidism. Both in dogs with acromegaly (Krijnberk 1996) and in dogs with primary hypothyroidism, the physical features are characterized by thick skin folds. In acromegaly the skin thickening has been ascribed to mucopolysaccharide accumulation (Matsuoka et al. 1982). Similarly, in dogs with primary hypothyroidism the thickening of the skin is also due to mucopolysaccharide accumulation (Muller et al. 1989, Doliger et al. 1995). Thus, some of the physical changes observed in dogs with primary hypothyroidism might very well be acromegalic changes.

To summarize, the results of this study demonstrate that primary hypothyroidism in dogs is associated with elevated basal GH secretion and less GH secreted in pulses. This elevated GH secretion has endocrine significance as
illustrated by elevated plasma IGF-I levels and some physical changes mimicking acromegaly. It is discussed that the increased GH release in hypothyroid dogs is the result of the absence of a response element for thyroid hormone at the canine pituitary GH gene and alterations in supra-pituitary regulation.

Acknowledgements

We are grateful for the technical assistance of Mrs M E van Wolferen, Mrs C P M Timmermans-Sprang, Mrs Ank van Wees, Mrs Y M E A Pollak and Mr H G H van Engelen.

References

Matsuno M, Sohmiya M, Yamamoto H & Kato Y 1998 An acromegalic patient with pulsatile secretion of growth hormone (GH) coincident with the slow-wave sleep. Endocrine Journal 45 687–692.

Nap RC, Mol JA & Hazewinkel HAW 1993 Age-related plasma concentrations of growth hormone (GH) and insulin-like growth factor I (IGF-I) in Great Dane pups fed different dietary levels of protein. Domestic Animal Endocrinology 10 237–247.

www.endocrinology.org

Downloaded from Bioscientifica.com at 10/23/2018 05:43:30AM via free access

Received 21 July 2000
Revised manuscript received 13 September 2000
Accepted 28 September 2000