Regulation of cytochrome P450 aromatase gene expression in adult rat Leydig cells: comparison with estradiol production

C Genissel, J Levallet and S Carreau

Laboratory of Biochemistry, UPRES EA 2608, University of Caen, Caen, France

(Requests for offprints should be addressed to S Carreau, Biochimie-IRBA, UPRES EA 2608, Université de Caen, Esplanade de la Paix, 14032-Caen Cedex, France; Email: carreau@ibiba.unicaen.fr)

Abstract

Regulation of aromatase gene expression in purified rat Leydig cells has not yet been investigated. Therefore, using a highly specific quantitative RT-PCR method, we have measured the amount of cytochrome P450 aromatase (P450arom) mRNA and aromatase activity in mature rat Leydig cells submitted to various treatments during 24 h. Estradiol production was enhanced in a dose-related manner in the presence of testosterone, the maximum (28% increase) being obtained with 200 ng/ml. Related to the P450arom mRNA levels, a decrease was observed in the presence of low concentrations (50 and 100 ng/ml) of testosterone, then a 20% increase of the amount of transcripts was recorded for the higher concentrations (200–500 ng/ml). The same result was obtained in the presence of 5α-dihydrotestosterone (an androgen resistant to aromatase activity). The addition of ovine LH (oLH; 0·1–50 ng/ml) to the Leydig cell culture medium induced a dose-related augmentation of estradiol output up to 10 ng/ml oLH, although a decrease was observed with 50 ng/ml when compared with maximal values. mRNA levels slightly decreased in the presence of low concentrations (0·1–1 ng/ml) of oLH, an effect that was abolished by the addition of testosterone; mRNA levels were increased by oLH (5–10 ng/ml) 35 and 75% respectively in the absence and presence of testosterone (when compared with Leydig cells incubated without treatment). With 50 ng/ml oLH, a large augmentation (twofold) of the P450arom mRNA level either without or with testosterone was observed. Dibuttryl cyclic AMP (1 mM) mimicked the effect of oLH. The half-life of the P450arom mRNAs was twofold increased in the presence of testosterone and oLH when compared with the half-life in the absence of treatment (5·8 ± 0·6 h). Taken together, our data have demonstrated that, in freshly isolated Leydig cells from mature rat testes, the regulation of aromatase expression and enzymatic activity is under LH (through cyclic AMP) and steroid control; moreover seminiferous tubule-secreted factor(s) are also involved. Therefore, rat Leydig cell aromatase is controlled at both transcriptional and post-transcriptional steps by endocrine and/or locally produced modulators.

Journal of Endocrinology (2001) 168, 95–105

Introduction

Gonadotropins and testosterone, together with numerous intratesticular factors, play a crucial role in the development and maintenance of spermatogenesis in the mammalian testis (for reviews see Sharpe 1993, Saez 1994). Even though estrogens are considered to be a specific female hormone, the source of these hormones in the male gonad has been well known for several decades (for review see Carreau et al. 1999). The ability of the testis to transform androgens into estrogens is related to the presence of a microsomal enzymatic complex named aromatase, which is composed of a specific glycoprotein, the cytochrome P450 aromatase (P450arom) and an ubiquitous flavoprotein, the NADPH-cytochrome P450 reductase (Simpson et al. 1994). In the rat testis, there is an age-related change in the cellular localization of the aromatase activity, which is mainly in Sertoli cells in immature animals whereas it is located in Leydig cells in adults (Papadopoulos et al. 1986). Indeed, the aromatase has been immunolocalized in the Leydig cells of vertebrates (Carreau et al. 1999). However, striking species differences exist, since in mouse (Nitta et al. 1993), rat (Levallet et al. 1998a, Janulis et al. 1998), bank vole (Bilinska et al. 2000), brown bear (Tsubota et al. 1993) and rooster (Kwon et al. 1995) the aromatase is present both in Leydig cells and in seminiferous tubules, predominantly in spermatids (Carreau & Levallet 2000). It is known that Leydig cell aromatase activity is under luteinizing hormone (LH) control (Valladares & Payne 1979a,b) and that paracrine factors of Sertoli cell origin are also involved (Papadopoulos et al. 1987, Carreau et al. 1988). Nevertheless, despite much work focused on aromatase, especially in the male gonad, regulation of P450arom gene expression has not been studied extensively in purified testicular cells, except in cultured rat Sertoli cells (Levallet...
& Carreau 1997) and in rat Leydig tumor cell lines (Young & McPhaul 1998). No one has explored the regulation of aromatase gene expression in freshly purified Leydig cells from mature rats. Therefore, using a highly specific RT-PCR method (Levallet & Carreau 1997), we have studied the effects of various hormonal treatments on the amount and half-life of P450arom transcripts and, in parallel, measured estradiol output.

Materials and Methods

Materials

Collagenase-dispase was purchased from Roche Diagnostics (Meylan, France). Soybean trypsin inhibitor, deoxyribonuclease, testosterone, 17β-estradiol, 5α-dihydrotestosterone (DHT), dibutyryl cyclic AMP ((Bu)2cAMP), actinomycin D, Trypan blue, nitroblue tetrazolium, nicotinamide adenosine dinucleotide, niacinamide and dehydroepiandrosterone were purchased from Sigma Chemicals Co. (St Louis, MO, USA). Ham’s F-12/DME medium was from Seromed (Berlin, Germany). Percoll and [2,4,6,7-3H]estradiol were obtained from Sigma Chemical Co. (St Louis, MO, USA). Ovine LH (CISTER; NIH-ov-LH-26) and FSH (CISTER; NIH-ov-FSH-40) were provided by the NIDDK (Bethesda, MD, USA). Moloney-murine leukemia virus-reverse transcriptase (M-MLV-RT), deoxy-NTP, 0.5 M guanidium thiocyanate-derived method (Chomczynski & Sacchi 1987) was reverse transcribed to cDNA as follows: 1 h at 37 °C with 200 IU M-MLV-RT, 500 µM deoxy NTP, 0.2 µg oligo-dT(T12–18 mer) and 24 IU RNasin. The cDNAs obtained were further amplified by PCR using selected oligonucleotides. PCR was performed for 35 cycles (30 s at 94 °C, 30 s at 60 °C and 1 min at 72 °C, with 2-s delay at 72 °C for each cycle) in the presence of 200 µM deoxy NTP, 1 µM primer set and 1.5 IU Taq polymerase in a final volume of 50 µl. The P450arom primers (5’ARO and 3’ARO) have been selected (Levallet et al. 1998a) to amplify a highly conserved sequence (289 bp length), including helical and aromatic regions of the P450arom gene (Table 1).

Cell viability and histochemical staining for 3β-hydroxysteroid dehydrogenase (3β-HSD)

The viability of testicular cells was evaluated using the Trypan blue exclusion test; the stained cells were considered to be dead. The enriched cell fractions collected after Percoll sedimentation were characterized for the presence of Leydig cells by histochemical staining for 3β-HSD; colored cells were identified as Leydig cells (3β-HSD positive).

Preparation of STM

Isolated segments of 10–20 mm (total length 200 mm) of seminiferous tubules were dissected by transillumination (Parvinen & Vanha-Perhun 1972). After several washes with Ham’s F-12/DME medium (1/1, v/v), they were incubated in 1 ml medium for 20 h at 32 °C under an atmosphere of air/CO2 (95/5, v/v). After centrifugation (2000 g, 10 min, 4 °C), the STM were charcoal-treated to remove endogenous steroids and stored at −20 °C before measurement of their biological effects on Percoll-purified Leydig cells.

Reverse transcription-polymerase chain reaction (RT-PCR) assay

The mRNA present in the total RNA extracted by the guanidium thiocyanate-derived method (Chomczynski & Sacchi 1987) was reverse transcribed to cDNA as follows: 1 h at 37 °C with 200 IU M-MLV-RT, 500 µM deoxy NTP, 0.2 µg oligo-dT(T12–18 mer) and 24 IU RNasin. The cDNAs obtained were further amplified by PCR using selected oligonucleotides. PCR was performed for 35 cycles (30 s at 94 °C, 30 s at 60 °C and 1 min at 72 °C, with 2-s delay at 72 °C for each cycle) in the presence of 200 µM deoxy NTP, 1 µM primer set and 1.5 IU Taq polymerase in a final volume of 50 µl. The P450arom primers (5’ARO and 3’ARO) have been selected (Levallet et al. 1998a) to amplify a highly conserved sequence (289 bp length), including helical and aromatic regions of the P450arom gene (Table 1).

RNA standard preparation and quantitative competitive RT-PCR

The RNA standard was prepared by an internal nucleotide deletion of 29 bp from the 289 bp amplified product as described elsewhere (Levallet et al. 1998a). Briefly, total RNA from rat ovary was subjected to RT and PCR with the appropriated primers (Table 1). The 5’SSTD primer contained three specific sequences including: (i) the complementary sequence for the cDNA-binding region of T7 RNA polymerase, (ii) the primer 5’ARO (underlined) and (iii) a 27 bp sequence (position 1607–1634) located 29 bp downstream from the 5’ARO primer (in bold). The 3’SSTD primer resulted from the association of oligo dT with the specific 3’ARO sequence (underlined).

Validation of the quantitative competitive RT-PCR method

In order to verify the quality and size of the RNA standard, RT-PCR was performed with different
concentrations of standard (10 to $10^{-5}$ amol; Fig. 1A). The lower limit of detection was $10^{-5}$ amol and the expected band size of the standard was 260 bp. The area of the band (Fig. 1B) was proportional to the quantity of standard added whereas, for the intensity, a plateau was observed from 1 amol standard (Fig. 1C). Up to 1 amol standard, good correlations ($r=0.99$) were recorded between intensity and standard concentration and between surface

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5’ ARO</td>
<td>GCTTCTCATCGCAGAGTATCCGG</td>
<td>Sense (1555—1577)*</td>
</tr>
<tr>
<td>3’ ARO</td>
<td>CAAGGGTAATAATCATTTGGCTTGG</td>
<td>Antisense (1821–1844)*</td>
</tr>
<tr>
<td>5’ STD</td>
<td>TATAGGCATCATCTAGGGAGAAGCTCTCATCGCAGAGTATCCGG</td>
<td>Sense</td>
</tr>
<tr>
<td>3’ STD</td>
<td>CACACTGTGTTGGTACAGAGACATA</td>
<td>Antisense</td>
</tr>
</tbody>
</table>

*Numbered as described by Hickey et al. (1990) (GenBank, accession no. M33986).

For definition of underlining and bold see section on ‘RNA standard preparation and quantitative competitive RT-PCR’.

Figure 1 RNA standard amplification by RT-PCR. (A) A 1:10 serial dilution (10 to $10^{-5}$ amol) of RNA standard was reverse transcribed and amplified with the 5’ARO–3’ARO set of primers. The amplified products were subjected to electrophoresis on 2% agarose gel containing ethidium bromide and then photographed. Lanes 8 and 9 correspond respectively to positive (O, ovary RNA) and negative (W, RNA was replaced by water) controls. The surface (B) and intensity (C) values for each band are reported as a function of the standard concentration. (D) Correlation between intensity and surface values used for quantification of cytochrome P450arom mRNA.
and intensity of the spots (Fig. 1D). Therefore, for quantitative RT-PCR experiments, increasing dilutions of RNA standard were added to a known amount of total RNA. After RT and PCR with the P450arom-specific set of primers, the amplified products were run on a 4% agarose gel stained with ethidium bromide (Fig. 2), then photographed and submitted to densitometry scanning analysis (Bio-Profiler System, Vibert Lourmat, France). The intensity and surface of each band was calculated and the sample/standard ratio was plotted against standard concentration, and then the quantity of P450arom mRNA present in the total RNA was determined.

Estradiol determinations

The steroids were first extracted from the cell culture media by 5 volumes of diethyl ether. The estradiol outputs were determined by radioimmunoassay using a highly specific antibody (the cross-reaction of testosterone with the antibody was 0.001 when 50% of labeled ligand was bound; Papadopoulos et al. 1986). The inter- and intra-assay coefficients of variation were 5% and 8% respectively and the sensitivity was 6 pg/tube.

Half-life of the P450arom mRNA

In order to study the stability of the Leydig cell transcripts, increasing concentrations of actinomycin D were added to the cell incubation medium, and then the amount of P450arom mRNA was measured by quantitative competitive RT-PCR for each treatment performed during 24 h. The amounts of specific P450arom mRNAs are expressed as percentages when compared with the level determined at time zero (referred to as 100%). For each treatment (three separate cultures were used) we obtained three values from which the half-lifes were calculated assuming that the decrease of the mRNA followed a stochastic process, according to the equation: 

\[ C = Coe^{-kt} \]

where \( C \) represents the mRNA decay and for \( C = co/2 \) we obtained the half-life (t/2). The statistical evaluations were performed on t1/2, kd and slopes using the ANOVA Tukey-Kramer test.

Statistical analysis

Experiments were repeated three times either in triplicate for P450arom mRNA measurements or in duplicate for estradiol determinations; results are means ± S.E.M. of triplicate determinations from three different experiments. Statistical analyses were performed using ANOVA followed by the Tukey-Kramer test; statistical significance was accepted at \( P < 0.05 \) (Staworks; Brain Power Inc., Calabasas, CA, USA).

Results

Influence of incubation time on rat Leydig cell parameters

The optimal conditions for both P450arom gene expression and estradiol production have been determined. According to the duration of incubation, the cell viability

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Influence of incubation time on several rat Leydig cell parameters. Values are expressed as percentage (time 0 as 100%) ± S.E.M. of triplicate determinations from three different experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (h)</td>
<td>Cell viability</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>0</td>
<td>98%</td>
</tr>
<tr>
<td>6</td>
<td>98%</td>
</tr>
<tr>
<td>24</td>
<td>95%</td>
</tr>
<tr>
<td>48</td>
<td>65%</td>
</tr>
</tbody>
</table>

* \( P < 0.05 \); ** \( P < 0.01 \); *** \( P < 0.001 \); NS, not significant; (a) when compared to time zero, (b) when compared to cells incubated without treatment and for the same time.
Figure 3 Dose-related effects of testosterone on the production of estradiol by Percoll-purified Leydig cells from mature rat testes. This production is expressed in percentages; control cells are considered to be 100%. Values are means ± S.E. of duplicate determinations from three separate experiments. * P<0.05; ** P<0.01; *** P<0.001 when compared with control cells.

and the percentage of 3β-HSD-positive cells were not significantly modified during the first 24 h (Table 2). Conversely, after 48 h of incubation, both cell viability and percentage of 3β-HSD-positive cells were decreased. The quantity of P450arom mRNA was not affected after 6 h of incubation, either in the absence or the presence of hormonal treatment, when compared with the initial time. Thereafter a twofold increase of P450arom mRNA level was observed when Leydig cells were incubated for 24 h in the presence of testosterone and oLH, although there was no significant change in basal conditions. By contrast, after 48 h of incubation the quantity of P450arom mRNA decreased (200% (Fig. 5). Therefore a 24-h incubation period was chosen for all further experiments except when stated otherwise.

Dose-related effects of various treatments on P450arom mRNA level and aromatase activity

Whatever the concentration of testosterone used, a dose-dependent increase in Leydig cell estradiol production was observed when compared with control (referred to as 100%). The estradiol output was maximally increased (28%; P<0.01) in the presence of 200 ng/ml testosterone; for the higher concentrations (400 and 500 ng/ml) estradiol production was in the same range as for 200 ng/ml; conversely, the level of specific transcripts decreased slightly (10 and 14% respectively for 50 and 100 ng/ml testosterone; Fig. 4). In order to find out whether these observations were or were not related to an androgen effect, we incubated the Leydig cells with 5α-DHT (androgen not metabolized by the aromatase). As shown in Table 3, 5α-DHT (200 ng/ml) induced a 25% increase in P450arom mRNA levels (P<0.05).

In addition, when the cells were treated with various concentrations of 17β-estradiol, a dose-related increase of the amount of P450arom mRNA was recorded with a maximum (23% augmentation) obtained for 0.5 ng/ml estradiol (Table 3). It is noteworthy that in the presence of 5 ng/ml estradiol the amount of specific P450arom transcript decreased.

Moreover, when increasing concentrations of STM (20–80%, v/v) were added to the Leydig cell incubation medium, a dose-dependent enhancement of the amount of P450arom mRNA was observed, the maximal effect (34% increase; P<0.01) was already achieved in the presence of 40% STM (Table 3).

Effects of oLH on the amounts of P450arom transcripts and estradiol

In order to analyse the specific effects of the gonadotropin, the Leydig cells were incubated with or without 200 ng/ml testosterone. Whatever the concentration of oLH used up to 50 ng/ml, an increase in estradiol production was observed when compared with control A (Leydig cells without exogenous testosterone) which was taken to be 100% (Fig. 5).

When testosterone was added to the Leydig cell incubation media, the pattern was similar but the production of estradiol was markedly enhanced when compared with Leydig cells incubated without testosterone. The maximal outputs of estradiol were reached for oLH concentrations ranging from 1 to 10 ng/ml: 38% and 300% increases (when compared with control A) respectively in the absence and the presence of testosterone. With a dose of 50 ng/ml oLH, a decrease in estradiol production was noticed.

The amounts of P450arom mRNA (Fig. 6) were diminished by 25% (P<0.05) and 15% (NS) respectively for 0.5 and 0.1–1 ng/ml oLH when compared with control A; indeed the addition of testosterone reversed this negative effect. The addition of oLH (5–10 ng/ml) to the Leydig cell incubation media induced an increase in the amount of P450arom mRNA, both in the absence and the presence of testosterone; testosterone further improved the effect of oLH. In the presence of 5 ng/ml oLH the level of P450arom transcripts was enhanced by 35% (P<0.01) and 81% (P<0.001) respectively in the absence and the presence of testosterone (when compared with
Control A). These augmentations were respectively of 13% (NS) and 50% ($P<0.01$) when compared with control B. The mean P450arom mRNA values were similar for 10 ng/ml oLH. When the larger concentration of oLH (50 ng/ml) was used, although a decrease in estradiol production was observed, the amount of P450arom mRNA was enhanced. The level of specific P450arom transcripts was maximally increased (twofold) when Leydig cells were incubated for 24 h with 200 ng/ml testosterone and 50 ng/ml oLH.

**Effect of cyclic AMP on aromatase gene expression**

A 1 mM concentration of the cyclic AMP analogue (Bu)$_2$cAMP was used since it mimicked the maximal effect registered with oLH on estradiol production (Fig. 5). With regard to the amount of P450arom mRNA, the results were of the same order of magnitude as those obtained with oLH concentrations ranging between 5 and 10 ng/ml: when compared with the amount of P450arom mRNA in Leydig cells (control A) the specific transcripts

---

**Figure 4** Dose-related effects of testosterone on P450arom mRNA levels determined by quantitative competitive RT-PCR in Percoll-purified Leydig cells from mature rat testes. (A) Ethidium bromide-stained gel (representative pattern). Lanes W and O correspond to negative (W, RNA was replaced by water) and positive (O, ovary RNA) controls. (B) The P450arom mRNA levels are expressed in percentages when compared with control (no treatment). Values are means ± s.e. of triplicate determinations in three different experiments. **$P<0.01$; ***$P<0.001$; NS, not significant when compared with control cells.
were increased 57% ($P<0.01$) and 95% ($P<0.001$) respectively in the absence and the presence of androgen. These augmentations were of 30% ($P<0.01$) and 63% ($P<0.001$) in the absence and the presence of testosterone when compared with testosterone-treated cells (Fig. 6).

The half-life of the Leydig cell P450arom transcripts

We used actinomycin D to examine the effect of oLH and testosterone on the half-life of the cytochrome P450arom mRNA. Various concentrations of actinomycin D (1, 2.5, 5 and 7.5 µg/ml) were added to the Leydig cell culture media and incubations were carried out over increasing time up to 24 h. A concentration of 5 µg/ml actinomycin D was selected since lower concentrations were ineffective on transcription even after 24 h, although higher doses were toxic for Leydig cells (60% increase of dead cells recorded during the first 2 h; data not shown). In the presence of 5 µg/ml actinomycin D, we did not observe any significant change during the first 2 h whatever the treatment, then the quantity of P450arom mRNA decreased until 12 h of incubation. For longer periods of incubation, the P450arom signal was undetectable by

Table 3 Effect of various treatment on the amount of P450arom transcripts. Values are expressed as percentage (cell incubated without treatment are considered to be 100%) of triplicate determinations from three different experiments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>P450arom mRNA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
</tr>
<tr>
<td>+Testosterone (200 ng/ml)</td>
<td>120 **</td>
</tr>
<tr>
<td>+5α-DHT (200 ng/ml)</td>
<td>125 *</td>
</tr>
<tr>
<td>+17β-estradiol (0–1 ng/ml)</td>
<td>9 NS</td>
</tr>
<tr>
<td>+17β-estradiol (0–5 ng/ml)</td>
<td>23 *</td>
</tr>
<tr>
<td>+17β-estradiol (1 ng/ml)</td>
<td>17 *</td>
</tr>
<tr>
<td>+17β-estradiol (5 ng/ml)</td>
<td>-15 *</td>
</tr>
<tr>
<td>+STM (20%)</td>
<td>11 NS</td>
</tr>
<tr>
<td>+STM (40%)</td>
<td>34 **</td>
</tr>
<tr>
<td>+STM (60%)</td>
<td>35 **</td>
</tr>
<tr>
<td>+STM (80%)</td>
<td>39 **</td>
</tr>
</tbody>
</table>

* $P<0.05$; ** $P<0.01$; *** $P<0.001$; NS, not significant.

Figure 5 Effects of increasing concentrations of oLH on the production of estradiol by purified Leydig cells from mature rat testes incubated either in the absence or the presence of testosterone (200 ng/ml). (Bu)$_2$cAMP (1 mM) was used to mimic the optimal effect of oLH. The results are expressed as percentages. Control A (no treatment is referred to as 100%). Values are means ± S.E. of duplicate determinations obtained from three separate experiments. * $P<0.05$; ** $P<0.01$; *** $P<0.001$; NS, not significant when compared with (a) control A (cells without treatment) or (b) control B (cells incubated with 200 ng/ml testosterone).
RT-PCR, except when cells were treated with testosterone (200 ng/ml) and oLH (5 ng/ml), when a weak signal was still observed after 15 h (Fig. 7A). A 50% diminution of the initial quantity of P450arom mRNA was observed after 5.8 ± 0.6 h in basal conditions (i.e. without any hormonal treatment of Leydig cells). The addition of either testosterone (200 ng/ml) or oLH (5 ng/ml) alone did not modify the profile of the curves, the results were identical and the half-life was 7.2 ± 0.8 h. By contrast, when the Leydig cells were incubated with testosterone plus oLH, the half-life of the specific P450arom mRNA was significantly (Pc<0.05) increased and reached 10.8 ± 1.2 h (Fig. 7B).

**Discussion**

From these *in vitro* studies we have shown, in freshly isolated Leydig cells from mature rat testes, that the regulation of aromatase gene expression is under LH (via cyclic AMP) and steroid control. These observations are corroborated by the estradiol output and our data concerning the positive regulation of the aromatase activity by LH in rat Leydig cells are in agreement with those of Valladares & Payne (1979a,b) and Papadopoulos *et al.* (1986). When the regulation of the aromatase gene expression was analysed in terms of specific transcripts in mature rat Sertoli cells it was found that testosterone alone and follicle-stimulating hormone, either alone or with testosterone, induced an increase in the amount of P450arom mRNAs (Levallet & Carreau 1997). Whatever the somatic cells studied (either Leydig or Sertoli cells), gonadotropins provoke a dose-related increase in the P450arom mRNA levels but the nadirs are different: between 3 and 6 h in Sertoli cells (Rappaport & Smith 1996) whereas we found no changes until 6 h in Leydig cells, the maximum being observed after 24 h. Therefore LH (and cyclic AMP) controls the P450arom gene expression in the rat Leydig cells via the existence of cyclic AMP response motifs (CRE) localized in the proximal promoter PII of the aromatase gene (Bulun *et al.* 1993).

It is noteworthy that in both rat Sertoli cells (Levallet & Carreau 1997) and Leydig cells (data herein) we have been able to measure specific mRNA transcripts of aromatase without any hormonal treatment. Obviously, these observations on the constitutive expression of the aromatase
gene in rat Leydig cells are in agreement with the reported data on aromatase activity (Papadopoulos et al. 1986). In the tumor Leydig cell lines R2C and H 540, aromatase is constitutively highly expressed and requires not only several CRE-like motifs but also the steroidogenic factor-1 within the proximal promoter of the aromatase gene (Young & McPhaul 1998). The differences in constitutive and regulated aromatase are likely relevant to the physiological status of the Leydig cells and the steroidogenic cells in general: acute controls via available mRNA and long-term regulation of specific genes.

The estradiol production of the Leydig cell is correlated with the amounts of P450arom mRNA and is maximum in the presence of either testosterone or DHT showing, therefore, that androgens are strong modulators of aromatase gene expression and activity. Similar observations dealing with the regulation of aromatase activity by androgens have been reported in the brain of the rat (Roselli & Resko 1984, Zwain et al. 1997, Resko et al. 2000). Below a threshold of 100 ng/ml testosterone the Leydig cell increase of estradiol output is the consequence of either post-transcriptional events and/or use of
available mRNAs without transcriptional effects (which may indeed explain the slight diminution of the amount of P450arom mRNA; Fig. 4A,B). Together with oLH, it is clear that testosterone further controls the aromatase both at the transcriptional level and in terms of biological activity. However, with a larger concentration of gonadotropin (50 ng) the Leydig cell estradiol output decreases whereas the amount of transcripts is higher suggesting, therefore, additional regulatory steps and maybe the expression of truncated P450arom mRNAs as shown previously in rat Sertoli and germ cells (Levallet et al. 1998b).

Consequently, our data related to the positive effects of steroid hormones on the expression of the aromatase gene indicate that besides CRE, androgen responsive elements as well as estrogen responsive elements are necessary for a full expression of the aromatase in Leydig cells. In addition to promoter II, an exon 1.6 has been demonstrated in the testicular aromatase gene (Shozu et al. 1998), therefore suggesting other putative regulatory factors such as insulin-like growth factor-I which increases the rat Leydig cell aromatase activity in the presence of human chorionic gonadotropin (hCG) (Rigaudière et al. 1989) or Sertoli cell-secreted factors which modulate Leydig cell aromatase (both in terms of mRNA and enzyme activity) not only in the rat (Papadopoulos et al. 1987, Carreau et al. 1988) but also in man (Lejeune et al. 1998). It is therefore important to take into account the fact that the regulation of the aromatase promoter(s) is likely to be related to the presence of other transcriptional factors, either repressor or activator (Utsumi et al. 1996).

In order to analyse the effects of LH and/or testosterone treatments on Leydig cell regulation of transcriptional activity, we have used actinomycin D and studied the half-life of the specific P450arom transcripts. After such a treatment the rates of degradation of the specific P450arom mRNAs are similar; conversely a twofold increase of the stability of the transcripts was noted when the Leydig cells were treated with oLH plus testosterone, although the mRNA of actin was unaltered in presence of actinomycin D. In our reported experiments we were unable to quantify the specific mRNA since a dramatic increase in cell death was recorded in the presence of 10 μg actinomycin D.

It is necessary to keep in mind that Leydig cells not only express a gonadotropin-regulated aromatase which leads to the synthesis of estrogens but they also contain estrogen receptors, allowing intracrine/autocrine/paracrine roles for these female hormones. With regard to the roles of estrogen, it is essential to take into account the existence of Leydig cell populations as well as their maturational stages. In fact, Leydig cells contain estrogen receptors very early in life and the amount of estrogen receptor mRNA is much higher in precursor than in mature Leydig cells (Zhai et al. 1996). The Leydig cell steroidogenic pathway is in part negatively controlled by estrogens (for review see Abney 1999), and other data have shown that estrogens are deleterious for Leydig cell development via opposite effects on cyclin A2 and G1 (Ge & Hardy 1997). Therefore, estrogens seem to exert mostly a negative role on Leydig cells but our preliminary observations demonstrate a positive effect of estradiol on the regulation of the aromatase expression in Leydig cells. Moreover numerous data on estrogen receptor knockout mice (Couse & Korach 1999) and aromatase knockout mice (Robertson et al. 1999) have provided clear evidence for a positive role of estrogens in the male reproductive tract.

In conclusion, in testicular somatic cells it is clear that besides gonadotropins, steroid hormones are involved in the regulation of aromatase gene expression, although in germ cells our preliminary results demonstrate opposite effects of growth factors and cytokines on the amount of specific P450arom transcripts (Bourguiba et al. 2000).

Thus, the rat Leydig cell cytochrome P450arom which catalyzes the final conversion of androgens into estrogens is transcriptionally regulated at least by LH (via cyclic AMP) and steroid hormones, demonstrating that the aromatase promoter contains besides CRE, androgen and estrogen responsive elements together with unknown sequences targeted by paracrine factors from a tubular origin.

Acknowledgements

The authors wish to thank the NIDDK for the gift of oLH and Mrs C Edine for the cell culture preparations. Parts of this work have been presented as an abstract at the International Workshop Estrogens and Male Reproduction, 24–24 September 1999, Crotone, Italy.

References

Abney TO 1999 The potential roles of estrogens in regulating Leydig cell development and function; a review. Steroids 64 610–617.
Bourguiba S, Genissel C, Benahmed M & Carreau S 2000 Regulation of the aromatase gene expression in adult male rat germ cells: effects of TGFβ and TNFα. 8th European Workshop on Molecular and Cellular Endocrinology of the Testis, 13–17 May. St Malo, France.

Journal of Endocrinology (2001) 168, 95–105

www.endocrinology.org

Downloaded from Bioscientifica.com at 12/15/2018 11:22:06PM via free access
Carreau S & Levallet J 2000 Testicular estrogens and male reproduction. 

Carreau S, Papadopoulos V & Drosdowsky MA 1988 Stimulation of
adult rat Leydig cell aromatase activity by a Sertoli cell factor. 
*Endocrinology* 122 1033–1109.

Carreau S, Genissel C, Bilinska B & Levallet J 1999 Topical review –
Sources of oestrogen in the tests and reproductive tract of the male. 

isolation using acid guanidinium thiocyanate–phenol–chloroform 
extraction. *Analytical Biochemistry* 162 156–159.

Couse JF & Korach K 1999 Estrogen receptor null mice: what have 
we learned and where will they lead us? *Endocrine Reviews* 20 
358–417.

Ge RS & Hardy MP 1997 Decreased cyclin A2 and increased cyclin 
G1 levels coincide with loss of proliferative capacity in rat Leydig 
cells during prepubertal development. *Endocrinology* 138 
3719–3726.

Hickey GJ, Krasnow JS, Beattie WG & Richards JS 1990 Aromatase 
cytochrome P450 in rat ovarian granulosa cells before and after 
luteinization: adenosine 3’5’-monophosphate-dependent and 
independent regulation. Cloning and sequencing of rat aromatase 
cDNA and 5’ genomic DNA. *Molecular Endocrinology* 4 3–12.

Rat testicular germ cells and epididymal sperm contain active P450 

Kwon S, Hess RA, Bunick D, Nitta H, Janulis L, Osawa Y & Bahr 
JM 1995 Rooster testicular germ cells and epididymal sperm 

Lejeune H, Sanchez P & Saez JM 1998 Enhancement of long-term 
testosterone secretion and steroidogenic enzyme expression in 
human Leydig cells by co-culture with human Sertoli cell–enriched 

Levallet J & Carreau S 1997 Aromatase gene expression in rat 
320 123–129.

Levallet J, Bilinska B, Mitrre H, Genissel C, Fresnel J & Carreau S 
1998a Expression and immunolocalization of functional cytochrome 
P450 aromatase in mature rat testicular cells. *Biology of Reproduction* 
58 919–926.

Levallet J, Mitrre H, Delarue B & Carreau S 1998b Alternative 
slicing in the coding region of the cytochrome P450 aromatase 
gene in male rat germ cells. *Journal of Molecular Endocrinology* 20 
305–312.

M 1992 Absolute quantification of viremia in human immuno-
deficiency virus infection by competitive reverse transcription 
and polymerase chain reaction amplification. *Journal of Clinical 
Microbiology* 30 1752–1757.

Nitta H, Bunick D, Hess RA, Janulis L, Newton SC, Millette CF, 
Osawa Y, Shiruta Y, Toa K & Bahr JM 1993 Germ cells of 
the mouse testis express P450 aromatase. *Endocrinology* 132 
1396–1401.

Papadopoulos V, Carreau S & Drosdowsky MA 1985 Effects of 
phorbol ester and phosholipase C on LH-stimulated steroidogenesis in 

Papadopoulos V, Carreau S, Serman-Joly E, Drosdowsky MA, 
Dehennin L & Scholler R 1986 Rat testis 17β-estradiol: identification 
1211–1216.

Papadopoulos V, Kamitchoung P, Drosdowsky MA, Hochereau de 
Reviers MT & Carreau S 1987 Adult rat Sertoli cells secrete a 
factor or factors which modulate Leydig cell function. *Journal of 
Endocrinology* 114 459–467.

Parvinen M & Vanha-Perthulla T 1972 Identification and enzyme 
quantitation of the stages of the seminiferous epithelial wave in the 

Rappaport MS & Smith EP 1996 Insulin-like growth factor I inhibits 
aromatization induced by follicle-stimulating hormone in rat sertoli 

Resko JA, Pereyra-Martinez AC, Stadelman HL & Roselli CE 2000 
Region-specific regulation of cytochrome P450 aromatase 
messenger ribonuciel acid by androgen in brains of male rhesus 

Rigaudière N, Grizard G & Boucher D 1989 Aromatase activity in 
purified Leydig cells from adult rat. Comparative effects of insulin, 
IGF-I and hCG. *Acta Endocrinologica* 121 677–685.

Robertson KM, O’Donnell L, Jones MEE, Meachem SJ, Boon WC, 
Fisher CR, Graves KH, McLachlan RJ & Simpson ER 1999 
Impairment of spermatogenesis in mice lacking a functional 

Roselli CE & Resko JA 1984 Androgens regulate brain aromatase 
activity in adult males rats through a receptor mechanism. 
*Endocrinology* 114 2183–2189.

Ross J 1995 mRNA stability in mammalian cells. *Microbiological 
Reviews* 59 423–450.

Saez JM 1994 Leydig cells: endocrine, paracrine and autocrine 
regulation. *Endocrine Reviews* 15 574–626.

Sharpe RM 1993 Experimental evidence for Sertoli–germ cell and 

Shouz M, Zhao Y, Bulun SE & Simpson ER. 1998 Multiple splicing 
events involved in regulation of human aromatase expression by a 

Simpson ER, Mahendroos MS, Means GD, Kilgore MW, 
Hinshelwood MM, Graham-Lorence S, Amarnie B, It Y, Fisher 
CR, Michael DM, Mendelson CR & Bulun SE 1994 Aromatase 
cytochrome P450, the enzyme responsible for estrogen biosynthesis. 
*Endocrine Reviews* 15 342–355.

Tang PZ, Tsai-Morrish CH & Dufau ML 1998 Regulation of 
3β-hydroxysteroid dehydrogenase in gonadotropin-induced 
steroidogenic desensitization of Leydig cells. *Endocrinology* 139 
4496–4505.

Tsubota T, Nitta H, Osawa Y, Mason JI, Kita I, Tiba T & Bahr JM 
1993 Immunolocalization of steroidogenic enzymes P450 sc 3β-HSD 
P450 c17 and P450 arom in the Hokkaido brown bear (*Ursus arctos yesoensis*) tests. *General and Comparative Endocrinology* 92 
439–444.

Utsumi T, Harada N, Maruta M & Takagi Y 1996 Presence of 
alternatively spliced transcripts of aromatase gene in human breast 
cancer. *Journal of Clinical Endocrinology and Metabolism* 81 
2344–2349.

Valladares & Payne 1979a Induction of testicular aromatization by 

Valladares & Payne 1979b Acute stimulation of aromatization in 
Leydig cells by human chorionic gonadotropin. *PNAS* 76 
4460–4463.

Young M & McPhaul MJ 1998 A steroidogenic factor-1-binding site 
and cyclic adenosine 3’, 5’-monophosphate response element-like 
elements are required for the activity of the rat aromatase promoter 
in rat Leydig tumor cell lines. *Endocrinology* 139 5082–5093.

Zhai J, Lanclos KD & Abney TO 1996 Estrogen receptor messenger 
ribonucelic acid changes during Leydig cell development. *Biology of 
Reproduction* 55 782–788.

Zwain IH, Yen SSC & Cheng CY 1997 Astrocytes cultured in vitro 
produce estradiol-17β and express aromatase cytochrome P-450 
(P-450 AROM) mRNA. *Biochimica et Biophysica Acta* 1334 
338–348.

Received 30 June 2000
Revised manuscript received 14 August 2000
Accepted 7 September 2000


Downloaded from Bioscientifica.com at 12/15/2018 11:22:06PM
via free access